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Abstract

Dealing with inhomogeneous haptic data is of importance in many haptic applications. In

particular, biomedical data are essentially inhomogeneous, and medical haptic applications

usually need sophisticated and efficient computational algorithms for modeling and simu-

lating relevant signals generated from the interaction among inhomogeneous objects. This

dissertation presents two core examples for modeling and transferring such inhomogeneous

haptic data.

Our first effort focuses on capturing and rendering the behaviors of real objects of inho-

mogeneous deformation dynamics. We adapted a framework of the “data-driven haptics,”

where the response forces are modeled based on the recorded haptic data, and they are re-

produced using an interpolation schemes. This approach can capture and display a diverse

range of physical phenomena within one framework. In particular, inhomogeneity in lateral

force, i.e., friction, in an unconstrained movement, e.g., stroking and rubbing for sliding

exploration, can be accurately captured and rendered with our framework, which is one

of the first attempts in the haptic modeling and rendering literature. The core point is the

simulation of proxy point (actual contact point) movement based on sliding yield surface

models, which possess necessary information for separating sliding and sticking states. In

an off-line process, sliding yield surface models are built through an automatic palpation of

a target real object. Internal radial-basis models are also modeled in the off-line process.

During rendering, the movement of a proxy point is estimated using the sliding yield sur-

face models, which becomes an input parameter of the radial basis interpolation models.

Based on our performance evaluation, our framework shows less than 0.5N force error ratio



in most cases, both in normal lateral direction.

The second example of this dissertation presents a computational algorithm for perceptually-

correct haptization of inhomogeneous scientific data captured from the real environment.

Inhomogeneity in scientific data may lead a user to misunderstand embedded information.

An example of such cases is stiffness data captured by AFM, where conventional haptic

rendering algorithms fail to deliver perceptually correct information to the users. In the

worst case, a higher region with a smaller stiffness value can be perceived to be lower than

a lower region with a larger stiffness value. This problem was explained by the theory of

force constancy: the user tends to maintain an invariant contact force when s/he strokes

the surface to perceive its topography. In this dissertation, we developed and evaluated a

topography compensation algorithm for mesh object that can render the shape of a mesh

surface and its stiffness distribution. This algorithm adaptively changes the surface topog-

raphy on the basis of the force constancy theory to deliver adequate shape information to

the user while preserving the stiffness perception. The performance of the proposed hapti-

zation algorithm is evaluated in comparison to the constraint-based algorithm by examining

relevant proximal stimuli and carrying out a user experiment. Results demonstrated that our

algorithm could improve the perceptual accuracy of shape and reduce the exploration time,

thereby leading to more accurate and efficient haptization.





Contents

1 Introduction 1

1.1 Reproducing Inhomogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Transferring Inhomogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Works 4

2.1 Haptic Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Haptic Modeling of Real Objects . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Data Acquisition Methods . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Modeling Approaches . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Haptic Transfer of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Shape Modeling of Real Objects 11

3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Collection of Surface Points . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Contact Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 True Contact Time Estimation . . . . . . . . . . . . . . . . . . . . 14

3.2.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 17

i



CONTENTS ii

3.3 Modeling of Surface Points . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Reconstruction Procedures . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Force Response Modeling of Real Objects 26

4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Interpolation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Description of Proxy . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Estimating of Input Parameters . . . . . . . . . . . . . . . . . . . . 30

4.2.3 Roles of Modeling Variables . . . . . . . . . . . . . . . . . . . . . 31

4.3 Sliding Yield Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Estimating Proxy Using Sliding Yield Surface . . . . . . . . . . . . 33

4.3.2 Modeling Procedures of Sliding Yield Surface . . . . . . . . . . . 36

4.4 Data Acquisition and Modeling . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.1 Inhomogeneous Silicone Planar Object . . . . . . . . . . . . . . . 46

4.5.2 Silicone Rubber Dome with Inclusion . . . . . . . . . . . . . . . . 53

4.6 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Data peceptualization of Inhomogeneous Haptic Data: Case Study on Trans-

ferring of Shape and Stiffness 60

5.1 Data-perceptualization of Shape and Inhomogeneous Stiffness Data . . . . 61

5.2 Topography Compensation Algorithm for Mesh . . . . . . . . . . . . . . . 63

5.2.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS iii

5.2.3 When First Contact Occurs . . . . . . . . . . . . . . . . . . . . . . 66

5.2.4 While Contact is Maintained . . . . . . . . . . . . . . . . . . . . . 67

5.2.5 While Contact is Released . . . . . . . . . . . . . . . . . . . . . . 71

5.2.6 When another Contact Occurs . . . . . . . . . . . . . . . . . . . . 72

5.2.7 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Performance Evaluation: Trajectories . . . . . . . . . . . . . . . . . . . . 74

5.4 Performance Evaluation: User Study . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusion 85

Bibliography 88

한글요약문 99



List of Figures

3.1 Haptic interface for shape modeling. . . . . . . . . . . . . . . . . . . . . . 13

3.2 Measured force profile at a contact. . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Sample objects used in the evaluation. Their stiffness shown together was

measured when applied force was 5 N. . . . . . . . . . . . . . . . . . . . 17

3.4 Distance errors between estimated contact points and true contact points

on an object surface. Results of the simple thresholding are represented by

diamond box plots, and those of the true contact point estimation algorithm

are by box plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Modeling program. All of point set processing and surface reconstruction

are supported by GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Examples of reconstructed models from soft real objects. (a), (b), and (c)

were scanned by the optical 3D scanner. The models in second and third

rows were captured and built by our modeling system. The points of (d),

(e), and (f) were estimated by our point estimation algorithm. For (g), (h),

and (i), simple thresholding algorithm was used. . . . . . . . . . . . . . . 22

iv



LIST OF FIGURES v

3.7 Error distributions of reconstructed models. The presentation used a RGB

color map with red and blue indicating minimum and maximum, respec-

tively. (a), (b), and (c) captured by our modeling system with the true

contact point estimation algorithm. (d), (e), and (f) built by our modeling

system with simple thresholding. with simple thresholding. . . . . . . . . 23

4.1 Haptic interface for modeling the force responses. . . . . . . . . . . . . . . 27

4.2 Important points and vectors for interpolation model . . . . . . . . . . . . . 28

4.3 Loading and unloading processes in the elasto-plasticity . . . . . . . . . . . 29

4.4 Decomposition of u using gs(·) . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Update of gs(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Profile of the contact loading force. Black solid line is ||fN || and red dotted

line is ||fT ||. tN and tT are time durations of loading and unloading for

normal and tangential forces, respectively. tplateau determines the duration

of applying maximum loading force. tmeasurement is measurement time of

displacement and reaction force. . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 fT vs. ||up
100|| at top. fT vs. ||∆up

plateau|| at bottom. . . . . . . . . . . . . . . 40

4.8 Example of the sliding yield surface . . . . . . . . . . . . . . . . . . . . . 42

4.9 Silicone planar object sample . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 Sampling trajectory of planar object. About 37,000 samples are tested dur-

ing about 40 seconds. The left figure is the trajectory of all samples. The

right figure shows the trajectory from 20 seconds. The right trajectory con-

tains only sliding interaction. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 The trajectory of the force in planar silicone object . . . . . . . . . . . . . 49

4.12 The trajectory of the force in planar silicone object for sliding interaction . 50

4.13 Relative error of the force magnitude along the test trajectory for the sili-

cone planar object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



LIST OF FIGURES vi

4.14 Box plot of the relative force error of the planar silicone. 3D shows the

relative error by Eq. 4.28 . X,Y,and Z showed the relative error for the axes

by Eq. 4.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.15 Silicone dome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.16 Sampling trajectory in silicone dome. About 24,000 samples are tested

during about 30 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.17 The trajectory of the force in silicone dome. . . . . . . . . . . . . . . . . . 56

4.18 Relative error of the force magnitude along the test trajectory for the sili-

cone dome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.19 Box plot of the relative force error of the planar silicone. 3D shows the

relative error by Eq. 4.28 . X,Y,and Z showed the relative error for the axes

by Eq. 4.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 The surface height map of “protein-on-mica” data. Higher regions are

coded with brighter colors. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 A cross-section of the height map shown in Fig. 5.1 along with the typical

trajectory of a haptic probe tip. . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Mesh models with a continuous stiffness distribution. Higher stiffness val-

ues are represented by darker colors. The stiffness range of all the meshes is

0–1.0 N/mm. (a) The protein-on-mica model, (b) the Stanford bunny model

[90], and (c) a human head model. . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Meshes and major points used in TCA-MESH. . . . . . . . . . . . . . . . 65

5.5 Behaviors of TCA-MESH. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Possible configurations of HIP, IHIP, and CIHIP. . . . . . . . . . . . . . . 71



LIST OF FIGURES vii

5.7 Trajectories of the major points with TCA-MESH and CBA when the user

strokes three models: (a) protein-on-mica (red dotted circle: elevated area),

(b) Stanford bunny (red dotted circle: concave area), and (c) Human head

(red dotted ellipse: eye). The trajectories of HIP, IHIP, and CIHIP are rep-

resented by blue, red, and green solid lines, respectively. An arrow-headed

line indicates the stroke direction. The models and trajectories consisted

of 3D data, and hence, they are rendered here using a perspective view.

All models share the same color map for stiffness shown on the top of (a).

Each figure includes trajectories magnified from the region enclosed by a

red dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 Five shape (H0–H4) and five stiffness models (K0–K4) used in the percep-

tual performance evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.9 (a) Mesh surface embedding the 25 shape-surface models. (b) Visual scene

provided to the participant. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.10 Quantitative experimental results. Error bars represent standard errors. . . . 81

5.11 Ratios of correct shape classifications for the 12 models that have a high

probability of incorrect discrimination when CBA is used. Error bars rep-

resent standard errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



List of Tables

3.1 Quantitative comparisons of modeling performance. O: Optical scanner. P:

Our probe-based method. S: A probe-based method with simple thresholding. 24

4.1 Sample plastic displacements for various fT and tplateau. fN is 1N. up
100 and

up
600 are plastic displacement when tplateau are 100 and 600 ms, respectively.

