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ABSTRACT

Throughout our daily lives, we perform a series of tasks for the sake of

achieving a specific goal. While doing so, we continuously interact with the

physical environments around us as well as the artifacts within them. From

this accumulated bodily experience, we have been building prevalent embodied

schemas concerning environments and artifacts. Therefore, we usually perceive

a shared conceptual metaphor when we encounter a specific situation or new

interface. As a Human-Computer Interaction researcher, the author conducted

a series of research to extend pervasive bodily actions to the realm of computing

or to enhance the interaction capability of everyday environments and artifacts.

When a user interacts with everyday objects as tangible interfaces for com-

puting, the objects need to understand the actions of the user to function as a
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computing interface, meaning that the objects should be augmented with com-

putational abilities. In the first phase of this thesis, the author explores the

possibilities of vibration as a sensing channel for designing input interaction

with everyday objects. First, I discuss how to augment fingers with vibration

to estimate contact finger(s) when contact is made between a user and everyday

surfaces. Secondly, I address how to implement and evaluate a vibration-based

sensing method for the recognition of objects via their difference in the material.

For the second phase of the thesis, the author reports a psychophysical ex-

periment that is designed to support tangible interfaces with vibrotactile feed-

back. Using tangible interfaces implies a series of manual interaction with tan-

gible things. Humans require precise force control to execute fine manual tasks,

which is generally facilitated to a great extent by providing adequate feedback.

To design appropriate vibrotactile stimuli for such manual tasks, it is essential

to quantify human vibrotactile sensitivity over a large range of contact forces.

The author investigated the psychophysical detection thresholds for vibrotactile

stimuli when active contact force exists. The experimental results showed stark

contrasts between stimulus frequencies, depending on actively exerted pressing

force.
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I. Introduction

1.1 Research Motivation

Direct manipulation has been a leading paradigm of user interface research

for past decades. The concept facilitates advances in computing technologies

with its directness in interaction [1, 2, 3]. The metaphor of direct manipu-

lation is closely related to the level of directness between physical action and

its representation, and the direct manipulation metaphor can be characterized

into a continuum suggested by [4]. Manipulating tangible objects for computing

(strong direct manipulation [4, Box 7.1]) provides meaningful direct manipulation

metaphor [4] because the tangible interaction utilizes dexterous and innate hap-

tic interaction skills and rich physical affordances of the objects [5, 6]. In other

words, the tangible computing interfaces are inseparable from haptic interaction,

and various haptic feedback, e.g., vibration, kinesthetic, and thermal, has been

frequently used to mediate interaction with tangible computing interfaces. This

dissertation focuses on the usage of tangible interfaces with vibrotactile feedback.

From a series of studies, the author explores how the fundamental understandings

from the propagation dynamics of vibration can enhance haptic interaction with

tangible objects and vibrotractile feedback.
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1.2 Research Goal

The concept of gulf-of-execution and gulf-of-evaluation represents the gap

between a person’s goals and representations from the system [2, Figure 3]. When

a person interacts with computing systems, there should be appropriate sensory

representations to be understood by the person. On the other side, when a person

performs an action to the system, the action is not meaningless only when that

action can be perceived by the system. This dissertation describes a series of

works that bridges the gap when interacting with tangible props for computing

purpose.

The gulf of execution will be successfully bridged by designing appropriate

inputs reflecting the context of computing. For tangible interaction, contact

is always there when a user interacts with a physical medium for computing,

and this also implies that the user grasped some tangible thing. In this thesis,

the author focused on bridging the gulf of execution in tangible interaction by

answering the following two questions: 1) identify contact between a user and an

object and 2) recognize the object grasped by the user.

The contact provides valuable information on the contact state in two cate-

gories: one about the contact itself (contact point, force, and duration) and the

other about the hand making the contact (contact fingers and hand posture).

Sensing such fundamental properties of contact leads to more convenient and ex-

pressive tangible interaction. Therefore, the advance in sensing techniques that

articulate the major properties of contact can significantly improve usability and

user experience in the interaction mediated by tangible objects. In this regard,
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the author introduces a novel approach to identify contact fingers by augmenting

the hand with vibro-acoustic signals.

Recognizing objects of interest affords opportunities to a computing system

to assume the user’s context [7, 8]. Such context-awareness has the potential

to enrich interaction by providing relevant functionalities [9, 10]. Further, the

material that an object is made of reinforces the context [11, 12]. The recognized

information enables the object to function as a part of the computing environ-

ment. Therefore, we focus on how to recognize hand-held objects based on their

differences in material in order to support tangible interaction in various com-

puting contexts and environments.

To bridge the gulf of evaluation by presenting vibrotactile feedback to a user

with tangible interfaces, the first thing to do is to identify the sensory channel.

What characterizes the tangible interaction from the others is the high degree

of freedom in manual tasks. In such tasks, vibrotactile feedback is perceived

in the presence of external pressure to contact sites, e.g., fingertip. Therefore,

understanding the effects of contact force on the perception of vibrotactile stimuli

is a prerequisite for designing dexterous manual interaction in tangible computing

with vibrotactile feedback. To clarify the sensory channel of vibrotactile stimuli,

the author investigated the vibrotactile sensitivity of the fingertip about the two

major factors: 1) a wide range of contact forces encountered during ordinary

manual tasks and 2) two vibration frequencies innervating two different tactile

sensory channels.

– 3 –



1.3 Organization

The rest of this thesis is structured as follows. In Chapter II, the background

on the nature of vibration and its propagation is described, which includes the

propagation of vibration on the two most relevant mediums, human skin and

artificial materials. Chapter III explains how to identify contact finger(s) on rigid

surfaces when the fingertip is augmented by vibration. Chapter IV introduces

the vibration-based sensing framework for object recognition. In Chapter V, the

author states the detailed analysis on vibrotactile sensitivity under active contact

force.

– 4 –



II. Background

2.1 Preface: The Propagation of Vibration

Vibration is a mechanical wave that oscillates through a medium while trans-

ferring energy. The propagation of vibration is largely affected by the mechanical

characteristics of a medium. Our interdisciplinary study is all starting from the

observation of vibration and the analysis of its propagation.

The first medium to discuss is human skin. In haptic research, the medium

of vibration is human skin, and the main focus is to see how the propagation of

vibration activates the sensory receptors of vibratory stimuli. Verifying external

factors having an influence on the vibration propagation is of importance, such

as contact pressures, contact postures, contact sites, and configurations of a con-

tactor. Such quantitative observations provide evidence for the understanding of

vibrotactile perception. For input technologies in Human-Computer Interaction,

the same information about the vibration propagation within human skin is uti-

lized to devise sensing methods in many ways, e.g, design on-body interaction,

estimate hand gestures or poses, and identify users.

Secondly, the other medium for vibration analysis is artificial materials and

objects. When exposed to a forced vibration, a medium of mechanical vibration

is modeled by the combination of the three impedance terms, a mass, a spring,

and a damper, where each term is a function of vibration frequency. This model–
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mechanical impedance–predicts how vibration is attenuated while transmitting

a medium. The transmissibility of vibration across a medium is also affected by

other external factors, such as the shape of an object and its material composi-

tion, that contribute to the boundary conditions of differential equations. With

the emphasis on the difference in the vibration propagation dynamics, several

attributes of vibration, e.g, resonance frequency and transfer function, have been

used to discriminate materials or objects in Human-Computer Interaction studies.

In Haptics, the information is used to improve the quality of vibrotactile stimuli.

Sometimes, the resonance profile of an object of interest is examined to select

effective frequency ranges to be delivered to human skin. Conversely, a material

with a high absorption rate in the frequency of interest is sometimes attached

to localize the tactile stimuli within a specific region. In the following sections,

the author deep dives into the listed topics to illustrate previous literature and

to provide an insight for future studies.

The research goals of this thesis are based on the analysis of vibration prop-

agation, and each deals with a different medium for vibration to travel: rigid

surfaces and the hand (Chapter III), objects made of different materials (Chap-

ter IV), and human skin (Chapter V). Section 2.2 summarizes the literature

about the propagation of vibration over human skin and artificial materials, and

the author describes several considerations for designing vibrotactile feedback

or implementing vibration-based sensing techniques. Section 2.3 describes the

frameworks of sensing techniques utilizing vibration and the review of the previ-

ous literature. In Section 2.4, the description of the vibration propagation across
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human skin helps understand the response of sensory receptors responsible for

vibrotactile perception.

2.2 Investigating The Propagation of Vibration

2.2.1 Preparation

The first step is to select and characterize an actuator. The actuator is the

hardware that produces physical vibration, which should be carefully selected

depending on the constraints and goals of the final vibrotactile display [13]. For

tactile displays, it is of critical importance that the selected actuator should

be calibrated to ensure the reproducibility of results. The calibration of the

actuator is to find the relationship between the input, e.g., voltage or current,

that is assigned to the actuator and the output, e.g., acceleration or displacement,

that the actuator presents from the input. For sensing purposes, what is most

important is to check whether the actuator-sensor pair can display and capture

signals with the intended range and accuracy. When it comes to vibration for

feedback, the perceived intensities of vibrotactile stimuli are sometimes matched,

instead of the physical amplitude of vibration.

2.2.2 Artificial Materials

The vibrational response of a structure is simply modeled by using the three

terms, a mass (m), a spring (k), and a damper (c), and solving differential equa-

tions tell how a force vibration affects the motion of the structure. There are some

hyperparameters, e.g., the critical damping (cc), the damping ratio (ζ), and the
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natural frequency (wn), that help understand the response of the structure. The

critical damping (cc = 2
√
km) tells about the value that a system does not vi-

brate if its damping coefficient is larger than or equal to the critical damping.

The damping ratio (ζ = c
cc

) is the ratio between the current damping and critical

damping of the current system, which allows us to simply catch how the system

will behave under forced vibration. The natural frequency (wn = 2πfn =
√

k
m)

describes the frequency where the amplitude of vibration is maximized, and this

phenomenon is called resonance.

For rendering vibrotactile stimuli, we mostly concern about underdamped

cases (c < cc), and the solution of the underdamped system can be found in

Equation 2.1.

x(t) = Xe−ζwntcos(2π
√

1− ζ2fnt− φ) (2.1)

In this equation, there exist two terms that describe the response of the system.

The multiplication of the damping ratio and natural frequency in the exponential

term denotes how fast the forced vibration is decaying, and the frequency of

the cosine term explains that the higher the damping ratio is, the slower the

oscillation of the vibration is.

When it comes to real-world problems, estimating the propagation of vi-

bration is not as simple as the computation in the described theoretical model

because of several reasons like complicated structures, nonlinear properties, com-

plex boundary conditions. Despite such complex nature, vibration analysis has

been applied in many areas like monitoring the structural health, detecting mal-

functions, designing facilities, alarming earthquakes, and selecting attenuation
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material. Instead of directly solving equations, many practitioners measure the

transmissibility of vibration while varying frequency [14, 15, 16], which is to figure

out the impedance terms that are functions of frequency.

In Haptics research, the vibration attenuation property of materials is uti-

lized to localize tactile stimuli around contact. The commonly used isolation

materials are silicone [17], polyurethane [18, 19], sponge [20], sorbothane [21],

and steel spring [21], and these are the materials having high damping constant.

Park et al. report the attenuation of vibration on elastic silicones (EcoFlex 0010

and 0030; Smooth-on) over the wide range of vibration frequencies and ampli-

tudes, and the usage of the 3-mm silicone layer effectively blocked vibration

transmission, especially frequencies over 200 Hz (> 90 %).

Conversely, the vibration transmissibility of materials needs to be improved

to detect vibration signals for sensing purposes [22, 23, 24, 25, 26, 27]. For

vibration sensing, it requires to select the material transmitting the frequency

range that includes significant spectral information. Therefore, it is important

to matching stiffness and weight for the right natural frequency. As another

factor for vibration propagation, Fabiani [22] reports that the isotropic material,

e.g., glass, is better to transmit vibration signals than the anisotropic materials,

e.g., wood and MDF, because of unexpected phase differences resulting from the

irregular microstructure of anisotropic materials. The vibration transmissibilities

of materials have provided insights into the sensing principles of our suggested

sensing techniques.
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2.2.3 Human Skin

Once an actuator is activated, the vibration emanating from the actuator

is transmitted directly to the skin that is making contact with the vibration

source. Therefore, the profound understanding of the propagation of vibration

over human skin is the core factor in designing good vibrotactile stimuli. In

summary, the forced vibration on human skin presents high transmissibility when:

1) the distance from the vibration source is close (< 30 mm); 2) the frequency is

low (< 160 Hz); 3) both the contact force (> 4 N) and the frequency is high (>

200 Hz).

The transmissibility of vibration is largely affected by body site [28] and

frequency [29, 14, 30]. First, the amplitude of vibration attenuates to approxi-

mately 30 % at 8 mm and to 25 % at 24 mm away from the vibration source

on the palm [28] where the frequency of the observed vibration is around 70 Hz

(3 V; pancake motor). When they tested the same actuator at different body

sites, such attenuation rates were more rapid at the forearm and thigh where

the skin stiffness is lower than the palm. Recently, Dandu et al. [29] precisely

measure the propagation of vibration from the index fingertip with the shaker

and laser doppler vibrometer, varing frequencies from 40 to 640 Hz in steps of

40 Hz, and the distances with the half of the energy (D(f)) in each frequency are

recorded. The lower frequencies (< 160 Hz) travel further (D(f) > 40 mm) from

the fingertip to the hand, and the highest frequency, 640 Hz, presented the half

of the total energy at the distance less than 30 mm [29].

The mechanical properties of the hand are affected by contact conditions
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like hand posture [30], contact area [14], and contact force [30, 31], which influ-

ences the transmissibility of vibration across the skin. In general, the mechanical

impedance of the hand [14, Figure 5] increases as vibration frequency increases

toward roughly 100 Hz, and then, the impedance starts to increase again around

300 Hz. The increase in the mechanical impedance decreases the transmissibil-

ity of vibration. This result is consistent with the transmissibility measurement

by [30] where the transmissibility significantly decreases after 2-300 Hz. Schaefer

et al. measure the transmissibility of the sinusoidal sweep (20 to 500 Hz) from

the fingertip to the three different phalanges on the index finger (in the middle of

the distal, middle, and proximal phalanx) with three different postures [30]. The

transmissibility degrades as the signal is measured at the phalanx close to the

base of the finger, and the three postures present slightly different trends in the

vibration transmissibility. When the sweep signal is measured close to the vibra-

tion source, the effect of the postures is not significant regardless of frequency;

however, a straight finger with normal contact transmits vibration toward the

proximal phalanx slightly better than the other postures. Although the higher

contact force increases the mechanical impedance of the distal phalanx of the

finger except the frequency between 60 to 80 Hz [31], the vibration transmissibil-

ity is not affected significantly or even improved in the frequency beyond 250 Hz

when force increased from 4 N to 15 N [30].
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2.3 Sensing Vibration for Computing Inputs

2.3.1 Detecting Human Action from Vibro-acoustic Signal

The transmission of vibration within the hand and arm are presented in

Section 2.2.3. In this section, the author highlights studies that designed input

techniques exploiting the transmission of vibration within the human arm. There

have been mainly two approaches for input sensing methods using vibration: 1)

Detect the inevitable and typical vibration patterns generated by human action

and 2) Observe the distortion of a structured vibration from human action.

The former is designed to capture vibration and sound transmitted from

contact and gesture. There have been several attempts to recognize contact po-

sition with piezo-electric sensor(s) attached to the arm [32] or wrist [33], trying

to reduce the number of sensors while not compensating accuracy. These esti-

mation methods for on-body contact position are extended to surfaces [34] or

implemented with a commercial wearable device [35]. To reflect more situated

interaction, vibrations made from gestures are detected by wearable watch [10].

The other approach uses both sensor and actuator pairs to detect users’ ac-

tions. It is possible to estimate contact force [25, 36] and contact position [26, 37]

with the sensor and actuator pairs attached to flat rigid surfaces or rigid objects.

In addition, sending a vibration to the hand enables the estimation of grip force

[38], finger joint angle [39], and hand postures [40, 41]. Also, it is possible to

design an authentication method using hand resonance profiles [42]. In most

cases, frequency sweep signals generated by surface transducers are measured by

contact microphones, e.g., piezoelectric sensor and piezo-ceramic accelerometer.
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2.3.2 Recognizing Object and Material from Vibration

A mechanical vibration that propagates through a medium leaves a unique

signature. Research on vibration-based sensing for object recognition has followed

two strategies: active object sensing and passive object sensing. The former is

to detect the patterns of vibrations emanating from an object that encompasses

its own oscillation source, e.g., motor-powered vibrating objects. ViBand [10]

measures a vibration transmitted through the human body to recognize the ob-

ject that has generated the vibration. Vibrosight [43] remotely detects unique

vibration patterns of objects in operation with laser vibrometry. While useful,

these methods are not applicable to still objects.

The other approach is to apply a structured vibration (e.g., sinusoidal fre-

quency sweep) to a static object and measure the response, and then compare the

input and output (I/O) signals for object recognition. This approach works with

any objects although it requires an external vibration source. Kunze et al. [44]

and Cho et al. [7] find the location of a mobile phone by measuring acceleration

(and also sound [44]) using internal sensors after imposing a vibration. These

studies envision the possibility of material recognition from vibration signatures.

VibeBin [23] takes advantage of resonance when the object is exposed to vibra-

tion. This system learns the discrete fill-levels of a waste bin and then classifies

them using clustering.
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2.4 Perceiving Vibration as Sensory Stimulus

The vibration propagating across the skin is detected by sensory receptors in

the skin.There are mainly four cutaneous mechanoreceptors responsible for tac-

tile sensation, and two are located in the outer layer of the skin (epidermis) and

the other two reside deeper underneath the skin (dermis) [45]. Each receptor has

a different receptive field size and biomechanical structure resulting in handling

different types of tactile stimuli. In terms of vibrotactile feedback, we mainly con-

sider two fast-adapting mechanoreceptors, the Pacinian and Meissner corpuscles,

each of which is in charge of perceiving rapid and transient signals but different

frequency ranges. According to the literature [46, 47], Pacinian corpuscles located

in the deeper layer with a larger receptive field and sparse density are responsible

for higher-frequency vibrations (40-400 Hz), and Meissner corpuscles found just

beneath the epidermis detect lower-frequency vibrations (5-50 Hz). The distri-

bution of both receptors are fairly low over the hairy skin, e.g., forearm, thigh,

and torso, compared to the glabrous skin, e.g., the hand and fingertip [48].

There are noticing results on the vibration propagation in conjunction with

the characteristics of the mechanoreceptors. Vibration travels further through the

hand as its frequency decreased in general [29]. As such, this propagation trend

of vibration should be considered with the response of fast-adapting mechanore-

ceptors when designing a vibrotactile display with multiple distant actuators.

As denoted in the previous section, the existence of contact force improves the

transmissibility of vibration deeper in the skin, especially the frequencies higher

than 200 Hz [30], and one possible explanation is the compressed skin tissues bet-
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ter coupling vibrations transmitted to bones and tendons [49, 50]. This implies

that actively pressing a vibration source increases the possibility of activating

the Pacinian corpuscle lying deep in the dermis, but not the Meissner corpuscle.

In summary, it is of importance to understand the sensory capability in human

vibrotactile perception for truly meaningful haptic experience, but it is essential

not to miss how vibration innervating the sensory receptors is delivered through

the skin.
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III. Recognizing Contact Fingers on Rigid

Surfaces by Augmenting Fingers with

Vibration

3.1 Introduction

The limited input vocabulary is one of the key obstacles that hinder the usage

of tangible interfaces. To increase the input bandwidth of tangible interaction,

We explore the possibility of an input sensing method that identifies contact

fingers on rigid surfaces using vibration. There has been a number of previous

attempts to discern finger(s) of a user, and they can be mostly summarized into

two approaches, implicit and explicit finger identification.

The first approach infers contact fingers from the highly correlated actions

and states, e.g., postures of the hand [51, 52], contact states of the finger [53, 54],

the arrangement of hands [55], fingerprints [56], and muscle tension [57, 58]. Be-

cause of inevitable ambiguities, this approach mostly presents low classification

accuracy (mostly around 80-90 %) and limited sensing capabilities (2-3 single

finger contact). To overcome these limitation, researchers encode fingers with ex-

plicit marker or hardware, including visual markers [59, 60], vibration motor [61],

motion sensors [62, 63], and distance sensors [64, 65]. These explicit methods

present decent accuracies, but they mostly do not support multiple simultaneous

contact fingers or require special-purpose hardware.
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In this chapter, we suggest an active sensing technique that is capable of

identifying multiple simultaneous contact fingers. For that purpose, we imple-

ment our hardware with existing a form factor, a ring to actuate vibration, and

an off the shelf sensor, a microphone inside commercial wireless earbuds. A user

can interact with rigid surfaces just by attaching a sound recording platform (Fig-

ure 3.1, left), which is also possible to use rigid objects having a microphone inside

(Figure 3.1, right). We envision that touch interaction can be nearly anywhere

as wanted.

Specifically, we augment each finger with a vibrating ring to encode single

vibration frequency, and a recording platform that is slightly modified from com-

mercial wireless earbuds captures the vibration activated from the rings. The

activated vibration is transmitted from the finger to the microphone inside the

earbuds, traveling across the finger and a rigid surface. Through a series of back-

ground experiments enlightening this vibration propagation, we adopted a few

vibration frequencies that are eligible for this purpose. We also tested electronic

devices that are already equipped with its internal microphone.

For the vibratory augmentation of the finger, we implemented a flexible ring-

type device equipped with a surface transducer (Figure 3.7). We also designed

our recording platform to be attachable and detachable, which makes it more

flexible to capture the signal propagating from the ring-type wearable. To avoid

unpleasantness in using this interface, the wearable ring presents vibration only

once, as weak and short as possible, whenever contact between a user’s finger

and a surface is detected. For detecting contact to initiate interaction, we imple-
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mented an impulsive sound detection algorithm detecting tapping sound made

between the user and a surface.

Using the system, we collected 1463 samples from 11 participants to train and

test classification models that discriminate three contact fingers and three multi-

touch combinations among them. The best classifier trained by Support Vector

Machine presented 96.03 % of classification accuracy. In summary, we suggest

a vibration-based sensing technique that identifies contact fingers by emitting

encoded vibration from a finger and detecting the encoded signal at the surface

having contact with the finger. This vibratory augmentation of fingers enables

computing environments to retrieve rich contact information.

Figure 3.1: Overview of interaction with our system. A user wearing our vibration

rings makes contact on a rigid surface with microphone attached (left) and on an

electronic device with its internal microphone (right).

3.2 Background Experiments

In the suggested interaction, a surface transducer on the hand injects a vi-

bration, and the vibration travels to the fingertip. The surface (or object) having

contact with the fingertip is exposed to the vibro-acoustic signal. Finally, the
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signal travels to the microphone that is attached to the surface or is mounted in

the object. As described, the transmission of vibration can be divided into two

phases: 1) From the hand to the fingertip and 2) From the contact to a micro-

phone. Although there have been plenty of previous attempts to use vibration

for detecting human actions [25, 36, 26, 37, 39, 38] and hand gestures [10, 40, 41],

none of them inspected the sensing possibility of vibration traveling through two

sequential mediums, e.g., the hand and surface. Therefore, we checked the feasi-

bility of the sensing channel before we move on to the next step. In this section,

we report the transmissibility of vibration in each phase to examine the possi-

bility of signal detection and investigate parameters that influence the quality of

signals.

3.2.1 Transfer Property of Vibration in the Hand

We first investigated the transmission of vibration from the hand to the fin-

gertips varying actuation position and contact site as shown in (Figure 3.2). A

surface transducer (PUI Audio; ASX02108R) displayed an exponential chirp from

300 to 3000 Hz for 1 s, and the vibration signal was amplified by a 3.1 W mono

audio amplifier (Texas Instruments; TPA6211A1EVM). A contact microphone

(Knowles; BU-27173) recorded the vibration transmitted to the fingertip. We

captured signals with a contact microphone to ensure that the signals are from

structure-borne propagation, not air-borne propagation [36, 66]. A data acqui-

sition unit (National Instruments; USB-6251) controlled input and output data

with the sampling rate of 44.1 kHz.

The vibration exciter was attached to one of the 11 positions (Figure 3.2,
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Figure 3.2: An experimental setting for the transmissibility of the hand (left).

11 surface transducer positions over the hand (middle) and three contact sites

(right).

middle), the beginning of phalanges (middle and proximal for Middle and Index ;

proximal for Thumb) in each finger & the beginning and ending of metacarpals

in each finger. For each actuation position, we recorded the vibration at the

fingertip of one of three fingers, Thumb, Middle, and Index Finger, where the the

transducer was located. To investigate whether contact sites affect signal quality,

we captured the transmissibility with three common contact sites, fingertip, nail,

and finger pad (Figure 3.2, right). In total, we collected 33 recordings each

(11 position × 3 contact site) from five participants. We computed frequency

responses from the estimation of impulse response with the exponential sine sweep

method [67].

The resulting frequency responses are presented in Figure 3.3 to represent

the transmissibility. At all positions, finger pad resulted in the lowest transmis-
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Figure 3.3: The transfer properties over the hand. finger pad (blue), fingertip

(red), and nail (yellow).

sibility when compared to fingertip and nail, and nail could transfer frequencies

beyond 1 kHz better than fingertip. When the positions of the transducer goes far

from the fingertip, the transmissibility degrades to -150 dB even at the highest

values (position 10 and 11) and sometime only the nail-contacted posture could

deliver vibration to the fingertip (position 3, 6, and 9). We observed that the

transmissibility of thumb were lower than the other two fingers in general. Thus,

we chose position 1, 5 and 8 where signal intensities were balanced between the

three fingers. Consequently, a ring is the best form factor to place transducers

on those three positions.
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3.2.2 Transfer Property of Vibration on Rigid Surfaces

As the second phase of the sensing channel, we first examined the propa-

gation of vibro-acoustic signals over several rigid surfaces made of different ma-

terials. We used a microphone and a Bluetooth unit in wireless earbuds (QCY;

T1S) to record vibro-acoustic signals, and a double-sided tape is attached to

fix their position. A cylinder-shaped custom cover enclosed the wireless micro-

phone unit to reduce external noise and the human voice. This wireless recording

platform can be freely attached and detached by using a reusable adhesive gel

tape. For data acquisition, we used the internal sound card (Realtek; ALC887)

of the desktop, and the other experimental settings are the same as the previous

section 3.2.1.

The recording platform was attached to the center of a surface, and a sur-

face transducer was attached to the surface with the distances varying from 4,

7, and 10 cm from the platform (see Figure 3.4). For surface materials, we

chose various anisotropic and isotropic materials: acrylic (density: 1.18 g/cm3;

Isotropic), glass panel (2.70 g/cm3; Isotropic), zinc-coated MDF (7.14 g/cm3

(zinc); Anisotropic+Isotropic), and concrete wall (2.30 g/cm3, typically; Anisotropic).

The same exponential chirp (300 to 3000 Hz, 1 s) was displayed to acquire fre-

quency responses.