∆up
plateau is ||up

600|| -||u
p
100||. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Shape-stiffness models used in the perceptual evaluation. . . . . . . . . . . 77

viii



Chapter 1
Introduction

In general, haptic systems can be categorized by their goal. The first group tries to repro-

duce haptic responses of physical object, and the second focuses on an information delivery

through a haptic modality. Since the two groups require different functionalities, each group

needs a unique haptic model to store the haptic data as well as an appropriate haptic render-

ing algorithm to generate haptic signals. As our major thrust of this research is to deal with

inhomogeneous haptic data, we select a representative but still challenging example from

each group and develop two complete haptic systems that deal with inhomogeneous haptic

data.

1.1 Reproducing Inhomogeneity

First system focuses on the reproduction of haptic responses generated during the inter-

action among physical objects of inhomogeneous material. Conventional haptic rendering

algorithms could deal with variation in haptic properties, e.g., friction variation, but they

could not fully handle property variations inside the object, e.g., inhomogeneity in stiffness

beneath the object surface [102, 84]. Therefore, new rendering/modeling algorithms that

can handle full inhomogeneity are necessary for many haptic applications. In particular,

biomedical data are essentially inhomogeneous in the compliance and friction, and sophis-

ticated algorithm to deal with those data are needed for many medical haptic applications,

1



1.2. TRANSFERRING INHOMOGENEITY 2

but there exists no systematic and general-purpose modeling/rendering algorithm so far.

In our first system, we developed a systematic, accurate, and efficient algorithm to cap-

ture, store, and render inhomogeneous stiffness and friction data. In our framework, we

adapt “data-driven haptics” approach. This approach captures real signals resulted from

physical interactions, stores them in an interpolation model, and use them to reproduce

the captured signal. The advantage of this method is that this approach bypasses compu-

tationally complex contact dynamics simulation, so that the rendering algorithm become

significantly efficient. This characteristic of the approach is very suitable for dealing with

inhomogeneous data, since the analytic simulation of them is usually computationally com-

plex.

In general, the core issue of data-driven haptics is how to select description set that ac-

curately reflects the phenomena of real environments. In this dissertation, we made new

description set that newly includes the position of simulated proxy position, in order to cap-

ture inhomogeneous stiffness and friction. In particular, in order to handle friction, previous

data-driven haptic approaches are extended to support sliding exploration since sliding ex-

ploration is influenced by the contact and friction phenomenon of the deformable object.

To this end, we use the contact based modeling and elasto-plastic analogy for describing the

friction by introducing sliding yield surface models. Using sliding yield surface models, a

proxy position can be simulated in real-time, which is used for the description.

In addition, we develop a shape modeling system based on contact modeling analysis for

soft elastic object.

The final data-driven model could capture and display a diverse range of physical phe-

nomena within one framework. In particular, this is among the first attempt that fully han-

dle both stiffness and friction, which allows unconstraint interaction including sliding and

stroking interactions.

1.2 Transferring Inhomogeneity

Our second focus is on the haptic perceptualization of inhomogeneous scientific data cap-

tured from the real environment. Inhomogeneity in scientific data may lead a user to mis-
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understand embedded information in case of an improper rendering algorithm for the in-

formation. For instance, for the case of transferring shape and stiffness data captured by

AFM, the conventional haptic rendering algorithm for homogenous rigid object rendering

may fail to deliver an exact topography information to the users. We present an algorithm

(TCA-MESH) to haptize an object shape with a continuous stiffness distribution when the

data are represented by a mesh. The goal of TCA-MESH is to deliver the shape and linear-

elastic stiffness data represented in a mesh structure without perceptual distortion. To this

end, TCA-MESH is designed to provide perceptually correct information when an appro-

priate EP is used, i.e., to render accurate topography during the user‘s stroking on the sur-

face, while preserving correct stiffness perception during tapping. Stroking is the necessary

EP for shape perception, whereas tapping is the optimal EP for stiffness perception [60].

Stiffness discrimination is also possible in case of stroking [60], but this is not pursued by

TCA-MESH as a trade-off. In this aspect, TCA-MESH differs from general virtual object

rendering that stresses the realistic simulation of physical phenomena.

1.3 Contributions

The contribution of the work can be summarized as follows:

• development of a data-driven haptic modeling and rendering method that supports

sliding interaction with frictional responses

• improved haptization algorithm to transfer scientific data with inhomogeneity

1.4 Organization

In Chapter 2, previous works with respect to haptic modeling of the real object and haptiza-

tion of the scientific data are represented. Chapter 3 describes the shape modeling method

for real soft object. In Chapter 4, the data-driven modeling and rendering methods to model

and transfer force response of the real object are introduced. In Chapter 5, we propose a

haptization method to transfer the shape and inhomogeneous stiffness to the user. Finally,

we conclude this study in Chapter 6.



Chapter 2
Background and Related Works

2.1 Haptic Rendering

Haptic rendering can be defined as the process of generating contact force to create the il-

lusion of touching virtual object [74]. Otaduy and Lin described the general definition of

haptic renderig as follows:

Given a configuration of the haptic device H, find a configuration of the virtual tool T

that minimizes an object function f (H−T ), subject to environment constraint. Display to

the user a force F(H,T ) dependent on the configuration of the device and the tool.

In this definition, we have one real system and one virtual system. The virtual tool

acts as a virtual counterpart of the haptic device. This definition also assumes a causality

precedence where the input variable is the configuration of the haptic device H and the

output variable is the force F. This precedence is known as impedance rendering.

Then, the haptic rendering algorithms can be classified as direct rendering algorithm

and virtual coupling. In the direct rendering algorithm, the tool configuration is directly

assigned as the configuration of the haptic interface as H = T . Then, the force response

can be determined F(T ) directly. If we want deliver inhomogeneity of the environment,

we can make inhomogeneous force response field directly. However, in order to enforce

4
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stability, we can separate the tool and device configuration , and insert in-between a visco-

elastic link referred to as virtual coupling [20]. The connection of passive subsystems

through virtual coupling leads to an overall stable system. In this method, the input of

the rendering algorithm is the device configuration, bet the tool configuration is solved in

general through an optimization problem, which also accounts for environment constraints.

The difference between the tool and configuration is used both for the optimization problem

and for computing output device forces. The most common form of virtual coupling is a

visco-elastic spring damper link. Such a virtual coupling was used in god-object [102] and

virtual proxy [84] algorithms for rendering rigid object. The elastic and viscous coefficients

of the spring damper link are selected to maintain stable system. These parameters cannot

directly used to represent the compliance and viscosity of the target environment.

In order to render the elastic properties inside the object, voxel based rendering [2] or de-

formable object haptic rendering using a variation of finite element methods (FEMs). The

voxel based rendering to display the volumetric data will be introduced in section 2.3 The

rendering methods for transferring data are similar to the data visualization techniques in

graphics fields. This kind of haptic rendering algorithms are often called the data haptiza-

tion algorithm or data perceptualization algorithm.

In order to render haptic realistic interaction with soft object for surgical simulation,

FEM is frequently used. FEM is a numerical analysis technique for obtaining approximate

solutions to a wide variety of engineering problem. The finite element discretization pro-

cedures reduce the problem to one of a finite number of unknowns by dividing the solution

region into elements and by expressing the unknown field variable in term of assumed ap-

proximating functions within each element [41]. It is the most common approach to solve

problems based on continuum mechanics Numerical problems of the contact mechanics

problems, such as the tool contacting with the soft objects, were solved using FEM [52, 98].

Using these techniques, we can use standard material parameters like Young‘s modulus and

Poission ratio, and so on. However, the drawback of FEM based algorithms is computa-

tional cost, thus, most of real-time haptic rendering algorithms using a variation of FEM

are used pre-computation [22, 45, 9, 3]. The deformation object rendering with frictional
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contact was also developed [27].

For the haptic rendering of the elastic or visco-elastic material without considering the

global deformation, reality based modeling is also proposed and developed. The detailed

introduction of the reality based modeling will be represented as follow.

2.2 Haptic Modeling of Real Objects

Haptics research has seen persistent effort put into haptic modeling. In general, the hap-

tic modeling can be classified into two approaches: synthetic modeling and reality-based

modeling. Synthetic modeling relies on manual authoring by experts using dedicated soft-

ware tools. It has been applied to modeling of object shape and other haptic properties

such as stiffness, friction, and texture [63]. Those for tactile stimuli have also been ac-

tive [91, 86, 61]. This approach can lead to higher quality models, but with increased cost.

In this dissertation, we focus on the reality-based on modeling. Reality-based model-

ing captures the haptic properties of real objects by measurements. This technique creates

the virtual environments based on real-world interaction. The data recorded during con-

tact between an instrumented tool and a real environment are used to generate reality-based

models. The result model can be a database of recorded responses to various haptic stim-

uli, an empirical input-output mapping, or a set of physics-based equations [73]. In data-

driven approach, recordings of a movement variable, such as position or force, are played

back during haptic rendering. Input-output models are created by fitting or interpolating

the recorded data with no or only little prior knowledge about the material characteristics.

Physics-based models are constructed from a fundamental understanding of the mechanical

principles underlying the recorded haptic interaction.

2.2.1 Data Acquisition Methods

Many objects parameters including shape, stiffness, friction and texture can be recorded for

haptic recreation in virtual environments. For the shape modeling, the optical 3D scanner

is used popular. This standard method in computer graphics can sample a huge number

of surface points rapidly and precisely, based on the reflection or scattering of light on the
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surface of a real object [6]. However, the optical scanner cannot be appropriate for objects

of certain optical properties (e.g., transparent). Contact-type modeling devices using a me-

chanical probe also used for shape modeling. For example, the commercial MicroScribe of

GoMea- sured 3D is a robotic 3D digitizer for shape modeling. Using the MicroScribe, the

user scans the surface of a rigid object, and these trajectories are converted to a geometric

model of the object. This kind of tools called as coordinate-measuring machine.

Acquisition of haptic data is inherently required a contact. The contact probe can be con-

trolled by the computer [77, 32, 56] or be explored by the user [40, 57, 89]. The various sen-

sors are installed to the contact probe to get the required data. Pai et al. proposed a robotic

measurement facility (ACME) consisting of a contact probe with a force sensor, a commer-

cial 3D stereo-vision camera, and a standard RGB camera [77]. Computed-controlled robot

arms position the contact probe and the cameras to measure the shape, deformation, and

texture of an object. The same robotic measurement facility was also used to estimate elas-

tic deformable models of 3D objects in [56]. Lang and Andrews uses the portable texture

scanner of [76] and two more cameras for modeling of shape, texture, and stiffness [57].

Romano et al. modeled and synthesized textures only using an accelerometer [83]. Fong

also introduced a 3D haptic data acquisition system, which makes use of a PHANToM de-

vice and optical scanner [32]. He employed dense point sampling strategies to capture the

haptic information. The framework of Hover et al. can capture real visco-elastic responses

of homogeneous object, and re-render the modeled responses, all using the same haptic

interface with a force sensor [40]. Sianov and Harders improved Hoever’s framework to

capture and render the inhomogeneous object [89]. They adopted two steps data acquisi-

tion: a broad phase object sampling and a detailed acquisition at representative locations to

handle inhomogeneity.

2.2.2 Modeling Approaches

For physics based model, parameterized behavior models are extracted from the measured

force signals. Maclean developed the Haptic Camera [68]. In this work, parameters like

stiffness, damping, and inertia were obtained by fitting a piecewise linear model to recorded
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force signals. For surgical cutting applications, cutting forces from surgical scissors were

acquired and used for haptic feedback by tuning the piecewise linear models [35, 72]. In

a similar manner, Edmunds and Pai modeled the recorded force signals from the bone-

pin placement task by a polynomial function [30]. Colton and Hollerbach modeled force

and acceleration signals from push-buttons by fitting a non-linear model [21]. Kry and

Pai modeled the interaction between the human hand and and rigid objects by capturing

the motion data and the contact force to estimate the compliance of the finger joints [55].

For the compliance model, Lang et al. employed a linear elastic continuum mechanics

model represented as a discrete Green‘s functions matrix to describe the captured data by

measurement [56]. Schoner et al. improved Lang et al.‘s framework by capturing dynamic

behavior with a spring-damper model [88]. Judd et al. identified stiffness, damping, and

inertia model using least-squares approximation using a commercial haptic interface with a

force sensor in [50]. Yamamoto et al. [100] estimated stiffness maps for material using the

non-linear Hunt-Crossley model [42]. Jeon and Choi [48] extracted the parameters for the

Hunt-Crossley model and the modified Dahl friction model [24] to describe the behaviors

of homogeneous real object to achieve stiffness modulation in haptic augmented reality

environment. These studies required the physical model. However, the model may include

simplified assumption about the target meterial.

In a model-free data-driven rendering strategy, multi-quadratic RBFs were used for the

approximation 3-DOF elastic force responses in [32]. In that system, single RBF model

was trained for one contact point. For one contact point, the acquisition was limited to push

and release operation. The result force was the interpolation of the several RBFs for the

sampled contact point. Hovers et al. also [40, 39] employed RBFs to reconstruct a variety

of material properties such as visco-elasticity and purely viscous behavior. In that frame-

work, the interaction was constrained to one contact point and assumed a homogeneous

object. Moreover, the reconstruction algorithm could not accommodate higher dimensions

and sparse sampling Then, Sianov and Harders [89] were proposed the data-driven method

to capture inhomogeneity and to accommodate higher dimension information. However,

this approach could not hand the sliding exploration. The system only can capture the force



2.3. HAPTIC TRANSFER OF DATA 9

response in the stick state. Thus, in order to archive unconstrained data acquisition and

restoration, the sliding exploration must be considered.

2.3 Haptic Transfer of Data

In data perceptualization, the properties of a dataset are conveyed to the user through multi-

modal sensory channels including vision (visualization), sound (sonification), and touch

(haptization). Data perceptualization enables the user to see, hear, and/or touch the data

with an increased bandwidth of information transmission [8]. One of the components cen-

tral to effective data perceptualization is a transfer function, which maps a data variable

(e.g., the density of a voxel) to a display attribute (e.g., color, pitch, or force). A transfer

function must guarantee that the information perceived by the user matches the original

information contained in the dataset. Otherwise, perceptualization can give the user an

incorrect understanding of the data properties.

The work reported in this dissertation is concerned with data haptization involving the

sense of touch. A pioneering work of data haptization was the GROPE project by Brooks

et al. [10], which enabled the user to perceive and control the docking of molecules in a

large virtual environment using a large stereo display and a force-feedback haptic interface.

This was followed by Taylor et al., who developed a teleoperation system that interfaced a

force-feedback device with a scanning tunneling microscope to present both a visual and a

haptic display of nano-scale data to the user [94].

Then, the research interest shifted to the haptization of volumetric data. Early algo-

rithms for haptic volume rendering used the local gradients of voxels to determine a force

transfer function [44, 2]. The traditional proxy-based haptic surface rendering algorithms

were also extended to deal with volumetric data [66, 43]. For scientific data perceptualiza-

tion, Lawrence et al. proposed several haptization methods for scalar, vector, and tensor

fields [58, 59]. They used intermediate representations, e.g., stream lines, to render the

different properties of vector and tensor fields. Later, Lundin and his colleagues published

a series of papers on proxy-based haptic volume rendering. They began their research by

using haptic primitives, such as points, lines, and surfaces, to build abstraction layers for
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volumetric rendering [65]. This work was improved by using haptic modes, e.g., force, fol-

low, and surface modes, as the building blocks for constructing a haptic interaction scheme

appropriate for a dataset [64, 78]. Each haptic mode is designed by selecting multiple hap-

tic primitives that are used in this particular mode. Palmerius and Forsell also evaluated

the effects of haptic modes on the user’s ability of identifying structures within volumetric

data [80]. In addition, Maciejewski et al. presented a volume rendering algorithm to simu-

late the interaction between multiple volumetric datasets, with an application to molecular

docking [67]. For a further comprehensive review of general data haptization, see a recent

survey paper of Panëels and Robert [81].

Another topic that has received increased attention pertains to simultaneous haptization

of multiple haptic attributes. This research has focused on the rendering of surface shape

and stiffness, the two most fundamental properties that need to be provided in the majority

of haptics applications. Although virtual reality applications simulating real environments

usually assume constant or piecewise-constant stiffness, stiffness can be an important con-

tinuous variable in data perceptualization [18]. For example, Yano et al. showed that a

perceived stiffness distribution on a flat surface may not match its model and then pro-

posed a simple compensation technique that prewarps the stiffness model [101]. Recently,

Palmerius also proposed an effective haptization method for a stiffness map on a planar

surface [79]. This algorithm adds tangential forces that contribute to accurate perception of

stiffness changes during user’s lateral scans, but its perceptual basis is still to be studied.



Chapter 3
Shape Modeling of Real Objects

In this chapter, we are concerned with how to model the shape of real objects, specially

soft, deformable objects, easily and efficiently, for haptic rendering with a force-feedback

haptic interface. The motivations behind this work are fourfold: (1) A force-feedback hap-

tic interface is a high-resolution 3D position sensor; (2) Haptic modeling and rendering can

be done with the same haptic interface, without requiring further, presumably expensive,

equipment; (3) The rendering workspace of the interface is limited to the form factor which

influence to the sensing range; and (4) A contact-based shape modeling approach with a

force sensor can apply any object that is not appropriate for the optical scanner and be eas-

ily integrated into a force response modeling and a stiffness identification. The commercial

MicroScribe share this philosophy, especially (1), but it can only deal with rigid objects.

Our intent here is to develop a real object shape modeling software that can be easily used

with general impedance force-feedback haptic interface for haptic rendering and a typical

coordinate-measurement machine (such as the MicroScribe with an additional force sen-

sor), even including soft objects which are inappropriate to capture an optical scanner, such

as greasy biological tissues.

Our shape modeling system uses an ordinary force-feedback haptic interface with a probe

including a force sensor (Sec. 3.1). The user grasps the probe and samples points on an

object surface by tapping on the surface. Our sampling algorithm detects a contact using

11
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the force sensor and automatically compensates the position sampling error caused by the

delay of contact detection (Sec. 3.2). The latter step is critical for soft, deformable objects.

The 3D positions of the sampled points are processed to reconstruct a 3D mesh using the

alpha-shape algorithm (Sec. 3.3). The 3D shape models created by our modeling system

show acceptable quality compared with those made by a state-of-the-art optical 3D scanner.

The appropriate uses and limitations of our system are also discussed (Sec. 3.4).

3.1 Hardware

Our current modeling system uses an impedance-type haptic interface (PHANToM Pre-

mium 1.5 High Force; Geomagic Technologies, Inc.) with a custom-made probe (Figure

3.1). For contact-based geometry modeling, it is ideal that the contact between a contactor

and an object surface occurs at a point. Hence, a cone-shaped sharp tip is added to the end

of the PHANToM’s genuine encoder stylus (Fig. 3.1b). In our application, a contact-force

modeling is quite small. Thus the sharp tip hardly ruptures or punctures on the object sur-

face. In addition, a 6-axis force/torque sensor (Nano 17; ATI Industrial Automation, Inc.)

is installed between the probe tip and the encoder stylus for contact detection. Note that a

simple single-axis load cell is sufficient. We use the 6-DoF force sensor only because we

have a working system from our previous research on haptic augmented reality [47, 48, 49].

The PHANToM is controlled by a PC on Windows XP at a sampling rate of 1 kHz. A cali-

bration stand is used for more accurate and consistent sensing, although it is not absolutely

necessary.

To use the modeling algorithms proposed in this thesis with a typical impedance-type

haptic interface, the force-sensing probe tip needs to be fabricated, which is fairly straight-

forward and standard in haptics research.

3.2 Collection of Surface Points

Our shape modeling procedure begins with collecting the positions of 3D points on the

surface of an object. This point set will be used for shape modeling described in the next
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(a)PHANToM 1.5 High Force. (b)Custom probe.

Fig. 3.1 Haptic interface for shape modeling.

section.

For point sampling, the user holds the PHANToM stylus and taps on the object surface.

Processing of each point consists of two steps. First, our modeling software detects a con-

tact on the surface. Due to the digital nature, the contact detection occurs after the true

contact. Second, we estimate the true contact time by backtracking the stored data. This

step is the core of our algorithms designed to cope with the deformation in soft objects.

Only the first step is sufficient for rigid objects.

3.2.1 Contact Detection

To detect a contact between the haptic interface probe and an object surface, we need to

determine which variables to monitor from the interface. If a contact occurs, the object

begins to exert force to the probe at an increase rate depending on the stiffness of the object.

Applying a positive threshold to the magnitude of this external force is an easy and effective

way for contact detection. This is the reason for using a force sensor in our system.