The frequency responses are presented in Figure 3.5. The transmissibility of

zinc-coated MDF (yellow) little degraded as the distance increases in general, but

we could not find no regular patterns. The transfer functions of the other three

materials, acrylic (blue), glass panel (red), and concrete wall (green), were not
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Figure 3.4: An experimental setting for the transmissibility of rigid surfaces
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Figure 3.5: The transmissibility measurements of rigid every surfaces at three

different distances (right). acrylic (blue), glass panel (red), zinc-coated MDF

(yellow), and concrete wall (green).

much affected by the distance, and the two isotropic material surfaces, acrylic and

glass panel, presented good vibration transmissibility regardless of the distance

and frequency. concrete wall did not transmit signals at all since the material is
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well-known for its sound blocking property. All in all, it would be easier to select

frequencies to be encoded if isotropic materials are available.

3.2.3 Transfer Property of Vibration in Electronic Devices

For the second phase of the sensing channel, we also tested two electronic

devices having a microphone inside in themselves: wireless earbuds (QCY; T1S)

and a tablet (Google; Nexus 7). The purpose of this test is to verify whether

it is possible to detect the vibration transmitted from the finger at rigid objects

having a microphone inside. If successful, it means that it is available to com-

municate with objects equipped with a microphone, such as IoT devices, remote

controllers, and Bluetooth speakers, via vibratory augmentation of fingers. We

collected signals at equally spaced six grid positions over the tablet; for the wire-

less earbuds, a single spot near its button interface. We covered microphone holes

to reduce external noises and to prevent detecting air-borne propagation. Other

experimental settings and procedures are more or less the same as the previous

section (Section 3.2.2).

The frequency responses of the electronic devices are presented in Figure 3.6.

First of all, the vibro-acoustic signal within the electronic devices was captured

as fairly good quality when it is close to a microphone (Figure 3.6, Top Left

(dark blue) and Top Right (dark green) & At Button (pink)). For the tablet, the

propagation of vibro-acoustic signals generally degraded when it gets far from the

microphone located at the top left side, and it was not possible to observe regular

patterns in regard to frequency. We assume that such unexpected trends in the

vibration transmissibility of electric devices are due to their complex configuration
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Figure 3.6: The transfer properties for the tablet (left) and the wireless earbuds

(right).

inside. Although not the very best, the amplitudes of the detected signal were

acceptable without significant drop down for the frequency lower than 1 kHz.

3.3 System Implementation

3.3.1 Hardware

For everyday surfaces to capture the signal, we implemented the recording

platform described in Section 3.2.2. The platform can make a wireless connection

with a computer to transfer microphone recordings, and this is freely attached and

detached to flat surfaces. A cover of this platform enclosed hardware and blocked

external sound by approximately -3.69 dB of signal power compared to when it

is open. For electronic devices, we used the internal microphone of the devices

with its microphone hole covered, and microphone recordings were transmitted

to a computer by using Bluetooth connections.
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Figure 3.7: Our wearable ring-type hardware and stereo amplifier module. A 3D

model of the hardware (left), its 3D printed model with a transducer (middle),

and the amplifier module (right).

We designed ring-type wearable hardware both comfortable to use and flexi-

ble to individual difference (Figure 3.7). The inner diameters of the hardware are

14.2, 15.8, 18 mm to handle different sizes of the three fingers and individuals.

The material for the hardware needs to be elastic and bendable (Stratasys; Tango

Plus [68]) to ensure its comfort of use. All of the listed hardware was controlled

by 44.1 kHz of the sampling rate.

3.3.2 Challenges and Design Considerations

From a series of the background experiments, we reviewed the possibility of

detecting vibrations that travel through the hand and a succeeding rigid surface.

With these observations and previous findings, we explored how to how to de-

sign the interface that detects the vibration reliable but unobtrusive as possible.

For this purpose, we need to carefully select vibration parameters like amplitude,

frequency, and duration. When it comes to perceptual aspects, we want the
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vibration and sound caused by it to be less perceptible, which means that the

amplitude of the vibration should be as low as possible. There exists a contra-

diction because this will lower the quality of detected signals at the sensor end.

Moreover, vibration frequency significantly affects both vibration transmissibility

and human perceptual sensitivity; therefore, we tried our best to set up the rules

to select optimal frequencies that satisfy both of them.

Our approach is basically encoding a single frequency to each finger and

decoding the frequencies to identify contact finger(s). It does not make problems

when a single finger makes contact since recognizing a contact finger is simply

done by detecting the single encoded frequency. However, detecting multiple

contact fingers means that we need to detect multiple frequencies from different

fingers, and vibrations from both fingers should transmit well without interfering

with each other. In the following sections, we will explain how we design the

system based on the listed challenges.

Human Perception of Vibration and Sound

The perceptual sensitivity of two sensory channels, auditory and cutaneous,

was reflected in our frequency selection. First, we considered human vibrotac-

tile sensitivity on frequency. If we take a look at equal sensation contours for

vibration [69, Figure 7][70, Figure 2], the vibrotactile sensitivity is the highest

at frequencies around 250 Hz. The tactile sensitivity becomes less sensitive as

frequency increases, and the sensory receptors do not react to the vibration fre-

quency beyond 1 kHz [70]. Therefore, it is reasonable to use frequencies beyond

250 Hz and as high as possible to design a less perceptible but reliable vibra-
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tory communication channel. Conversely, the auditory sensitivity increases as

frequency increases to 1 kHz, and the sensitivity reaches its plateau until approx-

imately 1.7 kHz, according to equal-loudness contours in [71, 70]. As such, it is

inevitable for us to balance between these two criteria. When we chose vibration

frequencies to be encoded, we considered both these perceptual aspects and signal

qualities.

Vibration and Transmissibility

From the background experiments (Section 3.2.1), we found several notable

factors, e.g., contact site, finger, vibration frequency, and actuation position, that

affects the propagation of vibration. When contact is made by touching a sur-

face with finger pads, only lower frequency vibrations (300-400 Hz) reached the

fingertip, and we decided not to consider the contact site because of high vibro-

tactile sensitivity in such frequencies and discomforts from making contact with

such posture. Our next concern is to match transmissibilities between fingers

by choosing appropriate vibration frequency. The thumb presented distinguished

transmissibility results compared to the other two fingers. The vibration propa-

gating from the thumb did not transmit well due to the finger’s larger mass, and

the finger presented local maximums before 500 Hz at all contact sites (see Fig-

ure 3.3 for position 1). For successful signal transmission, the thumb needs to be

augmented with the lowest frequency among the three fingers. Not a significant

difference, but we found the middle finger better transmitted higher frequencies

(>500 Hz) than the index finger (see Figure 3.3 for position 5 & 8). Thus, we

assigned a higher frequency to the middle finger. The three frequencies selected
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for the fingers were 480 Hz for the thumb, 600 Hz for the index finger, and 720 Hz

for the middle finger. It was possible to match vibration transmissibility around

-130 to -140 dB regardless of contact sites and fingers. We equally spaced the

encoding frequencies to ensure that the effect of possible interferes between the

frequencies should be balanced. For the other vibration parameters, e.g., ampli-

tude and duration, we conducted pilot tests to minimize them to the levels where

signal quality is acceptable. The duration was 50 msec, and the amplitude was

40 % of the maximum power of our transducer and amplifier pair.

How to Initiate Interaction

Interaction with the suggested input interface starts by making contact with

an object or a surface of interest. The first requirement of the interface is to

notice the contact, and most of the electronic devices already have the hardware,

e.g., touch screen and button, to support such functionality. Our visionary aim

is to deploy our interface to almost any rigid surfaces or objects having enough

space to touch, including a monitor, a table, a medicine bottle, a door, and a

light switch. Since such surfaces have no other way to recognize contact made

by users, it is essential to detect the moment of contact on rigid surfaces with

our recording platform Therefore, we implemented an algorithm for detecting

tapping sounds at the recording platform.

The applying median filter has been a well-accepted solution to differentiate

impulsive sounds from other slowly varying sounds [72, 73]. The basic idea is

to compare an original power sequence and its median-filtered sequence since

the median filter filters out a signal having less than half of a filter width. In
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Figure 3.8, our median filter (filter width = 50 ms) follows up a power sequence

when playing music and saying words (both approximately 15 cm apart from the

recording platform); not for tapping sounds near our recording platform.

Our tapping detection algorithm iteratively observes the recent 150 ms power

sequence for every 100 ms. After subtracting the power sequence and its median

filtered sequence, the algorithm finds the index where the subtraction is larger

than a threshold that was weighted by the amplitude of the median-filtered se-

quence at the moment. The detailed algorithm is presented in Algorithm 1.

Figure 3.8: Sound samples from our recoding platform.

3.3.3 System Overview

Figure 3.9 illustrates a recording sample that an encoded vibration was prop-

agated from the finger to the recording platform. Interaction is initiated by tap-

ping on a surface. If the tapping is detected, our desktop operates its internal

sound card to function as a data acquisition unit. Vibrations are executed at

wearable rings, and a microphone starts recording. From the acquired sensor
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Algorithm 1 Tapping Detection Algorithm

Require: a power sequence from input audio P , a median-filtered power se-

quence M , a threshold level for impulsive sound ti, a median-weighted thresh-

old tm

1: procedure TapDetect(P,M, ti, tm)

2: idx← indexof(abs(P −M) > ti)

3: if numel(idx) > 0 then . impulsive sound detected

4: idxm ← min(idx)

5: tm ←M(idxm) ∗ weight
6: if P (idxm)−M(idxm) > tm then . to reject voice and music

7: Tapping Detected

8: end if

9: end if

10: end procedure

recording, we conducted a series of data processing to compute features for our

classification method. For simplicity, we can directly examine encoded vibration

frequencies for finger detection, but it was not robust to external noises and un-

expected sounds. In the following section, we will explain how we discern contact

finger(s) from the acquired signals in detail.

3.4 Evaluation

3.4.1 Data Collection

We recruited 11 participants (8 males and 3 females; 21-29.1 years old with

M 25.4 and SD 2.6) for data collection. Participants were asked to wear our

ring-type devices on the proximal phalanx of each finger, and they made contact

with surfaces following the instruction from the experimenter. They only wear
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Figure 3.9: A recording sample from our system.

the ring devices on two fingers, changing the configuration of the rings depending

on experimental conditions. In usage scenarios, we expect that leaving one finger

free is better because it ensures the primary finger for interaction and avoids

discomfort from being equipped with too many gadgets. All in all, there were

three ring configurations (Thumb & Index (TI); Thumb & Middle (TM); Index

& Middle (IM)) in this data collection experiment.

We collected data on the glass panel with our recording platform attached

(Section 3.2.2) and the tablet (Section 3.2.3). For simplicity in detecting contact

during this data collection, we exploited the touch interface of the tablet by using

a TCP/IP connection and attached an IR touch panel to the glass panel. Once

contact was detected, the internal sound card was operated as a data acquisition

unit for a second, executing vibration signals and receiving microphone recordings

concurrently.

For each surface, we divided a surface into several sections, and contact
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conditions were defined from the section arrangements. The surface of the glass

panel was divided into four quadrants where the center of the surface was aligned

to the origin of the Cartesian coordinate. We attached the recording platform to

the center. For each ring configuration, participants touched a quadrant for each

single finger contact, and they made multi-finger contact twice within a quadrant.

We repeated this twelve times because there were the three ring configurations

(TI, TM, IM) and four touch sections. In total, each participant conducted 24

trials (2 repetition × 3 ring configuration × 4 section) respectively for the single

(T,I, and M ) and multi-finger contact (T+I,T+M, and I+M ).

The touch area of the tablet was reallocated to the equally spaced 3 × 2 grid,

as we did in Section 3.2.3. For the single finger contact, participants touched each

grid section twice with the three different ring configurations, which resulted in

36 trials for each participant. From the 6 grid sections, there are 36 possible

combinations for the multi-finger contact, but we rejected some conditions that

are difficult to perform. Thus we found 19 same combinations for TI & TM and

11 combinations for IM. In summary, we collected 1463 trials of contact with

vibration rings from 11 participants.

To examine the quality of data, we visualized the collected signals. Fig-

ure 3.10 visualizes the spectral information of all six contact finger conditions,

and each plot presents noticeable differences in the detected signal frequencies.

Hence we proceeded to further steps to build classification models.
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Figure 3.10: The spectral information of six contact finger conditions using FFT.

3.4.2 Preprocessing and Feature Extraction

The collected signals from the previous section were processed to extract

features for classification models. We first designed a band-pass filter (BPF) to

wipe out unnecessary spectral information. The BPF was a Chebyshev type-2

filter that has stopband frequencies 360 & 825 Hz, passband frequencies 400 &

750 Hz, and stopband attenuation level was 100dB. For each trial, we conducted

a Fast Fourier Transform (FFT) where the frequency resolution was 1 Hz. For

visualization, we plotted the distribution of the FFT magnitudes at the three en-

coded frequencies (Figure 3.11, left). The 3D plot presents grouped data points

according to the six contact finger conditions, and the data looks well distributed

depending on the contact finger conditions; however, there existed some ambigu-

ities and overlaps around the origin of the coordinate.
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For the next step, we normalized the FFT of each trial with its minimum and

maximum values. This process stresses out the spectral information at featured

frequencies, which also standardizes results collected from different surfaces and

conditions. We found that this process actually spread the data over the 3D

space (see Figure 3.11, middle).

We conducted the Principal Component Analysis (PCA) to characterize our

data set. From this dimension reduction method, we can avoid using the full

sequence of the normalized FFT or using features not enough to describe the

data set. We applied PCA to the normalized FFT of all 1463 trials, and 91.87

% of the variance was accounted for by the first ten principal components. In

the right plot of Figure 3.11, we visualize the distribution of the data set with

the first three principal components explaining 41.65 %, 34.54 %, and 7.22 %

of the variance, respectively. Finding optimal axes to describe the data set, the

distribution of the first three principal components better explained our data set

than that of the normalized FFT magnitudes at the three encoded frequencies.