In most cases, raw force sensor readings are contaminated by other force components

such as gravity and the inertial force of the contactor produced by the user’s movements.

They must be compensated for obtaining the external force exerted only by the object.

Otherwise, measurements can suffer from excessive errors, and even false alarms (declaring

a contact for non-contact free movements) can occur. Appropriate compensation procedures
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Force, f(t)
Estimation, g(t)

tc

>

Contact detected point

Exact contact point

Fig. 3.2 Measured force profile at a contact.

depend on the installation configuration of a force sensor and the kinematics of a haptic

interface. In our system, we use the procedures described in [48] and obtain the contact

force f(t). These procedures include estimation of the probe acceleration from the joint

angles to remove the inertial force of the probe tip.

If ‖f(t)‖ > ε f for a predetermined constant ε f > 0, we declare a contact and proceed to

the next step. An example force profile is shown in Fig. 3.2. We further improve the time

error between detected and true contact times by the procedures discussed in following

sections

3.2.2 True Contact Time Estimation

The threshold-based contact detection is straightforward, efficient, and appropriate for real-

time algorithms. However, it can incur a large delay between detected and true contact

times. This can make detected contact points deviate from true contact points, by a large

degree for soft objects. Thus, we further estimate the true contact points from the stored

data as follows.
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The idea is simple. As physical contact is a discontinuous phenomenon, we should

be able to find a knee point in the time graph of f(t). To find the knee point, we use

a piecewise-linear regression algorithm presented in [12]. Define f (t) = ‖f(t)‖ over the

interval [td−N , td ], where td is the detected contact time by the thresholding and N is a

window size. We approximate f (t) by two connected lines, g(t), as shown in Fig. 3.2,

such that

g(t) =


gc(t− td−N)+gd−N(tc− t)

tc− td−N
td−N ≤ t ≤ tc

gd(t− tc)+gc(td− t)
td− tc

tc ≤ t ≤ td

, (3.1)

where tc is the time index of the knee point of g(t) and gd−N , gc and gd are the values of

g(t) at td−N , tc, and td , respectively.

For function fitting, we use the sum of square errors (SSE) between f (t) and g(t) as a

cost function, such that

E =
td

∑
i=td−N

( f (i)−g(i))2. (3.2)

This can be rewritten as

E(G, tc) =
tc

∑
i=td−N

( f (i)−g(i))2dt +
td

∑
i=tc

( f (i)−g(i))2. (3.3)

where G = [gd−N gc gd ]
T.

Therefore, the problem is formulated as: given td−N , td , and f (t), find t̂c and Ĝ such that

E(Ĝ, t̂c) is minimized. We regard t̂c as the true contact time and its probe tip position, p(t̂c),

as the true contact point. Fig. 3.2 shows sample results of this estimation.

The following procedures are used to find Ĝ and t̂c that minimize E(Ĝ, t̂c) [12]. First, the

necessary conditions for the minimization are

∇GE(G, tc)|(Ĝ,t̂c) = 0 and ∇tE(G, tc)|(Ĝ,t̂c) = 0. (3.4)

To solve this, we formulate the closed form expression of E(G, tc). If tc is given, E(G)

can be expressed as

E(G) =
td

∑
i=td−N

{
f (i)2−2B(i)TG+GTA(i)G

}
, (3.5)
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where a 3×3 positive semi-definite matrix A is

A =


a11a12 0

a21a21 a23

0a32 a33

 , (3.6)

a11 =
tc

∑
j=td−N

(tc− j)2

(tc− td−N)2 , a12 =
tc

∑
j=td−N

( j− td−N)(tc− j)
(tc− td−N)2 ,

a21 =
tc

∑
j=td−N

( j− td−N)(tc− j)
(tc− td−N)2 ,

a22 =
tc

∑
j=td−N

( j− td−N)
2

(tc− td−N)2 +
td

∑
j=tc

(td− j)2

(td− tc)2 ,

a23 =
td

∑
j=tc

(td− j)( j− tc)
(td− tc)2 , a32 =

td

∑
j=tc

(td− j)( j− tc)
(td− tc)2 ,

a33 =
tc

∑
j=td−N

( j− tc)2

(td− tc)2 ,

and a 3×1 column vector B is

B =



c
tc

∑
j=td−N

f ( j)
tc− j

tc− td−N

tc

∑
j=td−N

f ( j)
j− td−N

tc− td−N
+

tN

∑
j=tc

f ( j)
tN− j
tN− tc

tN

∑
j=tc

f ( j)
j− tc

tN− tc


. (3.7)

The necessary and sufficient condition for E(G) to achieve a minimum at Ĝ is

∂E(G)

∂G

∣∣∣∣
G=Ĝ

= 0. (3.8)

Therefore, Ĝ can be computed by

Ĝ = A−1B. (3.9)

Then, the necessary condition (3.4) can be rewritten as

∇tE(Ĝ(tc), tc)
∣∣
t̂c
= 0. (3.10)
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(a)Sponge block (b)Silicone hemi-
sphere

(c)Foam ball (d)Ridged silicone (e)Silicone rest

Fig. 3.3 Sample objects used in the evaluation. Their stiffness shown together was measured
when applied force was 5 N.

Therefore, the SSE to be minimized becomes

EĜ(tc) = E(G, tc)|G=Ĝ(tc) . (3.11)

This means that we can t̂c ∈ [td−N , td ] such that EĜ(t̂c) is minimized. As N is relatively

small, the optimal t̂c can be found even with a simple brute-force search. Our current

implementation use the downhill simplex method [71]. This method is a common nonlinear

optimization technique and iterates evaluating a cost function at the vertices of a simplex

and then replacing the worst point of the simplex by a new point until a desired bound is

obtained.

3.2.3 Performance Evaluation

We evaluated the performance of the contact point estimation algorithm with five real soft

objects shown in Fig. 3.3. In the test, each object was fixed to a vertical wall placed in front

of the PHANToM. The probe moved on a rail so that it always collided with an object at

the same point. The experimenter carefully selected a true contact point by monitoring the

force sensor output. Then, the experimenter repeatedly tapped on the object on the rail to

collect 100 contact points. The parameters used were: ε f = 0.2 N and N = 100. In this

way, each contact point could be compared with the true contact point.

Experimental results are summarized in Fig. 3.4 where two kinds of errors are shown

for each object. The first error is the distance between a contact point found by the simple

thresholding and a true contact point. The other error is for a contact point resulted from
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Fig. 3.4 Distance errors between estimated contact points and true contact points on an
object surface. Results of the simple thresholding are represented by diamond box plots,
and those of the true contact point estimation algorithm are by box plots.

our true contact point estimation algorithm. All the results demonstrate that the true contact

point estimation algorithm greatly reduced the position errors of the simple thresholding.

The estimation errors were less than 0.5 mm except for the sponge block, and this accuracy

is comparable to that of the optical tracker. This demonstrates that our algorithm allows

to restore the original contact points to an accuracy comparable to the laser scanner for

moderately deformable objects. For the sponge block that we selected as the worst case, the

estimation error was about 1.5 mm. This soft object even shows some plasticity that delays

the restoration of a deformed part, and this seems to be responsible for the increased error.

3.3 Modeling of Surface Points

Our system reconstructs a surface model from the surface points collected by the procedures

described in the previous section. For this purpose, the geometry construction algorithms

for 3D optical scanners can be adapted since both use a point set to generate surface meshes.
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Fig. 3.5 Modeling program. All of point set processing and surface reconstruction are
supported by GUI.

In this section, we describe the computational procedures for mesh reconstruction used in

our system and report modeling results in comparison with a 3D optical scanner.

3.3.1 Reconstruction Procedures

While hundreds of thousands of surface points can be sampled using a 3D optical scanner,

our contact-based sampling procedures allow a smaller number of point samples (usually

thousands of points) due to the need of manual tapping. Therefore, our reconstruction

procedures are designed taking into account this characteristic.

Various point reconstruction algorithms have been studies in computer graphics [6]. The

majority of them make use of an implicit surface constructed from a point set as an inter-

mediary step [51]. These algorithms are robust to sampling noise, which is enabled by the

implicit surface approximation. However, if the number of point samples is insufficient, the

implicit surface approximation can be inaccurate, and this can cause a large modeling error

in the final mesh model. Thus, this approach is not appropriate for our system that relies on
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relatively sparse sampling.

In our current modeling system, we use the alpha-shape algorithm [29, 4], which is based

on Delaunay triangulation for surface reconstruction [6]. In particular, this algorithm uses

an input point set without any approximation and shows good reconstruction performance

if the input point set is noise-free and uniformly sampled. In our system, the user has a full

control over the positions of sample points and can use their best judgements to maintain

the uniform spatial density of samples. The system also provides a user interface (Fig. 3.5)

to aid sampling, as well as instant removal of erroneous samples.

Before the reconstruction, we preprocess the input point set for noise reduction. First, for

each point, its k-nearest neighbors are found, and the average distance between the point

and the nearest neighbors are computed. The points with abnormally large distances are

considered as outliers and discarded. Second, for each point, we find a best-approximating

local surface around the point by fitting a smooth second-order parametric surface patch

to its k-nearest neighbors [13]. The input point is then projected onto the parametric local

surface patch for further smoothing.

The alpha shape algorithm is performed on this preprocessed point set. The algorithm

first performs Delaunay triangulation to find the convex hull of an input point set and the

simplex (e.g., triangle or tetrahedron) of each input point. The algorithm includes the sim-

plex in surface reconstruction if the radius of the circumsphere of the simplex is smaller

than α and the circumsphere does not include other points. The resulting surface mesh only

includes points the simplex of which is “smaller” than α . Thus, α corresponds to a reso-

lution of the model and determines the details of modeling; α = 0 results in the individual

points and α = ∞ the convex hull. The user can set α on their own, or use the value that

generates one connected component, which can be found automatically [4].

Output meshes of the weighted alpha shape algorithm can still can be noisy and coarse.

Thus, we further perform two standard algorithms, Taubin smoothing [93] and
√

3 subdi-

vision [54], to generate smooth and dense meshes. Taubin smoothing can attenuate noise

while preserving the surface, and
√

3 subdivision is best suited for triangular meshes. Our

implementation of the above geometry operations makes use of the CGAL computational
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geometry library [31].