3.4.3 Feature Selection and Classification

From a series of data processing, we extracted several features for classifica-

tion in the previous section. We tested three classification methods: Probabilistic

Approach (PA), Support Vector Machine (SVM), and Random Forest (RF). As

a cross-validation method, we used a Leave-one-Person-Out (LOPO). If the per-

formance of a classifier is measured by the method, the classifier is trained and

tested by a set of data from different individuals. Therefore, the measured per-

formance is an unbiased estimate of real usage contexts. For each iteration, data
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Figure 3.11: The three distribution of the collected data. From left to right, the

raw FFT values of the three encoded frequencies, the normalized FFT values

of the frequencies, and the first three principal components. Each distribution

has six following groups: Thumb (T ; red), Index (I, green), Middle (M, blue),

Thumb+Index (T+I, olive), Thumb+Middle (T+M, purple), and Index+Middle

(I+M, turquoises).

from ten participants trained a classification model, and data from the other

tested to check the performance of the model. As for measuring performance

from LOPO cross-validation, we measured mean accuracy and its standard devi-

ation recall, precision, and computation time, which are summarized in Table 3.1

and Figure 3.13. The computation time is the average duration required to build

a classification model and predict a single instance.

The first method, Probabilistic Approach, starts with the estimation of the

probability distribution function (PDF). For each ring configuration (TI, TM,

and IM), we collected three different contact conditions, which are two other

single finger contact and one multi-finger contact. Therefore, we computed three

PDFs each by maximum likelihood estimators of two-dimensional Gaussian distri-
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bution. Unlike the other two classification methods, we used the FFT magnitudes

without the normalization or PCA for simplicity (see Figure 3.11, left), and the

classification performance of PA was the best with the feature set. As an illus-

tration, all the data collected from TI were divided into three sets by different

contact finger conditions, e.g., T, I, and T+I, and we computed three 2D Gaus-

sian distributions. From each distribution, we calculated a probability of a new

instance from a given PDF and then compared the three conditional probabili-

ties to choose a distribution that resulted in maximum probability. As a baseline

method, the mean accuracy of our probabilistic approach was 91.17±7.48 %, and

the accuracies from each ring configuration were 92.46±3.21 % (TI), 94.58±4.4

% (TM), and 86.48±10.52 % (IM). In Figure 3.13, IM resulted in the lowest

classification accuracy where multi finger contact by the index and middle finger

classified as single finger contact of the fingers, which lowered the recall of I+M

(78.95 %) and the precisions of I (83.87 %) and M (86.42 %). Compared to

the other classification methods (see Table 3.1), the accuracy of this approach

presented high variability depending on which data was used to train and test

the classifier.

For SVM, we implemented a classifier with the LIBSVM library [74]. Since

there are no constraints in the length of a feature vector for SVM and RF, we

trained SVM classifiers to discriminate all six contact finger conditions. We

first tested to find the optimal number of features selected from the principal

components, and a set of features included principle components from the first

to ascending order. In Figure 3.12, the mean accuracy of our cross-validation
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Table 3.1: The Comparison of Classification Performances of LOPO Cross-

validation with respect to Classification Methods and Features

PABaseline SVMTIM SVMBandPass SVMAll

Accuracy (Mean, %) 91.17 83.94 96.51 96.72

Accuracy (SD, %) 7.48 5.20 1.91 1.79

Time (Mean, ms) 99.24 0.05 1.17 63.74

SVM10PC RF4PC RF10PC RFBandPass

Accuracy (Mean, %) 96.04 95.22 94.53 93.92

Accuracy (SD, %) 1.90 3.18 2.63 3.34

Time (Mean, ms) 0.06 1.09 1.33 2.67
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Figure 3.12: The performance measurements of SVM classifiers depending on

the number of principal component features. The left axis presents for the mean

accuracy (blue bars) and its standard deviations (blue error bars) of LOPO cross-

validation models. The right axis is for the mean computation time (orange bars)

and its standard deviation (orange error bars).

method reached an estimated plateau when more than the first four principal

components were used as features, but the standard deviation of the classifica-

tion accuracies presented the minimum value of 1.90 with the first ten. The

computation time slightly increased by 0.013 ms when the number of the PC

features increased from 4 to 10, but both the mean accuracy increased and its

standard deviation decreased. Therefore, we continued to the next step for fea-

ture selection with the first ten principal components. Tested feature sets for

SVM classifiers were the first ten principal components and the three subsets

of the normalized FFT features. The three subsets included normalized FFT

magnitudes at the three encoded frequencies (480, 600, and 720 Hz; TIM), the
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frequencies around the band-pass filter range (400-800 Hz; BandPass), and all

available frequencies (0-22050 Hz; All). These feature sets were fed to C-SVM

with a linear kernel to train a classifier respectively. As denoted in Table 3.1,

all SVM classifiers performed better than the baseline method with respect to

all performance measures, except when only the three encoded frequencies were

used to formulate a feature set. In our test, the PCA feature set was the best

option because the SVM classifier built upon the feature set presented compara-

ble mean accuracy without increasing the computation time. Although the SVM

classifiers made from long feature vectors, BandPass (length = 401; accuracy =

96.51±1.91; computation time = 1.1 ms) and All (length = 22051; accuracy =

96.72±1.79; computation time = 63.7 ms), presented slightly better mean accu-

racies than that from the PCA features, their computation time were respectively

20 and 1078 times longer than the PCA feature classifier (length = 10; accuracy

= 96.04±1.90; computation time = 0.06 ms). We found that the PCA feature

classifier sometimes classified I+M as I or M and T+I as I, but no precisions

were lower than 90 %, and all recalls were higher than 92 %.

Lastly, we trained a Random Forest classifier with PC features by using

TreeBagger class in Matlab. From out-of-bag validation, the ensembles of twenty

trees resulted in 6.15 % of the error rate, and we used the number for the trees

of our RF classifier. When the first ten PC were used, the mean accuracy of

the RF classifier (accuracy = 94.53±2.63; computation time = 1.3 ms) was a

little lower than that of the SVM classifier built upon the same features (accu-

racy = 96.04±1.90; computation time = 0.06 ms). The RF classifier was not
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Figure 3.13: The confusion matrix of the classifier of each classification method.

For each confusion matrix, the recall and precision of each class are presented.

robust to the variations in data sets and not as fast as the SVM classifier. To

further improve the RF classifier, we observed a measure of importance for each

feature, and the feature importance is the increase in prediction error when the

values of a feature are permuted across the out-of-bag observations. The first four

principal components presented more than 2 % of increases in error when they

were rearranged across the validation set. Using the reduced number of PC fea-

tures improved the performances of a new RF classifier (accuracy = 95.22±3.18;

computation time = 1.1 ms), but not as good as the best SVM classifier. In

Figure 3.13, we presented the confusion matrix of the selected classifier of each

classification method.

3.4.4 Subjective Evaluation

During the data collection, we asked the participants to rate their perception

and unpleasantness about presented vibration signals. Three subjective measures

include the perceived intensity of vibration and sound and the unpleasantness of
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Figure 3.14: The mean scores of all subjective ratings. Error bars represent

standard errors.

the signals. The participants verbally answered their ratings from 0 to 100, and

a numeric scale with the descriptions about extreme points was presented for

each measure. All measures were rated twice for each contact surface, and we

pooled the data of the different surfaces. Figure 3.14 presents the mean values

of all ratings received from all participants. The 480 Hz vibration assigned to

the thumb is potentially presenting the most sensitive tactile sensation among

the three encoded frequencies. The participants rated the perceived intensity of

vibration and sound of T, T+I, and T+M higher than the other contact finger

conditions, but their mean values were still fairly low around 15. There were no

noticeable difference between I and M. Also, none of the mean unpleasantness

scores were over 7 out of 100.
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3.5 Discussion

The idea behind the suggested input technique is simple, which is based on

the analysis of vibration propagation. When contact is made between a user

with wearable rings and a rigid surface with a microphone, the wearables execute

vibration to be heard by the surface. Through the series of experiments to identify

the expected pathways of vibration propagation, we figure out how to transmit

frequency information to the sensor end. After several signal processing steps

to extract a feature vector, a classification algorithm analyzes the features to

decode a contact finger. Furthermore, we tackled the recognition of multiple

simultaneous contact fingers also. As a proof of the concept, we implemented

the hardware and algorithms, and the capability of vibration to notify contact

fingers to rigid surfaces was validated. As a result, the SVM classifier trained

from the ten principal components presented both fast (0.06 ms) and reliable

(96.04 %) classification performance when trained and tested across data from

different individuals.

We trained our classifiers with the data collected by two different surfaces.

The frequency spectrum of the collected data was normalized to alleviate the

difference between the two surfaces. From our validation experiment, we found

no noticeable difference in classification errors between them. When tested the

SVM classifier with the first ten PC, there were 30 misclassified instances from

the tablet; 28 from the glass panel. We included PCA in our data processing

pipeline, and the dimension reduction method was effective to characterize our

data set with fewer dimensions. The reduced number of features decreased the
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computation time without losing classification accuracy.

Our baseline method presented acceptable classification accuracy (90.17 %)

with only three features. Its classification accuracy was under 90 % only for IM

ring configuration, and the accuracy and its variability from the training and test

sets significantly improved at the other two ring configurations. This probabilistic

approach can be a good alternative when less computation is essential because

it did not require some preprocessing steps. From the LOPO cross-validation,

all classification methods did not result in many errors between single contact

fingers. The single finger contact was not generally misclassified as the multi-

finger contact, but most of the classification errors were from vice versa. I+M

contact finger condition was the most error-prone (see Figure 3.13). Except for

SVM classifiers, no other classifiers achieved over 90 % of the recall rate for I+M

condition. It is reasonable to assume that SVM was the best classification method

for our data set.

Our best classifier presented 96.1 % of recall rate when recognizing all six

contact fingers; 98.0 % for the three single contact fingers and 94.1 % for three

multiple contact fingers. We compare this performance with the performance

of user-independent classifiers from previous research. The classification perfor-

mance of our method is better than implicit methods where the accuracies of the

same single contact fingers were listed as follows: 61.9-70.6 % (Gil et al. [53];

Capacitive Screen; RF); 70.9 % (Le et al. [54]; Capacitive Screen; CNN); 48.4

% (Becker et al. [57]; Electromyography; LSTM). Also, our method presented

comparable performance when compared to the explicit method by Masson et

– 44 –



al. [63] (98.2-99.6 % for single contact fingers; 91.9-94.7 % for multiple contact

fingers; Touchpad & Vibration Sensors).

Our system augments vibration on the finger. Although our participants

answered pretty low on the unpleasantness score, it can be a limitation of our

study if an application requires completely avoiding the tactile sensation. Except

for such cases, we found a level of vibration that is strong enough to be detected

as vibro-acoustic signals but not annoying. To minimize the tactile sensation, we

recommend using frequency over 600 Hz to augmenting fingers with vibration.

The perceived intensity of vibration and sound was rated twice (I and I+M ;

600 Hz) to three times (M ; 720 Hz) lower when contact finger conditions did

not include the lowest encoding frequency (T,T+I, and T+M ; 480 Hz), which

resulted in around half in the unpleasantness score (see Figure 3.14).

Another limitation of our study is about frequency. Because it is almost

impossible to test all frequency-finger pairs, we only tested a single frequency

spacing (120 Hz) and carefully selected the three frequencies where the amplitude

decibels were balanced. It is possible to detect more fingers by reducing the

spacing between frequency, but the interference between two frequencies might

take place when the frequencies get too close. Detecting more fingers can be

beneficial because it means that such capability can be used to detect more

fingers, even from another hand or person.

In the left plot of Figure 3.6, the vibro-acoustic transmissibility of our tablet

lowered as frequency increases in general. From our experience, frequencies be-

yond 1 kHz were not detected well at the microphone end of the tablet. Although
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the transmissibility of the earbuds was flat and simple, we expect that that is

because of its simple structure. As the complexity of parts in an electronic de-

vice increases, it is difficult to estimate the transmissibility of the devices. This

volatility in the vibration transmissibility of electronic devices is one limitation of

our study. As a further study, the selection of vibration frequency can be adaptive

to environment noise or device transmissibility to handle this limitation.

3.6 Conclusions and Future Work

The main focus of this study is to enrich the interaction possibility between

users and everyday surfaces. Like projecting visual information on our body or

surroundings in Augmented Reality, we try to augment fingers with vibration

to make it communicate with surfaces or objects having a microphone. As a

next-generation wearable, ring-type devices are versatile not just for notification

but for many other purposes, such as activity tracking, wireless communications

with other devices, and voice control [75, 76]. Assuming the usage context of the

ring-type wearables, we have designed and validated a novel input technique that

empowers everyday surfaces to recognize contact made by a vibratory-augmented

finger. Starting from the investigation of sensing possibility, we processed vibro-

acoustic signals out to train and test classification methods.

We can think of many further usage scenarios of this initial study. Since we

embedded a microphone, it is possible to detect micro gestures, e.g., scratching

and rubbing, after contact is confirmed. If it is available to decode many frequen-

cies reliably, this system can also be extended to recognize contact from different
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people or the other hand to enrich interaction. To distinguish more frequencies,

we might intentionally generate interference patterns from different vibrations.

We hope that this study envisions the usage of vibration to communicate with

ordinary and mundane everyday surfaces.
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IV. Identifying Static Objects by

Visualizing The Propagation Dynamics of

Vibration

4.1 Introduction

Living in the era of virtual reality, context-rich digital augmentation is an

ultimate goal when coupling digital and physical worlds. Absence of compre-

hensive sensing methods, however, is one of the key obstacles against expanding

the realm of digitally augmented computing. As such, previous studies explored

ways for computing devices to recognize the context of use, e.g., location [7, 44],

object [10, 9] and its state [77, 23], user’s action [78, 10, 24, 43], and material

[12, 79, 8, 9, 80], via numerous sensing technologies.

Since recognizing an object or its materials is beneficial to assume a user’s

context [7, 11, 12, 8], there have been numerous attempts to implement sens-

ing methods for that purpose. The sensing methods exploit different physical

channels, including photic, electromagnetic, acoustic, and vibratory, to amplify

differences among a set of materials or objects. This physical channel of sensing

determines the class of materials or objects that lead to reliable identification.

Light-based sensing yields multi-spectral information that enables recognition of

a variety of materials. However, this approach generally requires a flat surface

for suitable light reflection. In addition, since only local information is retrieved,
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Figure 4.1: VibEye: system overview and operation principle (left). Data pro-

cessing pipeline (right-top). A classification model is built from 16 standard

objects and then applied to categorize 25 everyday objects (right-bottom).

light-based sensing does not ensure reliable recognition of the objects with com-

plex material composition or arbitrary shape. Object recognition using electro-

magnetic signals is effective but only applicable to the objects that emit electro-

magnetic waves. Acoustic sensing focuses more on detecting the state changes of

objects because acoustics waves are sensitive but weak.

In this chapter, we are concerned with distinguishing objects on the basis

of their material differences exploiting the wave properties of vibration. As we

often shake an object to feel its characteristics, we impose a frequency-modulated

mechanical vibration to an object and then measure and analyze the response

vibration. This approach allows us to deal with objects that have different me-

chanical properties, e.g., stiffness, damping, density, and weight. Such mechanical

properties define the feel that users perceive when holding objects in hand, and

our method is naturally tailored to tangible interaction.

As depicted in Figure 4.1, our hardware, named VibEye, is designed to sup-

port the pinching gesture holding an object between fingers. For accurate and
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robust object recognition, we process the data in such a way that visualizes the

spectral content of the object, which is determined by the material and structural

properties, using a spectrogram. Spectrograms enable us to use standard image-

based classification methods. We use PCA (Principal Component Analysis) in an

unsupervised manner, followed by a C-SVM (Classification Support Vector Ma-

chine) classifier. This approach removes the cumbersome feature selection step

for classifier design, which was an issue for prior vibration-based techniques.

We evaluated the VibEye system with two sets of objects: one consisting of

16 standard objects with the same cubic shape and the other with 25 everyday

objects. The former was to stress their differences in the material, while the latter

was to explore further applicability of our material-based recognition method to

object with different shapes. When tested with 20 users, VibEye recognized

the 16 standard objects with high accuracy (92.5%) in spite of uncontrollable

hand orientation change and low-frequency motion. We also extend the classifier

trained on the standard objects to the recognition of the unseen everyday objects

to assess the extent to which material properties are captured in the classifier. The

material-based classifier can indeed recognize everyday objects made of similar

materials appropriately. Lastly, we showcase two interactive applications utilizing

VibEye in virtual and augmented reality, respectively.

The main contributions of our work are with a proposal of a vibration-

mediated recognition system of handheld objects emphasizing their material prop-

erties and a validation of its performance. VibEye’s concept is useful for all

tangible applications in real, virtual, and augmented environments.
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4.2 System Design and Implementation

In physics, a mechanical wave propagates through the solid medium while

oscillating and transferring energy. The vibration propagation dynamics depends

on three mechanical components (mass, spring, and damper), and each of them

is a function of vibration frequency. Materials with noticeable differences in such

physical characteristics present distinct responses to the imposed vibration.

In our use scenario, a user grasps an object with two fingers, one wearing

VibEye and the thumb (Figure 4.1, left). Then VibEye generates a short vi-

bration, and it is transmitted to the thumb through the object and measured

by an accelerometer fastened on the thumb’s pad. From this I/O pair, we can

estimate the vibration propagation dynamics of the object, and it may provide

reliable information for object recognition. The vibration propagation dynamics

is generally nonlinear, and its identification using the system theory is a quite

complicated problem. Exploiting the fact that we trigger the object dynamics

using a known input, we have designed a simple and effective data processing pro-

cedure. The input vibration also delivers confirmation feedback notifying proper

and stable grasping for tangible interaction.

4.2.1 Hardware Design

VibEye is designed to support object grasping by pinching. Our 3D-printed

prototype has a cube-like structure with a hole into which the middle finger is

inserted like a thimble (Figure 4.2). Top and bottom parts are made separately

and assembled using bolts and nuts. For vibration generation, a voice coil actua-
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Figure 4.2: Hardware design of VibEye.

tor (Tactile Labs; Haptuator MM3C-HF), powered by an audio amplifier (Texas

Instruments; TPA6211A1), is attached to the bottom part. A small compression

load cell (TE Connectivity; FS2050-000X-1500-G) is also put inside on which

the first phalanx of the middle finger is placed. This load cell is to measure

active pressing force for contact detection and vibration trigger control. For

the latter, we generate a vibration only when the measured pressure reaches 0.2

kgf for the regulation of operating condition. The vibration that has propagated

through the object is sensed by a high-performance triaxial accelerometer (Kisler;

Type8765A250M5) attached to the thumb’s pad. All the sensors and actuators

are connected to a data acquisition unit (National Instruments; USB-6251) with

20-kHz sampling rate.

4.2.2 Data Processing Pipeline

In general, the vibration propagation dynamics of an object is nonlinear.

However, for a short period of time, it can be approximated by using linear

dynamics. Our approach is based on this general linearization strategy.
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Figure 4.3: Computational procedure for signal processing and object recognition.

VibEye produces a sinusoidal vibration with the frequency varying linearly

from 50 Hz to 500 Hz as an input to the object. This method is called sinusoidal

frequency sweep, and it is widely used for system identification to trigger the

response of a system in the frequency range of interest [81]. The frequency range

was experimentally optimized for object recognition. The signal duration is 0.5

s, which is transient enough not to interfere with the user’s gross motion and also

sufficiently long for faithful dynamics reconstruction. The output vibration from

the object is measured by the accelerometer. This I/O vibration pair is fed to a

series of signal processing operations (implemented with MATLAB).

The vibration output is preprocessed as follows. First, we combine the three

orthogonal signals from the triaxial accelerometer to make it invariant to the

hand’s orientation changes. We use the DFT321 method that maximizes both

temporal and spectral similarity between the three individual signals and the

merged signal [82]. This step may substantially improve the reliability of ac-

celerometer information compared to the previous methods using individual sig-
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nals separately [10]. Second, we apply a high-pass filter (HPF) to remove the

effects of low-frequency hand motion. The bandwidth of human voluntary mo-

tion is very low, and that of the wrist motion for daily activities is about 5 Hz

[83]. For HPF, we use a Chebyshev type-2 filter that has a flat passband with

stopband frequency 5 Hz, passband frequency 50 Hz, and stopband attenuation

level 100 dB.

Next, we compute the spectrogram of the preprocessed output signal, fol-

lowing the procedure shown in Figure 4.3. The output signal is 0.5-s long, and it

is segmented to a sequence of 96 short signals by sliding a 0.025-s long Hanning

window. Each segment overlaps 80% with the neighbors to preserve spectral con-

tinuity. Then, we apply 2048-DFT to every segment and stack the results along

the time to construct a single spectrogram (96 by 1025). This raw spectrogram

is filtered by removing the values lower than a cutoff level δ to suppress noise and

transients, and then the outcome is normalized. The final spectrogram is unique

to the object, like a signature, since we use the same input vibration to all objects

(see Figure 4.4). This allows us to recover the mechanical characteristics of the

object sufficient for recognition, without fully identifying nonlinear dynamics.

We collect spectrograms for various objects. Then, object recognition corre-

sponds to classifying an input spectrogram into the spectrograms of the objects.

To this end, we apply PCA to the spectrograms. PCA extracts the most discrim-

inant features from the images in an unsupervised manner, and use the results

for classification [84]. Therefore, we simply use a single image for classification,

without defining and calculating many explicit features from the results of DFT

– 54 –



Figure 4.4: Spectrograms of 16 standard objects. Objects are marked with ma-

terial properties (R: rigid, E: elastic, V: viscous, P: plastic, and S: stacked). The

cutoff level δ was -38 dB. The cubic objects that we molded from liquid materials

are specified with the material manufacturers and models.

as in the previous work [10, 41, 44]. As features for SVM, all the resulting PCs

(principal components) of the spectrograms are fed to C-SVM (implemented with

the LIBSVM library [74]) with a linear kernel to train a classifier.

The above procedure is simple and requires very little effort for tuning. The

only critical parameter is the cutoff level δ for spectrogram computation, and the

tuning results are easily distinguished by looking at the images.
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4.3 System Evaluation

4.3.1 Sample Sets

Standard Objects

We prepared 16 cubes as shown in the insets of Figure 4.4. Their mechanical

responses are independent of the vibration stimulation orientation (top-bottom,

left-right, or front-back). We carefully selected 16 different materials to cover the

diverse range of elasticity, viscosity, and weight of everyday objects. The edge

length was 35 mm for all cubes, except for two slightly larger cubes of eva foam

and paper. Using a variety of materials is important not only for the evaluation

of object recognition performance, but also for affording rich haptic sensations to

users who use the cubes as props—the 16 cubes work as basic building blocks for

the feel of interaction. We call them standard objects, and their spectrograms

are shown in Figure 4.4.

Everyday Objects

We also collected 25 everyday objects of complex shapes and material com-

positions (Figure 4.5). They represent casual objects that can be used for tangible

interaction with natural affordance. They also encompass the various material

properties of the standard objects and are sufficiently small to be held by pinching.

Some of them are rigid and heavy (perfume, mobile phone, and multi-plug), rigid

and light (spray, cosmetics, small table clock, wooden plate, and pen), packaged

(wet glue, wet tissue, and toothpaste), heterogeneous (wash sponge and wrist

pad), or homogeneous (wet sponge, small polyurethane (PU) ball, large PU ball,
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synthetic rubber ball, jelly, elastic eraser, hard eraser, ear plug, and wristband).

The rest are three human finger parts (the first phalanx of the thumb and the

first and second phalanx of the index finger). Here we consider a scenario of using

the thumb and index finger of the dominant hand for interaction while wearing

VibEye in the non-dominant hand for object recognition.

4.3.2 Recognition Performance

We measured the response of each standard object 20 times using VibEye

worn in one user’s fingers and then processed the measured vibrations as de-

scribed in Section 4.2. This step resulted in 320 spectrograms, and they were

used as input images to PCA. The PCA results were reasonable (see the right

panels in Figure 4.3). Nearly 0.1 million pixel information in each spectrogram

is represented by 319 PCs. On average, the first PC explained 65.4% of the

variance, and 90.7% of the variance was accounted for by the first three PCs.

We then ran cross-validation tests using C-SVM classifiers and obtained an

accuracy of 96.9% and 96.3% for 5-fold and 10-fold cross validation, respectively.

This high performance instantiates the effectiveness of our method. Hence, we

proceeded to build a classifier to be used in our user study with many users,

also including the 25 everyday objects. For that, we divided the dataset into

two for training and testing while varying the proportion and tested the resulting

classifiers with different users. The most balanced classifier was found at the 1:1

proportion with 94.4% accuracy, and this one was used for the user study.

The computation time of our object recognition method is also appropriate

for tangible interaction. A single execution takes only 31 ms on average in Matlab.
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Figure 4.5: Twenty-five everyday objects.

4.4 User Study

We conducted a user study in order to test the performance of VibEye with

actual users. The classifier used was built from the data of one user, as described

in Section 4.3. The first goal was to test whether the classifier can recognize

the standard objects held in other users’ hands. The second goal was to observe

how the standard object classifier reacts to unseen everyday objects. Some of

the 25 everyday objects and some of the 16 standard objects are composed from

similar materials. If there is an everyday object consistently recognized as a

certain standard object, it means that we can use the classifier to recognize that

everyday object on the basis of material. This user study was approved by the

Institutional Review Board (IRB) at the authors’ institution (PIRB-2017-E068).

– 58 –



4.4.1 Methods

We recruited 20 right-handed participants (16 males and 4 females; 19–39.5

years old with M 23.5 and SD 4.18) for this user study. Each participant was

paid 10 USD.

Participants put the VibEye device on their non-dominant hands. All par-

ticipants finished two sessions, first with the 16 standard objects and the other

with the 25 everyday objects. Also, each session had three repetitions. The pre-

sentation order of the objects within each repetition was fully randomized. The

first repetitions were regarded as practice, and their data were not included in

data analysis.

During the experiment, participants followed instructions shown on a moni-

tor screen. The instructions were simple: hold an object by pinching and apply

gentle pressure between the middle finger and the thumb so that it remains in

the displayed force range (0.2 ± 0.02 kgf). After the contact pressure had stayed

within the force range for 500 ms, a vibration was generated for frequency sweep.

The accelerometer on the thumb picked up the vibration that had propagated

through the object. Participants were asked to align the object’s center of mass

between the two grasping fingers while avoiding touching the object with other

fingers or any other things around with the object. There were 48 trials for the

session with the standard objects and 75 trials for the everyday objects. The

experiment took less than an hour.
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Figure 4.6: Confusion matrix for recognizing standard objects.

4.4.2 Results

Standard Objects

A confusion matrix for the standard objects is shown in Figure 4.6, where

a number in the (i, j) cell indicates the percentage of the i-th object classified

as the j-th object. It is evident that the diagonal terms are dominant for almost
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Figure 4.7: Precision and recall for standard objects.

all objects. The average accuracy over all standard objects and participants was

92.5%. This result validates the effective of our one-person classifier in recognizing

the standard objects held by many different users.

The most noticeable errors were present with the acrylic cube that was rec-

ognized as the bakelite cube by 67.5% (Figure 4.6). These two rigid plastic cubes

have similar mechanical properties (acrylic: density 1.19 kg/m3, weight 50.8 g

and bakelite: 1.3 kg/m3, 59.9 g). Our method was unable to distinguish such

subtle differences. When the two cubes’ data are aggregated, the accuracy is

improved to 96.9% (SD 3.8%).