3.3.2 Performance Evaluation

To evaluate the performance of our modeling system, we modeled the same real objects

using a commercial 3D optical scanner and our contact-based system. The optical scanner

(Rexcan3, Solutionix corp.) uses twin cameras and a white-light phase-shifting triangu-

lation technique, with a scan resolution 0.04–0.48mm. Those captured using this optical

scanner can be considered as models of the highest accuracy. Our true contact point estima-

tion and simple thresholding were used for our contact-based system. Three real objects, the

foam ball (Fig. 3.3c), the ridged silicone (Fig. 3.3d), and the silicone hemisphere (Fig. 3.3b)

were used for comparison.

Measurement using the 3D scanner took around 15 minutes per a object. Some of the

objects had to be coated with a 3D scan spray or a powder spray because of reflection

and/or transparency. The collected points were simplified to tens of thousands of points,

and then smoothed. The alpha shape algorithm was used to reconstruct a surface model for

the foam ball and the silicone hemisphere. We also used the Poisson surface reconstruction

for the ridged silicone to preserve its jagged detail. On the other hand, point sampling using

our tapping method required about 5–15 minutes depending on the object. Then, mesh

models were reconstructed following the procedures described in the previous section. α

was determined using [5] so that the models form a single connected component. Modeling

results are presented in the first, second, and third rows of Fig. 3.6.

We also analyzed the modeling errors quantitatively. For this, we first aligned the meshes

obtained by the 3D scanner and our system using the iterative closest point algorithm [7].

Then, they were cropped to have the same region for comparison. Lastly, we computed
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(a)Foam ball (b)Ridged silicone (c)Silicone hemi-
sphere

(d) (e) (f)

(g) (h) (i)

Fig. 3.6 Examples of reconstructed models from soft real objects. (a), (b), and (c) were
scanned by the optical 3D scanner. The models in second and third rows were captured and
built by our modeling system. The points of (d), (e), and (f) were estimated by our point
estimation algorithm. For (g), (h), and (i), simple thresholding algorithm was used.

the Hausdorff distance1 between the common part of the two meshes using the Metro tool

kit [19].

Table 3.1 summarizes the results of the quantitative error analysis.

When we used the true contact point estimation, the Hausdorff distances of the foam ball

and the silicone hemisphere were around 2–3 mm. Since the Hausdorff distance is a max-

1The Hausdorff distance between surfaces S1 and S2 is

EH(S1,S2) = max{E(S1,S2),E(S2,S1)}, (3.12)

where
E(Si,S j) = max

p∈Si
min
p′∈S j

d(p, p′). (3.13)

This distance is used as a standard metric for the difference between two geometric representations.
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(a)Foam ball (b)Ridged silicone (c)Silicone hemi-
sphere

(d) (e) (f)

Fig. 3.7 Error distributions of reconstructed models. The presentation used a RGB color
map with red and blue indicating minimum and maximum, respectively. (a), (b), and (c)
captured by our modeling system with the true contact point estimation algorithm. (d), (e),
and (f) built by our modeling system with simple thresholding. with simple thresholding.

min criterion, average distances between models were shorter than 1 mm. For the ridged

silicone, the Hausdorff distance was increased to 4.9 mm, because the ridged part was not

captured by our modeling system.

With simple thresholding, the Hausdorff distance of the silicone hemisphere was 6.7

mm, and this result is remarkably increased from the result with the true contact point

estimation From this result, our true contact point algorithm was works well and effective

for the objects of low stiffness. For the foam ball and the ridged silicone, the Hausdorff

distances were similar to the results with the true contact point estimation. In this case,

two models have relatively high stiffness. Thus the errors originated from the contact point

were decreased. During the reconstruction stage, filtering canceled these small position

estimation errors.

The error distributions in Fig. 3.6 show the detailed errors of on the surfaces. It shows

high deviations at the ridged region.
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Table 3.1 Quantitative comparisons of modeling performance. O: Optical scanner. P: Our
probe-based method. S: A probe-based method with simple thresholding.

Foam ball Ridged Silicone
silicone hemisphere

Num. of sampled points (O) 33,489 30,900 30,000
Num. of vertices (O) 3,493 12,211 12,742
Num. of faces (O) 6,801 26,076 25,115

Num. of sampled points (P) 1,004 943 296
Num. of vertices (P) 1,195 3,822 3,196
Num. of faces (P) 2,286 7,488 6,239
Hausdorff distance (O and P) (mm) 2.16 4.92 3.30

Num. of sampled points (S) 1,004 943 296
Num. of vertices (S) 961 3,267 2,675
Num. of faces (S) 1,820 6,401 5,189
Hausdorff distance (O and S) (mm) 2.82 4.67 6.69

3.4 General Discussion

Our contact point estimation algorithm based on the response force showed the error range

comparable to the 3D optical scanner. For common elastic objects, the average estimation

errors and the min-max errors were smaller than 0.5 mm. These contact point set can be

used for point cloud haptic rendering algorithms [85, 62].

In terms of the final shape modeling accuracy, our modeling results showed 2–3 mm of

Hausdorff distance error in comparison with the state-of-the-art 3D optical scanner. Espe-

cially, our modeling system with the contact point estimation algorithm effectively reduces

the surface reconstruction error of low-stiffness model. The Hausdorff error was increased

to about 5 mm for the object containing the fine details that were difficult to be captured

with manual tapping. If we upgrade our system to be able to sample surface points by auto-

matic tapping and collect a larger number of points, we may expect further improvements

in modeling accuracy.

Our modeling results can also be assessed in terms of perception, e.g., using the human

haptic discriminability of size. For instance, Durach et al. showed that the JND of length

perception was roughly 1 mm for the reference lengths of 10 to 20 mm in a real environ-
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ment [28]. O’Malley and Goldfarb used rounded ridges of the length of 10 to 20 mm for

size discrimination [53]. The participants correctly identified a size difference of 2.5 mm

with about 60% chance in a virtual environment. The Hausdorff distance errors shown for

regular elastic objects were comparable to these size discrimination JND, indicating that in

practice it would be difficult for the user to perceive the modeling errors by hand.

Our modeling system can produce the shape models that have sufficient accuracy and

resolution for haptic rendering. Hence, the system is the most appropriate for the cases

where no visual counterparts are necessary, e.g., for haptic augmented reality where real

objects are seen as they are but their haptic properties are augmented [47, 48]. When high

quality visual rendering is also desired, our method can provide a rapid baseline model to

authoring software, from which the user can refine the details, accelerating the modeling

process.

One of a primal use of our system is the basis part of the force response modeling for

haptic rendering. The contact estimator can also contribute to improving the accuracy of

modeling the contact dynamics of a real object by providing more exact deformation of the

object.



Chapter 4
Force Response Modeling of
Real Objects

In this chapter, the modeling system of the force response of inhomogeneous real objects.

A data-driven approach is adopted to model the complex force response behaviors. With

the shape modeling framework introduced in the previous chapter, we can model and render

the real objects.

Our modeling system can model the real objects that satisfy the following assumption.

We only consider the real objects of moderate stiffness with no plasticity. The plasticity in

the object makes highly complex force response to be modeled. High stiffness of the object

also cannot be handled due to limited sensing ability of our system configuration.

4.1 Hardware

Our current modeling system uses an impedance-type haptic interface (PHANToM Pre-

mium 1.5 High Force; Geomagic Technologies, Inc.) with a spherical probe (diameter: 1.6

cm, Fig. 4.1). In addition, a 6-axis force/torque sensor (Nano 17; ATI Industrial Automa-

tion, Inc.) is installed between the probe tip and the end-effector of the haptic interface.

Then, we can control the probe center position automatically. The PHANToM is controlled

by a PC on Windows XP at a sampling rate of 1 kHz. A jig is used to fix the sample and it is

26
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(a)PHANToM 1.5 High Force with Jig. (b)Custom probe with force sensor and
spherical probe(diameter: 1.6 cm)

Fig. 4.1 Haptic interface for modeling the force responses.

also used as a reference frame of the calibration. The spherical probe can have a consistent

contact shape for arbitrary position. The maximum continuous force output of our haptic

interface is 6.2 N. Thus, our modeling range of the force is limited to 5 N.

4.2 Interpolation Model

We introduce a new interpolation model for describing the contact between the probe tip

and the soft object. When the probe tip and the soft object contact, the external force

is applied to the target object through the probe tip, and deforms the shape of the target.

The reaction force is also exerted on the probe tip surface through the contact area. The

estimated reaction force is calculated as following interpolation model,

f̃ = g(p, ṗ,q), (4.1)

where p is the probe center position, ṗ is the velocity of the probe center position and, q is

proxy, the return point. These points are represented at Fig. 4.2.

The probe center position is located on the surface of the target object, and it can repre-

sent the position of the deformed surface. The return point is the probe center point when
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Probe center

Proxy

Original surface

Deformed surface

Initial contact center 

Displacement

Plastic displacement

Elastic displacement

Fig. 4.2 Important points and vectors for interpolation model .

the shape of elastic target object returns its original shape. If the external force returns zero,

the deformed surface is restored to its original surface, and the probe contacting with the

surface also moves to the outside of the original surface. With the probe center, this proxy

can represent the elastic deformation of the object, because the probe center elastically

returns to the proxy.

4.2.1 Description of Proxy

We introduce the proxy using the analogy of the elasto-plasticity. In our model, p and ṗ are

used to describe current states of the probe. However, the description of the proxy is not

trivial and it required to additional explanation.

We considered the interaction between the probe and object as an analogy of loading and

unloading process in the elasto-plasticity (See Fig. 4.3) [69, 23, 36]. Loading is increasing

of the stress applying on the object and unloading is the decreasing of the stress. In the

typical elasto-plastic case, the strain, the constitutive counter part of stress, expressing the

deformation, is increased in the loading condition, but the only elastic part of strain is

decreased in the unloading condition. The plastic part of strain occurs when the loading

is processed and the stress the stress reaches a certain elastic limit, a yield point. If the

unloading is completed, the elastic part of strain becomes zero but the plastic part of strain

is remained. This means the elasto-plastic material returns its plastically deformed shape.
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UnloadingS
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Yield point

Loading

Plastic partElastic part

Fig. 4.3 Loading and unloading processes in the elasto-plasticity

Similar analogy can be applied to the interaction between the probe and the object. The

probe center position p is located on the surface of the object in the contact. Then, a

compressive external force can be applied from the probe to the object and it can deform

the object shape. We denote the compressive external force to deform the object shape as

the contact load force fl . Then, we denote the probe center position at the initial contact as

pc. This point is the probe center position when the contact is just initiated, and the fl is

zero. Then, we can define the displacement u of the probe center as

u = p−pc. (4.2)

This displacement vector and its relating vectors are illustrated in Fig.4.2. Now, we have a

pair of the u and fl .