Individual recall and precision values are shown in Figure 4.7 for all the

standard objects. On average, precision was 93.7% (SD 11.0%), and recall was

92.5% (SD 16.4%)1. The average f-score was 92.0%. These statistics re-confirm

the effectiveness of VibEye. Here again the bakelite (code I) and the acrylic cube

(J) caused the performance drop. Combining the two cubes’s data improves the
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statistics to 97.0% (SD 4.4%), 96.9% (SD 3.2%), and 96.9%, respectively.

Everyday Objects

Figure 4.8 shows a confusion matrix of the everyday object classification

results. Note that the two standard objects with very similar materials (bakelite

and acrylic) are aggregated as plastics for simplicity.

We illustrate how to interpret the results in Figure 4.8 using examples. The

cell at which “wet glue” and “G” are crossed represents that wet glue was rec-

ognized as rubber clay (code G; see Figure 4.6) by 80%. Similarly, the cell of

“wet glue” and “A” tells that wet glue was also identified as paper (code A) by

20%. Examining the individual cells this way allows us to summarize prominent

mappings from everyday object to standard object, as shown in Table 4.1. If an

everyday object was classified as a standard object with over 70% of ratio, that

pair is enrolled in the table with their common mechanical properties. Eighteen

everyday objects (out of 25) were paired.

Some of the everyday objects are elastic, and most of them are classified

into one of the two silicones (B and C), rubber (D), and eva (F), as shown in

the top group of Table 4.1. The specific relations are in agreement with their

level of elasticity. In the middle group, wet (liquid) glue shows slow restoration

after deformation due to its viscous content, and it is 80% classified as the most

viscous standard object, rubber clay (G). The everyday objects in the bottom

group are all rigid. They are paired with rigid standard objects with a reasonable

1The average recall is identical to the average accuracy because the numbers of presenting

each object were all the same.
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Figure 4.8: Confusion matrix for categorizing 25 everyday objects to 16 standard

objects.

distribution. Weight is an influential factor to our classifier model, and heavy

objects over 100 g (mobile phone, multi-plug, and perfume) are categorized to

the standard objects made of metals (titanium (L) and steel (M)). Light and

rigid objects are mapped to hard rubber (E) if they exhibit some noticeable

properties, e.g., bouncing a bit when thrown (hard eraser) or making buzzing
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Table 4.1: Prominent mappings from 18 everyday objects to standard objects

(from Figure 4.8).

Everyday Objects Standard Object Features

Wet sponge B (soft silicone) Elastic and viscous

Jelly; wrist pad;

index (1st Phalanx);

rubber ball; earplug

C (stretch silicone) Very elastic and viscous

Two PU valls D (rubber) Highly elastic

Elastic eraser F (eva) elastic and little viscous

Wet glue G (rubber clay) viscous

Wooden plate H (wood) Wooden and rigid

Hard eraser; pen;

small clock
E (hard rubber)

Light and rigid

(Little elastic or buzzing)

Cosmetics I & J (plastics) Light and rigid

Mobile phone;

perfume; multi-plug
L & M (metals) Heavy and rigid

noise from assembled parts (pen and small clock). Other light rigid everyday

objects are classified to wood (H) or plastics (I & J), mostly depending on their

materials.

4.5 Discussion

4.5.1 Summary of Results

Our work is based on a simple idea: when a user holds an object between

fingers, we can recognize the object by triggering a short vibration and sensing

the transmitted vibration changed by the object’s mechanical properties. Our

method empowers ordinary objects to work as props of rich haptic sensations,
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contexts, and affordance for tangible interaction in any real, virtual, or aug-

mented environments. For proof of the concept, we designed and implemented

a simple prototype named VibEye and effective, efficient, and easy-to-use object

recognition algorithms capitalizing on spectrograms and PCA.

We trained an actual classifier of the 16 standard objects on the data mea-

sured from one user. All the standard objects were of the same shape (cube),

so the classifier learned their material differences. The classifier showed high

cross-validation performance. When tested with 20 other users, the one-person

classifier showed quite high performance (accuracy 92.5% and precision 93.7%).

This is evidence of the capability of our method handling individual differences,

e.g., different hand size and weight, and time-varying factors, e.g., hand orien-

tation change and low-frequency motion. In another experiment where the 25

everyday objects with different shapes and materials were used, we conducted

the experiment with the classifier built on the standard objects. This was to see

how the material-based classifier reacts to the everyday objects of different shapes

but similar materials. The one-person material-based classifier could find many

good matches between the everyday and standard objects. Therefore, depending

on objects used, material-based classifiers may suffice for accurate and robust

object recognition, without training classifiers every time for new sets of objects.

When very high recognition accuracy is crucial, we can build individual

models for each set of objects. Such classifiers are trained on both the materials

and shapes of objects. For example, we trained a C-SVM classifier to the 20

participants’ data of the 25 everyday objects with a cutoff level δ = −60 dB. The
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Figure 4.9: Another four sets of everyday objects and their PCA results (20

repetitions each): (A) Liquid body products in soft tubes, (B) candies in hard

containers, (C) stacked papers, and (D) a spray bottle (empty or full).

recognition accuracy was as high as 93.1%. Moreover, we tested our method with

the four sets of objects shown in Figure 4.9. They were liquid body products in

soft tubes, candies in hard containers, stacked papers, and empty or full spray

bottles. The recognition accuracy was nearly 100% for all the four sets. These

four sets of objects are very difficult to recognize with other methods using vision

or sound.

4.5.2 Hardware Improvement

Our prototype of VibEye is a bit bulky and not designed optimally for er-

gonomics; we rather focused on the function for proof of the concept. As such, its

design can be improved in many ways by using other actuators and sensors. For

example, there exist flexible thin-film vibration actuators that can be attached

to the skin [85, 86]. Likewise, commercial film-type pressure sensors (e.g., those

from Tekscan, Inc.) have been available for a long time. For accelerometers, tiny

ones have recently been developed (approximate size 1 mm× 1 mm× 0.8 mm
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[87]). Using such advanced actuators and sensors is likely to allow for a design

of smaller, lighter, and more ergonomic hardware. However, the requirement of

vibration transmission and sensing between fingers might still have fundamental

interference with the normal use of fingers during interaction. This issue can be

addressed more carefully after we build an improved hardware of VibEye.

Though the highest frequency we use is 500 Hz, the vibration output can

have higher frequency due to nonlinearity or harmonics (e.g. candies inside a

container). Therefore, we set our sampling rate to 20 kHz to ensure reliable

measurement. However, the spectrograms in Figure 4.4 did not show significant

energy above 500 Hz. Hence, 5–10 kHz sampling rates seems to be sufficient for

spectrogram construction2.

4.5.3 Vibration as A Sensory Cue

VibEye makes sound and vibration for object recognition, and they are per-

ceptible. For some applications, we can design sound and vibration so that users

accept them as adequate sensory feedback while the vibration still includes suf-

ficient spectral information for building a spectrogram. There exists a plethora

of literature even for vibrotactile effect design (e.g., see reviews in [89, 90, 91]).

Our current implementation presents pleasant sensations to users. However, our

method is inappropriate for the applications that disallows any sound or vibration

other than those resulted from natural contact. It is a fundamental limitation of

our approach that leverages structured mechanical vibrations.

2In practice, sampling rate for digitizing must be higher than 10-20 times of the highest

frequency of interest of an analog signal [88]. Otherwise, important information is lost during

analog-to-digital conversion.
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Figure 4.10: Applications of VibEye: (left) VR 3D modeling and (right) AR

drawing tool.

4.6 Applications

VibEye allows tangible props to self-illustrate computing contexts in a sim-

ple and direct manner. The unlocked possibilities enable the design of digital

environment that encompasses the afforance and experiences of the real world.

VibEye also enables the unique haptic properties of real world objects, leading

to rich tangible interaction. Delicate and assorted feels from the objects can be

mapped to the functions and characteristics of user interface. Under these vi-

sionary design criteria, we have designed and implemented two applications, and

they are presented in the rest of this section.

4.6.1 3D Modeling Interface for VR

Using blocks for 3D modeling is a popular paradigm (e.g., Minecraft and

isometric toolkits in Unity). We can instill tangibility into such block-based

modeling by using our 16 standard cubes as props (Figure 4.10, left). A user can

design a 3D model by manipulating the cubes of desired materials with VibEye,
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and the corresponding virtual blocks attain those materials. This function affords

an authoring environment of highly congruent manipulation and representation.

The 16 tangible cubes not only behave as haptic proxies [92, 93], but also provide

diverse haptic sensations that are copied to the 3D model. Additionally, measur-

ing the user’s pinching force enables to distinguish whether the grasping is a mere

grip, a request to identify the cube, or a command to insert the corresponding

virtual block into the model.

Our 3D modeling application can be used with a tool that transforms multi-

block models to CAD models [94]. Then the result can support material-rich 3D

printing; its needs have been consistently raised in the literature [95]. Hence,

our tangible 3D modeling interface has implication to 3D printing of diverse

viscoelastic materials [96] and estimating the responses of elastic objects to be

printed [97].

4.6.2 Drawing Interface for AR

In this application, a user puts on an optical see-through HMD and draws

in a 3D space while holding an object in the hand wearing VibEye (Figure 4.10,

right). The hand is tracked by a 3D tracker, and its trajectory is colored using AR.

So the user can see both the real environment and the virtual drawing. Objects

can be anything, e.g., a pen, sponge, finger, and eraser, but those with natural

affordance and salient material properties are more adequate. Such tangible

objects not only indicate functions (determined by the object identity), but also

the textures of virtual drawing (represented by the object texture). Using this

tangible input, we transfer the visual and haptic analog experiences to the digital
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domain, also enabling other users to see and feel the saved drawings. In particular,

depending on the haptic interface used, we can render different haptic properties

such as texture, elasticity, and friction. For example, imagine a user holding a

smartphone so that the user can perceive the haptic textures of drawing through

vibration feedback.

4.7 Conclusions

In this chapter, we have presented VibEye, a system for vibration-mediated

object recognition. VibEye is simple: its hardware requires only a vibration

emitter and a sensor, and its software processes the data using well-defined image-

based methods. Essentially, VibEye transforms the object recognition problem

to an image classification problem. We have validated the effectiveness of VibEye

in several ways, using the cross-validation results for the standard objects of the

same shape but different materials, and recognition performance for other users’

data and other unseen various everyday objects’ data. Also demonstrated are the

two tangible applications that capitalize on the advantages of VibEye.

We envision tightly-coupled virtual and real environments that are seamlessly

controlled by tangible objects. We hope that the concepts embodied by VibEye

could pave the way.
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V. Investigating Effects of Contact Force

and Vibration Frequency on Vibrotactile

Sensitivity

5.1 Introduction

Humans require precise force control to execute fine manual tasks, which

is generally facilitated to the great extent by providing adequate feedback. To

design appropriate vibrotactile stimuli for manual tasks, it is essential to quan-

tify human vibrotactile sensitivity over a large range of contact forces. In this

chapter, we report the psychophysical detection thresholds for vibrotactile stim-

uli measured for five pressing forces that cover the range of forces encountered

during ordinary manual tasks.

Although there has been extensive research on vibrotactile perception (e.g.,

[98, 99, 100, 49, 101, 102, 103, 104, 105]; also see [45] for review), only few

studies addressed how contact force affects the perception. In most previous

studies[106, 100], pressing force was controlled in a passive and static manner, and

the ranges of force were relatively narrow and low. Recently, Papetti et al. [50]

performed an experiment to measure detection thresholds for 250-Hz vibrations

over a wide and high range of pressing forces (1.9, 8, and 15 N). Unlike the

other previous studies, participants had to control their pressing forces actively

to target values. The measured absolute thresholds decreased as the pressing

– 71 –



force increased.

In addition to the scientific knowledge provided by those previous endeavors,

we need to describe the vibrotactile sensitivity of fingertip over a wide range of

contact force sampled at intervals. We also need to take into account both of two

mechanoreceptive channels of the PC channel and the RA(rapidly adapting)-I

channel (NP-I channel) that are responsible for the perception of different tem-

poral tactile properties. Therefore, we designed a psychophysical experiment with

five pressing force levels (0.2 N, 2.0 N, 4.9 N, 7.8 N, and 10.8 N) and two vibrotac-

tile frequencies (40 Hz and 250 Hz). Compared to the study of Papetti et al. [50],

we also included a low frequency vibration stimulating the RA-I channel.

The experimental results showed stark contrasts between stimulus frequen-

cies, depending on actively exerted pressing force. The detection thresholds for 40

Hz stimuli first increased then decreased as the pressing force increased, but the

detection thresholds for 250 Hz stimuli generally decreased as the force increased.

These results have immediate consequences on the design of vibrotactile feedback

for manual tasks in many applications of tangible interaction, tele-operation, and

VR.

5.2 Methods

This experiment was conducted under the protocols (PIRB-2017-E068) ap-

proved by the Institutional Review Board at Pohang University of Science and

Technology.
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5.2.1 Apparatus

We implemented a hardware system (Figure 5.1) to measure absolute thresh-

olds accurately for a wide range of pressure levels. A commercial mini-shaker

(Brüel & Kjær; Model 4810) was connected to a power amplifier (Brüel & Kjær;

2718), ensuring high precision and repeatability in a wide bandwidth (DC to 18

kHz). A load cell (Minebea; CB17-2K) with a dynamic strain amplifier (Senstech;

ST-AM100) was placed under an acrylic cylindrical contactor (area 1.45 cm2;

height 0.5 cm) to measure the normal force. A participant put the index finger

of his/her dominant hand on the contactor while placing his/her elbow on an

arm rest. The shaker and load cell were assembled with an acrylic connector

(7 cm× 4 cm× 1 cm) and were connected to a 16-bit data acquisition unit (Na-

tional Instruments; USB 6251). A computer controlled the data stream at 10 kHz

sampling rate. We developed an experimental program using Matlab Guide.

Before conducting the experiment, we carefully calibrated the shaker follow-

ing the steps presented in [102]. The procedure was to identify linear input-output

relationships for our apparatus at two stimulation frequencies. The shaker out-

put was measured with a high precision accelerometer (Kistler; 8765A250M5)

attached on the contactor. With the assembly parts (134 g) and the load cell

(40 g) on the shaker, we measured the relationship between input voltage ampli-

tude and output vibration amplitude at each frequency while the contactor was

pressed by the finger. We calibrated the system with the five external pressing

forces to compensate for the effects of finger loading on threshold measurements.

The measured data in each condition were fit to a straight line without intercept
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Figure 5.1: Experimental setup.

for linear interpolation (r2 > 0.97).

5.2.2 Participants

We recruited ten participants (seven males and three females; 19 to 29 years

old with a mean age of 23.9 years and standard deviation of 2.8 years) for this

experiment. The participants reported that they were in normal health, i.e.,

without any known sensorimotor impairments or musculoskeletal diseases. All

participants demonstrated normal ability to perceive vibrations in a practice ses-

sion. Each participant was paid 15,000 KRW/hour (about 14 USD/hour) after

the experiment.

5.2.3 Stimuli

The stimuli used in the experiment were sinusoidal vibrations generated by

the shaker system. The vibrations had two frequencies: 40 and 250 Hz. The area
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of contactor was 1.45 cm2. All participants could cover the entire contact area

with their index fingers even at the lowest pressure level (0.2 N). This area is

large enough for the spatial summation of the PC channel to saturate (around

1.5 cm2 [45]). The duration of vibrotactile stimuli was 1 s, which was sufficiently

long for stable perception considering the temporal summation of the PC channel

[45, 98].

5.2.4 Experimental Conditions

The experiment had a two-factor (pressing force× frequency) within-subject

factorial design. The independent variables were pressing force (Press, 5 levels)

and vibration frequency (Freq , 2 levels). Press represents the force exerted on

the skin when a participant actively pressed the contactor with his/her index

finger. Press had five levels: 0.2, 2.0, 4.9, 7.8, and 10.8 N. These values were

selected to include the contact force levels for general haptic-based computing

interfaces. This range also allows for comfortable pressing during interaction.

According to Didomenico et al. [107], the maximum peak forces exerted by

the index finger while pressing had a mean and a standard deviation around

40±15.2 N. The maximum force (10.8 N) used in our experiment is less than 1.92

standard deviations from the mean maximum peak force, thus it is accessible to

more than 97.3% of the general population. We also confirmed that the maximum

pressing force was not difficult to sustain and repeat. In contrast, the minimum

force (0.2 N) represents the natural contact condition with a vibration source.

Cholewiak et al. reported that 0.29 N (0.03 kgF) of contact force results in 1.4 cm2

of contactor area [108], and it was regarded as a typical finger contact force in
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psychophysical studies on vibrotactile stimuli [99]. Our minimum force of 0.2 N

was also determined in a pilot experiment.

Freq had two frequency levels of 40 and 250 Hz. Research on cutaneous per-

ception revealed that the dominant neural processing channels of 40 and 250 Hz

vibrations are the RA-I and PC channel, respectively [45]. Hence, the two fre-

quencies are good representatives for studying the effects of pressing force on

vibrotactile sensitivity.

Participants finished a total of 10 experimental conditions (5 Press levels

× 2 Freq levels). To alleviate transfer, learning, or fatigue, the presentation order

of Freq was counterbalanced across participants using a Latin Square, and that

of Press was randomized for each participant. Each experimental condition was

presented to each participant only once.

5.2.5 Task and Procedure

An absolute threshold for each experimental condition was measured using

the one-up two-down adaptive staircase procedure with two-alternative choices.

Prior to the experiment, participants were provided with verbal and written in-

structions. Then, participants were asked to adjust settings (e.g., armrest posi-

tion, chair height and leaning angle, contactor position, and keyboard position)

to their comfort. Participants were also instructed to use their dominant hands

to touch the contactor on the shaker and their non-dominant hands to enter re-

sponses using the keyboard. Participants wore earplugs and headphones through

which 50 dBA white noise was played to block the noise and faint sound emanat-

ing from the shaker. Visual instructions were displayed on a computer monitor

– 76 –



to guide participants. There was a practice session before the experiment. Par-

ticipants experienced initial ten trials from all the ten experimental conditions

(all combinations of Freq and Press) to become familiar with the stimuli and

experimental procedure. The practice session lasted approximately 10 min.

The main experiment included ten sessions for the ten experimental condi-

tions. During each trial consisting of two intervals, the target pressing force and

current pressing force applied by the participant were visually displayed as two

parallel slider bars on the monitor. In each interval, participants had to main-

tain the pressing force for longer than 0.5 s within a tolerance of ±0.098 N for

the 0.20 N force level and ±0.29 N for the other force levels. Once the pressing

force criterion was met, a 1 s long vibration was presented by the shaker. One

randomly-selected interval contained the test stimulus, while the other interval

presented no stimulus. After the two intervals, participants pressed the corre-

sponding number key (1 or 2) to select the interval (first or second) in which they

perceived a stimulus, and then hit the space bar to confirm their selection. Par-

ticipants had to make their best guess when they were uncertain of the interval

containing the stimulus (forced choice). Correct-answer feedback was provided

visually on the screen during the experiment.

After each trial, the stimulus amplitude was changed following the one-up,

two-down rule by a certain step size. That is, the stimulus intensity was decreased

after two consecutive correct responses and increased after one incorrect response.

This rule leads to the estimation of an absolute threshold with 70.7%-correct

probability [109]. If the stimulus amplitude changes from increasing to decreasing,
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or vice versa, it is said that a response reversal has occurred. The step sizes

were designed to balance between fast convergence and fine resolution. The step

size was initially 4 dB and was reduced to 1 dB after the third reversal. There

was five-percent randomization in the initial stimulus amplitude for each session.

The initial stimulus amplitude was set approximately four times higher than the

expected thresholds measured in pilot experiments. Each session was terminated

after nine reversals at the 1 dB step size.

Participants could take a break whenever they wanted. We forced partici-

pants to take a 30 s break between sessions and to rest after 10 min from the last

break during a session in order to prevent fatigue and tactile adaptation. A single

experiment lasted approximately 90 min (78 to 132 min), including all breaks.

5.2.6 Data Analysis

All threshold data were represented using peak displacement, which was con-

verted from accelerometer measurement [110]. To obtain a threshold estimate, we

averaged the stimulus intensities used at the last nine reversals in each staircase.

These estimates of individual participants were averaged again for yielding the

final absolute threshold. We also performed apparatus calibration under finger-

loaded conditions, which generally showed lower peak displacement for the same

input voltage. Three participants performed 30 repetitions of pressing the shaker

in each of the 10 experimental conditions (2 frequencies and 5 pressing forces)

from 0 to 1.2 V in 0.04 V intervals, and the resulting vibrations were measured.

These data were used to derive linear input-output relationships for the loaded

conditions. The thresholds were then converted to obtain absolute thresholds un-
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der finger loading, and these thresholds are reported in the rest of this chapter.

We also conducted an in-depth analysis on the controllability of pressing

force. The pressing force data from twenty equally-sampled data points collected

during 1 s stimulus were averaged. The controllability of pressing force was char-

acterized in terms of accuracy and precision.

All statistical tests were conducted using SAS (V 9.4) with the significance

level α of 0.05.

5.3 Results

5.3.1 Absolute Threshold

Absolute thresholds for the sinusoidal vibrotactile stimuli delivered to the in-

dex fingertip are shown in Fig. 5.2 as a function of pressing force. Error bars show

standard errors. For each pressing force, the detection threshold for 40 Hz vibra-

tion was higher than that for 250 Hz vibration. Furthermore, for the 40 Hz vibro-

tactile stimuli, the absolute thresholds increased until pressing force increased to

2.0 N, and the thresholds subsequently decreased as the pressing force increased

further. In contrast, the absolute thresholds for 250 Hz vibration decreased and

then increased as the pressing force increased, showing a V-shaped curve with

the minimum at 7.8 N.

To confirm the validity of these observations, we performed statistical tests,

starting with two-way repeated measures ANOVA with the independent factors

of Freq and Press. The sphericity assumption was not violated when tested by

Maucly’s test (W = 0.132, p = .099). Both Freq (F (1, 9) = 69.21, p < .0001)
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Figure 5.2: Absolute thresholds in terms of peak displacement in dB measured

in all experimental conditions. Error bars show standard errors.

and Press(F (4, 36) = 3.33, p = .0203) had statistically significant effects on the

absolute thresholds. The former allows us to state that the absolute thresholds

were lower for 250 Hz vibration than for 40 Hz vibration. This is consistent with

the well-accepted data and theories in tactile perception [45, 105].

The interaction between Freq and Press was found to be statistically sig-

nificant (F (4, 36) = 3.21, p = .0238). For further inspection, we conducted simple

effects tests on both factors.

First, at each Press level, the detection threshold for the 40 Hz condition

was significantly higher than that for the 250 Hz condition (Figure 5.2). The
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Figure 5.3: Absolute thresholds in terms of peak displacement measured for each

Freq condition. Error bars show standard errors. For each frequency, data points

marked with different letters were different with statistical significance.
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differences at each Press level were 39.33, 42.54, 43.26, 43.82, and 42.79 dB,

respectively.

Second, out of the two Freq levels, we performed one-way repeated mea-

sures ANOVA for Press on the 40 Hz conditions only (Figure 5.3, top). The

detection thresholds were significantly affected by changes in Press (F (4, 36) =

3.27, p = 0.022). For post-hoc analysis, we used Tukey’s honest significant differ-

ence test. The results showed that the 2.0 N condition produced a significantly

higher threshold than the 7.8 and 10.8 N conditions (Figure 5.3,top). No other

significant differences in threshold were observed. Therefore, for 40 Hz vibration,

we can say that the absolute threshold increased to pressing force between 2.0

and 4.9 N, and it began to decrease thereafter. We will revisit this interesting

result in Section 5.4.

Third, one-way repeated measures ANOVA for Press on the 250 Hz data

suggested that the detection thresholds were significantly affected (F (4, 36) =

4.55, p = 0.0045) by the exerted active force (Figure 5.3, bottom). Subsequent

Tukey’s test revealed that the vibrotactile sensitivities for the 7.8 and 10.8 N

conditions were significantly better than the lowest sensitivity value at the 0.2 N

condition (Figure 5.3,bottom). There were no significant differences among the

other four higher-sensitivity Press levels (2.0, 4.9, 7.8, and 10.8 N). These results

indicate that the absolute threshold decreased until Press was 7.8 N, and the

absolute thresholds did not decrease once the pressing force exceeded 7.8 N.
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Table 5.1: Means and Standard Deviations of Force Control Error (CtrlErr),

and the Means of Accuracy and Precision

Press (N) CtrlError (N) Accuracy (%) Precision (%)

mean ± s.d. mean mean

0.2 0.033 ± 0.027 16.73 11.71

2.0 -0.031 ± 0.091 -1.57 4.72

4.9 -0.131 ± 0.161 -2.68 3.38

7.8 -0.396 ± 0.304 -5.04 4.08

10.8 -0.633 ± 0.456 -5.87 4.49

5.3.2 Pressing Force

We recorded the participants’ pressing forces in all trials and intervals (with/without

vibration) to verify their ability to control pressing force. The control error

of pressing force (CtrlErr) was calculated by subtracting the target pressing

force from the measured pressing force, which represents the accuracy of force

control. The means and standard deviations of CtrlErr are provided in Ta-

ble 5.1. A three-way repeated measures ANOVA was performed to test the

effect of Press, Freq , and the presence of vibrotactile stimulus on CtrlErr .

Only Press was found to be a significant factor (F (4, 36) = 22.45, p<.0001; Fig-

ure 5.4). Vibration frequency (F (1, 9) = 0.016, p = 0.901) or the existence of

stimulus (F (1, 9) = 0.05, p = 0.829) did not affect the participants’ force control,

nor did any of the interaction terms.

The absolute value of CtrlErr generally increased as Press increased. The

error was negative in all the conditions except when the target pressing force
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Figure 5.4: Mean force control errors with standard errors (error bars) for each

frequency and the existence/absence of vibrotactile stimulus.

was 0.2 N (Figure 5.4), exhibiting overshoots. The mean values of CtrlErr were

larger than 0.29 N at the two highest pressing forces (7.8 and 10.8 N) because

there were some instances where participants had difficulties in maintaining the

two pressing forces. The means of CtrlErr were normalized by the target forces,

and these values are shown in Table 5.1. The normalized accuracy was not good

(16.73%) for the lowest pressing force (0.2 N for mere contact), but it stayed

within 5.87% with undershoots for the other target forces. As a measure of preci-

sion, we inspected the standard deviations of CtrlErr normalized by the means

of the measured pressing forces. These precision values are also shown in the last
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column of Table 5.1. It was 11.71% for the lowest pressing force but ranged from

3.38% to 4.72% for the other larger target forces. All these results suggest that

the participants could control the pressing force accurately and precisely unless

the target force was very low, corresponding to merely maintaining contact.

5.4 Discussion

We have reported psychophysical measurements that represent vibrotactile

sensitivity when both stimulus frequency and active pressing force are varied.

Our absolute threshold curves indicate the intensities of vibrotactile stimuli that

lead to 70.7% correct detection. Two absolute threshold curves for 40 and 250 Hz

stimuli, innervating the different information processing channels (RA-I and PC

channel, respectively), were derived from our measurements. In this section, we

discuss the experimental results in detail, often in comparison with the relevant

knowledge available in the literature.