As the elasto-plasticity analogy, we will call the increasing of fl as contact loading and

the decreasing of fl as contact unloading. Then, we can make the constitutive relation

between the u and fl . In the contact loading process, the fl is increased and has non-zero

value. Then, the soft object is deformed, and the probe center position p located on the

deformed surface, has been changed. As the contact loading process proceeds, p moves

away from the pc. Thus, the magnitude of u is also increased. In the contact unloading

process, the fl is decreased. Then, the deformed object surface is returned its original

shape, and the probe tip on the deformed surface is also moved to the outside of the original
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surface. Thus, the fl is returned to zero, the probe tip is located somewhere on the original

surface. However, this returned probe center can be different from pc, and u can have

non-zero value even if fl is zero. We can consider this remained part of u as a plastic

displacement up.

The plastic displacement is originated from sliding interaction between the probe and

the deformed surface when the contact is initialized. If there are no relative displacement

between the initial contact points, p returns pc. However, if the relative displacement in

the contact area is occurred, p should not be return pc. The condition occurring the relative

displacement is related to the frictional behaviors. Then, the other portion of u is considered

as an elastic displacement ue, because this portion is returned and zero when fl returns zero.

This elastic displacement represents the displacement from the current probe point to the

outside of the original surface of the object.

Now, we can apply the separation of elastic and plastic quantity of elasto-plasticity to the

displacement. The displacement can be separated into two vectors as,

u = ue +up, (4.3)

for any fl . This means that we can express the current plastic and elastic displacements in

any state in the contact loading and unloading. Thus, we can handle the sliding interaction

as the plastic displacement.

Then, we can express the proxy position q as

q = pc +up, (4.4)

for any fl . This proxy is always located on the outside of the original shape of the object.

We can consider the proxy point as the plastic change from the initial contact.

4.2.2 Estimating of Input Parameters

In order to train our interpolation model, we should measure the reaction force f and relating

input variables, p and ṗ and estimate q. These variables should be measured concurrently.

Measuring f and p is trivial when we use the force sensor and encoder. ṗ can be estimated
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using velocity filter from p. However, q is only measured explicitly when the external

loading force is zero, and thus, it cannot be measured concurrently with f, p, and ṗ. Thus,

we should estimate q by using additional preprocessed information. Now, we will explain

procedures to estimate the proxy.

As equation 4.3, q is determined by up from pc. pc can be estimated using the contact de-

tection between the probe and the object. We use geometrical contact detection algorithm.

[34] using the shape model for contact detection by measuring the shape model of the orig-

inal surface. This shape model is measured by contact measurement algorithm introduce

at 3 with spherical probe tip. Then, we have unknown up and known p, and pc, f. From

these known parameters, we also have u. In order to estimate up, we should decompose u

into up and ue. A sliding yield surface originated from the the elasto-plastic analogy of the

frictional phenomenon is used in the decomposition phase.

The detailed information of the sliding yield surface including the definition and captur-

ing method are represented at Sec. 4.3. The procedures to decompose the displacement and

estimate the proxy are also represented.

Then, if the input parameters can be estimated, the interpolation model should be trained.

The radial based function is used to describe the relation between the input parameters and

the measured force. The detailed information about training of interpolation function and

calculating rendering force is represented at Sec. 4.4.

4.2.3 Roles of Modeling Variables

Our interpolation model is designed to describe the elastic information using two variables,

p and q. p is located on the deformed surface and q is located on the original surface. Then,

the elastic displacement ue can be expressed as

ue = q−p. (4.5)

Moreover, including q allows us to interpolate the information during the sliding.

Previous approaches used a single variable, u to describe the elastic information. If

the plastic displacement is zero, ue is equal to u. However, if there is non-zero plastic
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displacement, we must find ue explicitly. Moreover, using single variable u is only valid

for given pc, and it required to train the data-driven model for each given pc. In order to

describe the arbitrarily pc, it required interpolate the estimation of the data-driven model.

Our interpolation model includes also the velocity of the probe ṗ to describe viscous

information of the object. This information is very limited to describe the viscosity, but to

endure simplicity of the data-driven approach, we only use single variable ṗ.

4.3 Sliding Yield Surface

As illustrated at section 4.2.1, we consider the contact as the contact loading and unloading

process. The frictional phenomenon can be interpreted as a plastic deformation. A sliding

yield surface, a surface in the space of the loading force fl , is introduced to describe the

frictional limit. If the loading force is inside the sliding yield surface, u is considered

elastic displacement ue. When the loading force is reached the sliding yield surface, u has

plastic displacement up. Then, even if the force is unloaded, and is inside the sliding yield

surface, the plastic displacement up pertains in u.

This sliding yield surface is derived from a yield surface. Yield surface is a border in

the stress space which loading or reloading makes an elastic strain. Thus, if the applied

stress to the object is inside of the yield surface, deformation can be considered as elastic

deformation. This yield surface is also used to describe the constitutive relation of stress

and strain.

For our interaction case, we define the sliding yield surface of the loading force fl for

given initial contact center pc as

fs(fl) = 0. (4.6)

So, we can call the initial contact center pc for sliding yield surface as a reference point c.

We also can consider the loading force fl is same as the measured force f by the law of

action-reaction. This sliding yield surface has close relationship with the frictional phe-

nomenon. Thus, we split fl into normal and tangential components, fN and fT , respectively.



4.3. SLIDING YIELD SURFACE 33

This force also can be represented as,

fl = fN + fT , (4.7)

= fNnc + fT , (4.8)

= fNnc + fT tc. (4.9)

where nc is the surface normal vector at c, tc is tangential unit vector, fN is the magnitude

of the normal loading force, fT is the magnitude of tangential loading force. Using these

normal and tangential components, we assume the sliding yield surface as

fs(fl) = fs( fN , fT ) = fN− fµ( fN , fT/||fT ||) fN ≤ 0. (4.10)

This surface shows the coefficient between the normal loading force and the tangential

loading force. The coefficient function fµ() can have diversity for the directions and the

magnitude of the normal force. Then, we can determine fµ() using the measured data. In

section 4.3.2, the procedures to estimate fµ will be represented.

For fl satisfying fs, we can also find u in the elastic limit from the initial contact center.

Then, we also define the elastic limit of the displacement for given pc as a constitutive

counterpart of fs,

gs(u) = 0. (4.11)

This elastic limit can be used to determine the elastic displacement ue from u. This dis-

placement space version of the sliding yield surface can be also called as sliding yield

surface. However, in order to prevent confusion, we will call it as a elastic displacement

limit surface.

4.3.1 Estimating Proxy Using Sliding Yield Surface

Estimating proxy position is based on the sliding yield surface. If the contact loading force

is reached the sliding yield surface, the proxy should be updated. Then, the next issue is

determining the position of the updated proxy. In order to determine it, we use that the

current elastic displacement should be inside of the elastic displacement limit surface, and
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the elastic displacement limit surface can be derived from the measured information. Then,

for each iteration, we can check that the contact loading force is inside of the sliding yield

surface, and the current estimated elastic displacement is inside of the elastic limit of the

displacement. If these conditions are violated, we update the proxy position, which should

not violate the condition.

The steps of estimating proxy are iterative as follows. We denote current time step as n.

At the initial contact frame, we have pc and assign n = 0, u(0) = 0, and q(0) = pc. For each

time step, the deference of u is denoted as ∆u.

∆u(n) = u(n)−u(n−1). (4.12)

Then, we also can decompose ∆u(n) into elastic part, ∆ue(n) and the plastic part, ∆up(n).

∆u(n) = ∆ue(n)+∆up(n). (4.13)

u(n), u(n)e, and u(n)p can be represented in cumulative form as follows,

u(n) =
n

∑
i=0

∆u(i), (4.14)

ue(n) =
n

∑
i=0

∆ue(i), (4.15)

up(n) =
n

∑
i=0

∆up(i). (4.16)

If the fl(n) is fs(fl) < 0, ∆u(n) is elastic. However, fl(n) is reached fs(fl) = 0, ∆u(n) has

the plastic part.

For the simplicity, we use the u(n) and gs(u(n)) instead of fl(n) and fs to determine up(n)

and ue(n). In figure 4.4, basic schemes of decomposition are represented. Assume that

up(n−1) = 0 and ue(n−1) = u(n−1). Then, at n frame, we can get the trial displacement

u∗ as

u∗(n) = ue(n−1)+∆u(n) (4.17)

= ue(n−1)+∆ue(n)+∆up(n), (4.18)
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Fig. 4.4 Decomposition of u using gs(·)

If u∗(n) is located the outside of gs for given pc, ue(n) must be returned inside of gs, as

gs(ue(n)) = 0, (4.19)

gs(ue(n−1)+∆ue(n)) = 0. (4.20)

Then, we can calculate ∆ue(n) from ue(n−1) and the condition gs(ue(n)) = 0 for given pc.

Using these variables, we also estimate ∆up and up(n).

Finally, we can determine q(n) as

q(n) = up(n)+pc (4.21)

= up(n−1)+∆up(n)+pc (4.22)

= q(n−1)+∆up(n). (4.23)

Then, the proxy is updated, fs(·) and gs(·) must be also updated (See figure 4.5). fs(·)
and gs(·) are valid for given pc. If the loading force is fs(·), the probe is returned to pc.

However, if the loading force is outside the fs(·), and the proxy is updated, the probe is not

returned to pc. Then, fs(·) and gs(·) should be updated for new return point, the proxy.

Thus, we should model fs(·) and gs(·) of the interest region of the target object, because

fs(·) and gs(·) are depended on the initial contact center. In order to generate fs(·) and gs(·)
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Fig. 4.5 Update of gs(·)

for arbitrary initial contact center, the interpolation scheme should be used. The modeling

of fs(·) and gs(·), and their interpolations will be explained at section 4.3.2. Then, next iter-

ation step n+1, we should use the sliding yield surface and the elastic limit of displacement

for proxy point.