The absolute threshold plots shown in Figure 5.2 manifest the effects of

vibration frequency and pressing force. A distinctive finding was that the absolute

thresholds increased and later decreased as the pressing force increased when the

frequency was 40 Hz, while they generally decreased for 250 Hz.

5.4.1 Effects of Vibration Frequency

The experimental results demonstrate intriguing contrast between the be-

havior of the two rapidly-adapting mechanoreceptive channels as to the effect of

pressure. Such perceptual data are rare in the literature. In [50], where 250 Hz si-

nusoidal vibration was used with active pressing forces of 1.9, 8, and 15 N (contact
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site: finger pad; unregulated contact area), absolute thresholds clearly decreased

with the increasing pressing forces. This trend was also apparent in our study,

where absolute thresholds for 250 Hz vibration were measured for the five press-

ing forces ranging from 0.2 to 10.8 N under the controlled contact area. These

results, since 250 Hz vibration is dominantly mediated by the PC channel at the

threshold level [45], imply that stronger active pressure increases the vibrotactile

sensitivity of the PC channel.

Interestingly, our absolute thresholds for 40 Hz vibration exhibited the dif-

ferent pattern: the increasing trend in the thresholds presented a transition to

decreasing with further pressing force increase. In [100, Figure 10], absolute

thresholds measured with one participant are shown as a function of frequency

for four static contact forces (0.1, 0.5, 1.5, and 4.5 N), where contact force was

passively maintained by externally controlling the indentation depth of the con-

tactor to the skin. The contactor was placed on the arm without a surround.

When the vibration frequency was very low (below 20 Hz), the absolute thresh-

olds clearly increased as the static contact force increased. It appears that the

RA-I channel has diminished vibrotactile sensitivity when the skin is subject to

increased contact pressure. In [100, Figure 10], however, the opposite (decreas-

ing) pattern was found for the vibration frequencies above 50 Hz, similar to our

250 Hz thresholds. Between 20 Hz and 50 Hz, the threshold data showed a tran-

sition from increasing to decreasing as the static force increased. This pattern is

what we observed with our 40 Hz thresholds with active pressing force. There-

fore, according to our absolute thresholds for 40 Hz vibration (ten participants;
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contact site: finger pad; 1.45 cm2 without surround) and those for the frequencies

around 40 Hz in [100, Figure 10] (single participant; contact site: inner side of

forearm; contactor: 1.5 cm2 without surround), something causes a sensitivity

crossover for 40 Hz vibration with respect to increasing contact pressure.

5.4.2 Effects of Pressing Force

The biomechanical structure of sensory organs can be deformed when they

are exposed to external contact force. Meissner and Pacinian corpuscles, which

are the end organs of the RA-I and PC channels, respectively, have different

mechanical structures, and their sensitivity depends on the surrounding receptor

structure as well as the transducing nerve endings [111]. Meissner corpuscles are

relatively large, and they reside in the dermal ridges lying just beneath the epi-

dermis. They have cell layers that enclose the large endings of two to six RA-I

afferent fibers, and this pillow-like structure functions as a filter that prevents

static skin deformation from affecting the velocity-sensitive endings [111]. Thus,

when large external pressure deforms the skin, the surrounding layers of Meissner

corpuscles under the influence are likely to become distorted (personal communi-

cation with Sung Jun Jung). In such a loaded situation, stronger vibration may

be necessary to trigger the nerve endings of Meissner corpuscles. In contrast,

Pacinian corpuscles are in the deep dermis, and they are much less likely to be

affected by external pressure.

Transmission of a vibratory stimulus into the skin is also largely affected by

the biomechanical properties of the hand and its skin [69]. Mann and Griffin

investigated the effect of contact force (0.25 to 8 N) on the mechanical impedance
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of the distal phalanx of the index finger [31]. Greater contact force generally

encountered higher mechanical impedance [31, Figure 5]. The impedance differ-

ences for contact force ranging from 1 to 8 N were more evident at 40 Hz than

at 250 Hz. Increased mechanical impedance implies that a stronger vibrotactile

stimulus is required to achieve the same indentation on the skin. This may also

be responsible for the increased detection thresholds at the low contact force lev-

els (0.2 and 2.0 N) for the 40 Hz condition in our study. Furthermore, when the

skin tissues are compressed, the transmissibility of vibration is higher at 250 Hz

vibration, e.g., from the hand to the wrist [112] and from the fingertip to the dis-

tal, middle, and proximal phalanxes [30], by coupling vibrations transmitted to

bones and tendons (personal communication with Sung Jun Jung; also see [49]).

This may account for the decreased thresholds for 250 Hz vibration as pressing

force increased.

Going back to our results from the 40 Hz conditions (Figure 5.3, top), the

initially declining vibrotactile sensitivity started to increase for contact force

somewhere between 2.0 to 4.9 N. We suspect that this stems from a crossover

of the dominant information processing channel from RA-I to PC, between the

two rapidly-adapting channels. When the contactor area was 145 mm2, the RA-I

channel had a lower absolute threshold for 40 Hz vibration than the PC channel

when no external pressure is applied (see [113, Figure 7]). Increasing contact

pressure degrades the sensitivity of the RA-I channel to 40 Hz vibration while it

improves the sensitivity of the PC channel, eventually leading to the observed

crossover. A similar example was previously reported in the forearm [100, Figure
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10].

5.4.3 Comparisons of Absolute Thresholds

The absolute thresholds reported in this article can be compared to those

published earlier in the literature. For example, Papetti et al. [50] presented abso-

lute thresholds for 250 Hz vibration under active pressing forces. These thresholds

were considerably lower than our measurements (compare Fig. 5.2 and [50, Table

1]). The differences in the thresholds could have been due to the temporal energy

integration property of the PC channel. In [50], A longer stimulus duration (1.5

s) than our experimental condition (1 s) was used in the experiment. The fact

that the contactor was a flat surface in [50] could also have contributed to the

threshold differences.

Finally, a comparison of our absolute threshold measurements with those

found in other prior studies is summarized in Table 5.2. The previous studies

listed in the table were concerned with vibrotactile sensitivity on the fingertip. All

thresholds were converted to have a unit of decibels relative to 1 µm (peak). Our

threshold results at the two lowest force levels (0.2 and 2.0 N; 1.45 cm2 contactor

area) were similar to those of Lamoré and Keemink (0.5 N ±0.2 N; 1.5 cm2) [100],

Goble et al. (assumed to be 0.3 N; 1.4 cm2 effective contact area) [99], Verrillo

(not specified; 0.005 cm2 for 40 Hz and 1.3 cm2 for 250 Hz) [114], and Harada and

Griffin (2 N; 0.385 cm2) [106]. Our thresholds were not very different from those

found by the others, and the differences did not exceed 5.3 dB.
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5.5 Conclusions

In this chapter, we explored how the perceptual characteristics of vibrotac-

tile stimuli is affected by two experimental variables, active pressing force and

vibration frequency, concentrating on the sensitivity. We measured the abso-

lute thresholds for two sinusoidal vibrations (40 and 250 Hz) under five pressing

forces (0.2, 2.0, 4.9, 7.8, and 10.8 N). The results showed distinctive tendencies in

the sensitivity over the pressing forces at the two levels of frequency. The main

findings of our experiment were as follows: 1) the sensitivity to 250 Hz stimuli

generally increased with increasing pressing force; 2) the sensitivity to 40 Hz stim-

uli initially decreased but then increased after the contact force exceeded 2 N; and

3) the participants were more sensitive to 250 Hz stimuli than 40 Hz stimuli by

at least 39.33 dB (at 0.2 N), and the sensitivity gap between the two frequencies

generally increased as the pressing force increased. In future studies, we will

investigate the effectiveness of vibrotactile rendering based on the results of this

study and explore the design space of vibrotactile feedback and force-sensitive

input.
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VI. Conclusion

6.1 Contributions

In this thesis, the main contributions are summarized as follows:

• Investigate vibration transmissibility in various contexts, e.g., the hand,

rigid surfaces, everyday objects, and various material, and explore its ap-

plications in Human-Computer Interaction.

• Verify the possibility of vibration as a sensing channel for input interaction

in tangible interaction

• Unveil the perception of vibrotactile stimuli during active haptic interaction

There are primarily two major topics pertinent to this dissertation: vibration-

based sensing technique and vibrotactile feedback. The former stresses the usage

of vibration as a sensing channel. Compared to other sensing channels, vibration

has the unique characteristic of being a mechanical wave which tells us about the

physical properties of a medium, e.g., weight, elasticity, and damping, during its

propagation. By leveraging such a characteristic, I have been working on how

to imbue computing capability into plain everyday objects. The propagation of

vibration has been fully investigated in the relevant context when a user touches

a surface or object. This investigation is the foundation of the first attempt to

augment the hand with vibration.
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When it comes to vibrotactile feedback, the primary achievement is to fully

characterize the sensory channel in the context of use. When utilizing physical

props for the execution of fine manual tasks, we need to precisely control the

force applied to the props. In order to deliver reliable tactile feedback during

such dexterous manual tasks, the author conducted a psychophysical experiment

for understanding the fundamentals in vibrotactile perception. On top of this

fundamental understanding of human vibrotactile perception, I have explored

a number of ways to advance vibrotactile rendering with collaborators, such as

adding impulsive force to improve the realism of tactile sensation, optimizing

illusory moving tactile sensation, and designing illusory penetrating tactile sen-

sation.

6.2 Future Directions

The primary reason for which I would like to engage in HCI research is the

versatility offered. For myself, the design process of interactive artifacts is like

instilling life to them. As such, the research topics in this dissertation and other

co-works cover broad topics in HCI, such as human perception, sensing, and

feedback. I envision converging the findings from these previous works to shed

light on the next level of haptic interaction.

Previously, sensing and actuation have been two distinct research topics in

many cases. In future work, I would like to design systematic haptic feedback

bridging detected actions and desired motions. When the input and output of a

system are modeled together, it is possible to seamlessly present information that
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helps adjust the sensory-motor coordination. Simultaneous and continuous sen-

sory feedback, e.g., beep intervals while driving backward to notify the distance

to walls, assist us in performing fine motor tasks. I have an interest in exploring

tactile feedback which inhibits or induces desired motor actions, enhancing us-

ability, e.g., the spatial control of AR user interfaces, and user experience, e.g.,

haptic signifier and feedforward.

Secondly, the dimension of vibrotactile feedback can be extended toward a

volume or surface. Previously, vibration has delivered to the skin as a single point

stimulus, e.g., to the fingertip, although surface haptic devices have received re-

search attention. The purpose of this future work is to intentionally localize

vibration over a surface or across a volume so as to generate a pattern which can

be simultaneously perceived by a wide area of the user’s skin. My idea concerns

the computational design of specially structured patterns or materials to inten-

tionally control the transmission of vibration. In other words, the propagation of

vibration can be further compounded by metamaterials or non-newtonian fluid

blocking and transmitting vibration across a surface or a volume.
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요 약 문

우리는 일상에서 다양한 물건을 사용하고 조작하는 과정을 통해서 필요한 과업을

수행하게 된다. 이러한 실물 객체와의 상호작용 경험은 오랜 시간에 걸쳐 누적되고

체화된다. 본 연구에서는 인간에게 체화된 촉각적 상호작용 경험을 가상의 컴퓨팅

환경으로 확장하기 위한 일련의 연구를 진행하였다. 이를 인간 컴퓨터 상호작용의

입출력 관점으로 나누어서 각각을 살펴보면 다음과 같다.

첫 번째 단계로 사용자가 일상적인 물체를 유형의 입력 장치로 사용할 수 있도록,

진동을 사용자의 입력 인식을 위한 매체로 사용하는 가능성에 대해서 살펴보았다.

사용자가 손을 사용하여 텐저블 인터페이스와 상호작용을 시작하기 위해서는 필

연적으로 물체와 접촉하게 된다. 이때, 사용자가 물체와 접촉하는 접촉 상태와

사용자가 접촉한 물체 자체를 인식하는 두 가지의 인식 기술에 대해서 탐구하였다.

첫 번째 인식 기술은 사용자가 강체 표면과 접촉하는 순간, 사용자의 손가락에 위

치한 진동 링에서 특정 주파수가 인코딩된 진동 신호를 내보내고, 이를 강체 표면에

부착된 마이크로 인식하는 과정을 거친다. 일련의 신호 처리 및 기계 학습 모델의

계산 과정을 통해서, 강체 표면과 접촉한 손가락을 찾아내는 연구를 수행하였다.

두 번째 인식 기술은 사용자가 손에 쥐고 있는 물체를 인식하는 기술이다. 사용자

의 한쪽 손가락에서 발생시킨 진동이 물체를 투과하여 반대편 손가락의 가속도계에

서 해당 진동 신호를 수집한다. 이때, 수집된 진동 가속도 신호는 기계적 임피던스

특성에 따라서 물체를 구성하고 있는 물질의 차이에 따라 서로 다르게 왜곡된 형태

를 띤다. 이러한 현상을 이용하여, 물체별로 다르게 왜곡된 가속도 신호의 패턴을
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분류기가 학습하고 높은 정확도로 분류하는 연구를 수행하였다.

두 번째 단계로 사용자가 이러한 유형의 입력 장치를 통해서 컴퓨팅 환경과 상

호작용할 때, 사용자가 수행하는 수동 작업의 복잡도가 높아질수록 미세한 힘의

조절은 필수적이다. 사용자와 텐저블 인터페이스 간의 상호작용을 효과적으로 매

개하기위하여,사용자가능동적으로표면을누르는상황에서진동에대한사용자의

촉각적 인지 실험을 수행하였다. 본 연구에서는 사용자가 수동 작업 중에 사용하는

넓은 영역의 압력 범위와 두 개의 특징적인 진동 주파수에 따라서 진동 민감도를

측정하였다. 사용된 두 개의 주파수에 따라서 가해진 압력에 따른 진동 민감도의

경향성이 상이한 것을 확인할 수 있었다.
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