4.3.2 Modeling Procedures of Sliding Yield Surface

The sliding yield surface is the elastic limit of the probe tip and the object. In order to detect

elastic limit information, we can measure the plastic displacement after a single contact

loading and unloading cycle. Thus, whole modeling procedures as follows: 1) Determining

the target contact locations. Then, for each contact location, the procedures are, 2) Probing

at the target contact point, 3) Loading and unloading in various profiles of the contact force,

4) Finding the border of the elastic contact loading force and the plastic contact loading

force from the trend of the plastic displacement, and 5) Making the modeling of the elastic

limit of the contact force.
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Modeling Undeformed Surface

The sliding yield surface depends on the initial contact center and its surface normal direc-

tion. The surface normal direction should be estimated from the shape of the undeformed

surface.

Modeling shape of the undeformed surface is based on the modeling method in chapter

3. However, the detail is slightly different from the chapter 3. One key difference of the

system configuration is because the stylus is removed. The probe position is controlled

by the computer using PID algorithm. The estimation of the contact point in chapter 3 is

also simplified. When the contact is detected, the contact force by PID is unloaded. After

unloading is completed, the probe position is used for true contact point for modeling.

Moreover, the probe center position is used for modeling to simplify the finding proxy

position.

Selecting Contact Location

Multiple contact locations are required to cover the target area. The current implementation

uses a manual section of the contact locations. The user selects the contact locations by

moving the probe and contact the real object. Then, the system automatically samples the

sliding yield surface for the each contact point.

Loading-unloading Cycle

Modeling sliding yield surface is based on measuring the plastic displacement for given

loading force. The plastic displacement of the probe tip is dependant on the friction prop-

erties of the surface and probe tip. This friction property can be affected from contact area,

contact pressure, contact velocity, temperature, and so on. However, it is hard to care all

possible parameters. In the implementation, the direction and magnitude of the contact

force is considered. If the contact force exceed the elastic limit, the probe tip slips off the

object or slips to another position on the surface. This slip movement makes the plastic

displacement after the unloading is completed.
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Our target sliding yield surface is defined as Equation 4.6. The loading force is deter-

mined by the magnitude of fN , the direction of fT , and the magnitude of fT , because the

input variables of fµ are fN and fT . In order to simplify the problem, eight tangential di-

rections are predefined when the contact location is selected and thus the surface normal is

determined. The magnitudes of fN are also predefined. Then, the magnitude of fT is only

controlled to find the elastic limit. Thus, we can find the relation between the magnitude of

the plastic displacement and the magnitude of the fT . Moreover, the loading force cannot

be reached to the target force instantly. Therefore, we used the force profile in figure 4.6.

The time durations of normal loading force and tangential loading force are tN and tT , re-

spectively. These tN and tT values are also used for unloading forces. We fix the rates of

fN/tN and fT/tT . The sine function is used to remove the sharp edge of the force profile.

One additional parameter is tplateau. It is the duration of applying maximum loading force.

This parameter is used to find probe tip slippage. When the other parameters are identical,

and only tplateau is changed, the plastic displacement should not changed if the slip is not

occurred. Thus, we fix fN , fN/||fN ||, and fT/||fT || but change tplateau and || fT || to find the

tendency of plastic displacement.

A single loading-unloading process is as follows. First, tplateau and || fT || are determined.

Then, the probe moves to the target contact location. When the probe contact with the tar-

get surface, the command force is removed completely and the probe tip center is recorded

as the initial contact center, pc. Then, the force profile in figure 4.6 is applied to the tar-

get object. When the time is at tmeasurement, the sampled reaction force fmeasurement and the

displacement umeasurement are captured. After the loading force is completely removed, the

release point of the probe tip, pr is captured. Then, the plastic displacement up during the

loading-unloading process is

up = pr−pc. (4.24)

Thus, we have the pair of up and fmeasurement.
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Fig. 4.6 Profile of the contact loading force. Black solid line is ||fN || and red dotted line
is ||fT ||. tN and tT are time durations of loading and unloading for normal and tangential
forces, respectively. tplateau determines the duration of applying maximum loading force.
tmeasurement is measurement time of displacement and reaction force.

Finding the Elastic Border and Modeling of the Sliding Yield Surface

In order to find the elastic limit, one method is tracking up. Ideally, if up has non-zero value,

the elastic limit of the contact loading force is already exceed. However, the internal friction

of the haptic interface, and the viscosity of the target object consume the energy created by

the applying force. These properties make up having non-zero value. Thus, trend between

||up|| and fT should be checked to find the slip of the probe tip. If ||up|| is abruptly changed

as increasing of fT , we can consider the point of change as the elastic border.

We also consider an additional information, tplateau. This parameter only controls the

time duration of the applying force. If the probe tip and the object in an equilibrium state,

||up|| is free from changing of tplateau. One drawback of this parameter as a reference for

the slippage is that the probe tip slips to another equilibrium position on the surface, ||up||
is not changed.

We use both tendencies of changing ||up|| for changing fT and tplateau. For example, in

4.1, results of measuring the plastic displacement for various fT and tplateau. up
100 and up

600
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Δ

Fig. 4.7 fT vs. ||up
100|| at top. fT vs. ||∆up

plateau|| at bottom.

are plastic displacement when tplateau are 100 and 600 ms, respectively. ∆up
plateau is ||up

600||
-||up

100||
Then, we can find several tendencies as follows. ||∆up

plateau|| is abruptly changed after

fT is over the 1.19 N (See table 4.1 and figure 4.7). Thus, ||∆up
plateau|| should be a good

reference to determine the border of elasticity. Figure 4.7 shows that the slope of ||up
100||/ fT

is almost constant before fT = 1.5N. However, even if ||∆up
plateau|| is zero, large ||up

100||
value means that there exist plastic displacement. Thus, we use both ||∆up

plateau|| and ||up
100||.

A weighted k-means clustering of two dimensional data is used for finding elastic limit.

Finding the elastic limit surface is as follows. For each contact point, nc is given. Then,

we have eight predefined tangential directions from t0 to t7. We also have two predefined

tplateau values, t0 and t1.

1. Given fN , for each direction of tc,

(a) fT is initialized, and fT is increased by a predefined step unti If we set the prede-

fined fN = {1,3,5}, the modeling time is about one hour for each sliding yield

surface. This long modeling time is originated from the rest time to equilibrium.

l fT is reached the predefined limit.

i. For each fT , up
t0 and up

t1 are acquired from loading-unloading cycles.

ii. ||∆up
plateau|| is also estimated for each fT .
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Table 4.1 Sample plastic displacements for various fT and tplateau. fN is 1N. up
100 and up

600
are plastic displacement when tplateau are 100 and 600 ms, respectively. ∆up

plateau is ||up
600||

-||up
100||.

fT (N) ||up
100|| (mm) ||up

600|| (mm) ||∆up
plateau|| (mm)

0.09 0.087 0.08 0.00
0.27 0.18 0.18 0.01
0.47 0.35 0.35 0.00
0.70 0.45 0.46 0.00
1.00 0.56 0.58 0.02
1.19 0.94 0.95 0.01
1.33 1.21 1.34 0.14
1.43 1.20 1.53 0.33
1.54 1.74 2.23 0.49
1.66 2.27 3.43 1.16

(b) uelastic limit and felastic limit are estimated by a weighted k-means clustering of two

dimensional data for given fN and the direction tc

A set of uelastic limit and felastic limit pairs are directly used to determine the sliding yield

surface. In order to describe the sliding yield surface, we used a mesh structure. The mea-

sured data points are directly used as vertices of the sliding yield surface and elastic limit

surface. Then, the other region of the surface is represented as a linear interpolation of the

vertices. If we have sufficient vertices, these models can care the non-linear complex data.

After selecting the target locations of the sliding yield surface, the modeling procedures

are fully automatic. One example of the sliding yield surface and its counter part in the

displacement space are shown in Figure 4.8.

For the multiple sliding yield surface, the interpolation among the sliding yield surface

is required, because the sliding yield surface depends on the reference point. Thus, if the

contact is occurred at the arbitrary point, new sliding yield surface for the arbitrary point

is estimated by the interpolation of the preprocessed sliding yield surface. For the inter-

polation, we make a triangular mesh structure being consisted of the reference points of

the preprocessed sliding yield surfaces. Then, the arbitrary contact point is located on the

triangular face of the reference points. Using barycentric coordinate system, we can have
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(b)Elastic displacement limit surface in displacement
space

Fig. 4.8 Example of the sliding yield surface

the weights for the linear interpolation. The sliding yield surface is represented as a set

of the points and its mesh structure. Thus, the interpolation of the sliding yield surface is

performed by interpolation of the each vertex point in the sliding yield surface.
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4.4 Data Acquisition and Modeling

4.4.1 Data Acquisition

The data acquisition for training of the interpolation model is applied after the modeling

of the sliding yield surface. In the phase of the modeling sliding yield surface, the target

object shape and the sliding yield surface models are sampled. Thus, in the current phase,

we can estimate a proxy information in the real time interaction.

The basic goal of the data acquisition phase is gathering p, ṗ, q, and f. p and f are cap-

tured by encoder reading and force sensor reading, respectively. ṗ is estimated by FOAW

[46]. Then, q is estimated using the procedures introduced in section 4.3.1 using the sliding

yield surface. In the current implementation, we use the elastic displacement limit surface,

which is the displacement counter part of the sliding yield surface. The linear interpolation

is used to estimate the elastic displacement limit surface for arbitrary reference point. Thus,

the modeling area should be inside of the triangular mesh that is consisted of the reference

points of the sliding yield surface.

In the data acquisition, the target object is probed with the haptic acquisition system by

the human operator. The exploration for data acquisition includes not only pushing but also

sliding. Thus, the acquired data covers the area of the target surface. The previous data-

driven approaches [32, 89] only used the data explored by pushing. Thus, the modeling data

of previous method is depended on the initial contact point and the result force should be

interpolated from the point sample. In the previous data-driven methods, the model function

should be trained for each initial contact point. The reaction force of the unsampled area is

interpolated using the model functions around the contact point. If there are abrupt changes

of the object properties in the unsampled area, it cannot be covered. Our method can cover

the area explored by the sliding interaction.

4.4.2 Modeling

In the data-driven approach, we should approximate a wide range of force responses based

on the input data samples. These input data samples should be much smaller than its orig-
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inal response data. For scattered data interpolation, radial basis functions (RBFs) have

shown reasonable performance, and used in the previous data-driven haptics [40, 32, 89].

This RBF approximation is a linear superposition of the radial basis functions. We used

the computation formulation of the radial basis functions introduced by [89]. With mea-

surement xi comprising displacement, proxy, and velocities, and forces fi, the interpolation

condition is given as:

fi =
N

∑
m=1

wmψ(||xi−xm||2), i = 1...N, (4.25)

where N is the number of samples, ψ is a polyharmonic spline ( ψ(r) = r3 ), || · || is the

Euclidean norm and wi is a component of the unknown solution vector. Then, it can be

written as a linear system of equation: f = Aw, where f ∈ RN is a force vector and A ∈
RN×N is the interpolation matrix. The RBF reconstruction problem is solved following

the random-selection and l1 optimization strategies in Sianov’s work [89]. Sianov and

Harders’ random selection approach is useful for our high dimensional input data set. Our

interpolation model includes an additional dimension of the proxy. The finally obtained

data-driven model is then used for rendering haptic feedback.

Sianov and Harders introduced an approach inspired by Compressive Sensing and l1-

optimization [89]. In our implementation, we used exactly same strategy to train the in-

terpolation function. In the presence of noisy and/or down-sampled data, l1-minimization

produces stable and accurate results, thus, we can formulate our RBF reconstruction prob-

lem to allow robust recovery of sparse signals. We employ a l1-minimization technique:

min
w∈RN
{λ ||w||1 +

1
2
||Aw− f||22}, (4.26)

where ||w||1 is a sparsity promoting norm (see e.g. [11], [25]). λ is a parameter that controls

the trade-off between sparsity and reconstruction fidelity.

Next, we consider methods for reducing the input data, e.g. by compression or selec-

tion. Typical RBF modeling approaches are principal component analysis, singular value

decomposition, or random projections. While these are possible options, there are mem-

ory or computational problems with the involved large matrices with high dimensionality.
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Sianov’s random selection (RS) strategy is a computationally tractable and resource sav-

ing alternative. The approach is inspired by the underlying ideas of Compressive Sensing.

We perform a random selection of M recorded measurements x and fl . This random se-

lection is performed by k-means algorithm with M clusters. Based on these we construct

the underdetermined RBF matrix Ã ∈ RM×N and new right hand side f̃ ∈ RM. For this to

be efficient, M should be significantly smaller then N: ||w||0 < M << N, where ||w||0 is

number of non-zero components. We use the SpaRSA (Sparse Reconstruction by Separable

Approximation) algorithm [99] to solve the problem. The stopping criterion is the number

of desired RBFs. For the debiasing we use Conjugate Gradient (tolerance 10−9 ). With our

interpolation model, the whole target area can be covered a single function using RBFs.

4.4.3 Clustering

In our interpolation model, the input data set covers large area of the target object. We can

train a single interpolation function for the whole input data set. However, if there is large

variation of the haptic properties in the area modeled by a single interpolation function,

it makes larger deviation. Thus, we spatially separate the target data into several bins by

the magnitude of the displacement, ||q− p|| and we model each cell as an interpolation

function. The RBF approximation can be considered as the least square fitting and can

ignore the small scale error to reduce the large scale error. This clustering can reduce the

small scale error in the approximation by collecting similar scaled data.
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(a)Appearance (b)Mesh of shape and reference points

Fig. 4.9 Silicone planar object sample

4.5 Performance Evaluation

Our experiments were carried out on a number of different sample deformable objects. The

models were created from a mixture of Smooth-On Ecoflex 0030 Silicone Rubber (part A

and B) and Silicone Thinner.

4.5.1 Inhomogeneous Silicone Planar Object

We mainly present examples for a silicone planar object (See Fig. 4.5.1(a)). It is a wide

cylinder of height 2.5 cm and diameter 10 cm. Inside of the object, several pieces of dif-

ferent stiffness silicone are included. These silicone piece contains much more Silicone

Thinner. Thus, the stiffness is much lower than the outside cylinder. They change the

stiffness of the object, but are not protruded the outside of the shape.

We only modeled the planar top area. Fig. shows the shape mesh of the silicone planar

object (white wired mesh), and reference points of the sliding yield surface (red mesh). We

sampled nine sliding yield surfaces on the target object. In the sampling of the sliding yield

surface, three free defined normal force magnitudes are 1,3,and 5 N.

In the data acquisition phase, about 65,000 samples of p,ṗ,q are captured. Then, the



4.5. PERFORMANCE EVALUATION 47

−40
−20

0
20

−20

0

20

40
−20

−18

−16

−14

−12

−10

X axis (mm)Z axis (mm)

Y
 a

xi
s 

(m
m

)

−40
−20

0
20

−20

0

20

40
−20

−18

−16

−14

−12

−10

X axis (mm)Z axis (mm)

Y
 a

xi
s 

(m
m

)

Probe trajectory
Proxy trajectory

Fig. 4.10 Sampling trajectory of planar object. About 37,000 samples are tested during
about 40 seconds. The left figure is the trajectory of all samples. The right figure shows the
trajectory from 20 seconds. The right trajectory contains only sliding interaction.

samples are clustered into five groups by ||q− p||. Each group is modeled as a RBF-

functions. In the RBF training phase, λ is 0.001||Ãf̃||∞ and the maximum number of the

RBF kernel, M is 300.

The constructed data-driven representations were than validated against sensor readings

obtained during real interaction. The test trajectories of the probe and proxy represented at

Fig. 4.10. About 37,000 samples are tested during about 1 minute. Left image of Fig. 4.10

shows the trajectories of the probe and proxy. This trajectory includes interactions of deep

pushing. Right image of Fig. 4.10 shows the only sliding interactions. These trajectories

show that our implementation can cover any exploratory interaction in the rendering time.

From these trajectories, we can measure and estimate the reaction force.

The trajectory of the force for each axis is shown in Fig. 4.11. The rendered forces

are well followed the measured true forces. The trajectory of the force after 20 seconds

is shown in Fig. 4.12, which is only including the sliding interaction. These trajectories

showed that our algorithm well follows the measured reaction force with any exploration

procedures.
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We have the measured force fm = { fmx, fmy, fmz} and the estimated commanding force

f̃r = { f̃rx, f̃ry, f̃rz}. We have the absolute force error as

AE = ||f̃r− fm||2. (4.27)

Then, we also have the relative force error as

RE =


||f̃r− fm||2

max(||f̃r||2, ||fm||2)
if||fr− fm||2 > 0

0 otherwise.
(4.28)

Although, for general relative error, denominator should be one of ||f̃r||2 or ||fm||2, we use

the maximum of two values. Because, one of the forces has zero value, the error should be

infinity. In this paper, all the relative force errors should be used as Eq. 4.28. Then, the

absolute force error and the relative errors for given axis i are

AEi = | f̃ri− fmi| (4.29)

REi =


| f̃ri− fmi|

max(| f̃ri|, | fmi|)
i f | f̃ri− fmi|> 0

0 otherwise.
(4.30)

.

Then, the root mean squared error (RMSE) for each axis i is

RMSEi =

√
n

∑
t=0

|| fmi(t)− f̃ri(t)||2
n

(4.31)

In the experiment, RMSE of x,y,and z axes are 0.26, 0.15, and 0.25 N, respectively. The

median of the force errors of x,y,and z axes are 0.14, 0.085, 0.13 N, respectively. The

relative errors are also important for human force perception. The mean and median of

relative force error are 0.138 and 0.115, respectively. These force errors are close to the

JND of force magnitude (around 10%) [1, 92] and may be noticeable of difference of the

measured force. We also show the relative error vs. measured force magnitude graph (See

Fig. 4.13). This graph shows that the relative error is noticeable at low measured force

area. The distribution of the relative error is also represented as the box plot (See Fig.

4.14). Errors in most of samples are lower than 20%.
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Fig. 4.11 The trajectory of the force in planar silicone object
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Fig. 4.12 The trajectory of the force in planar silicone object for sliding interaction
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Fig. 4.13 Relative error of the force magnitude along the test trajectory for the silicone
planar object
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Fig. 4.14 Box plot of the relative force error of the planar silicone. 3D shows the relative
error by Eq. 4.28 . X,Y,and Z showed the relative error for the axes by Eq. 4.30
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(a)Outer shell of dome (b)Hard rubber as an inclusion

(c)Mesh of shape and reference
points

Fig. 4.15 Silicone dome

4.5.2 Silicone Rubber Dome with Inclusion

The another example is a silicone dome (diameter 10cm) (See Fig. 4.5.2). Inside the sil-

icone outer cell, a stiff rubber ball is located. Thus, at the top and center of the dome, the

stiffness is higher than surround. Fig. 4.5.2 shows the shape mesh of the silicone dome

(white wired mesh), and reference points of the sliding yield surface (red mesh). We sam-

pled 18 sliding yield surfaces on the target object. In the sampling of the sliding yield

surface, three free defined normal force magnitudes are 1,3,and 5 N. In the data acquisition

phase, about 52,000 samples of p,ṗ,q are captured. Then, the samples are clustered into

five groups by ||q−p||. Each group is modeled as a RBF-functions. In the RBF training
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Fig. 4.16 Sampling trajectory in silicone dome. About 24,000 samples are tested during
about 30 seconds.

phase, λ is 0.001||Ãf̃||∞ and the maximum number of the RBF kernel, M is 300.

The constructed data-driven representations were than validated against sensor readings

obtained during real interaction. The test trajectories of the probe and proxy represented at

Fig. 4.16. About 24,000 samples are tested during about 30 seconds. The trajectory shows

that our implementation can cover any exploratory interaction with non-planar object. From

these trajectories, we can measure and estimate the reaction force.

The trajectory of the force for each axis is shown in Fig. 4.17. The rendered forces

are well followed the measured true forces. These trajectories showed that our algorithm

well follows the measured reaction force with any exploration procedures. Moreover, the

rendering algorithm is well operated on the non-planar surface.
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In the experiment with silicone dome, RMSE of x,y,and z axes are 0.51, 0.33, and 0.50

N, respectively. The median of the force errors of x,y,and z axes are 0.27, 0.17, 0.29 N,

respectively. The mean and median of relative force error are 0.260 and 0.211, respectively.

We also show the relative error vs. measured force magnitude graph (See Fig. 4.18). This

graph shows that the relative error is noticeable at low measured force area. The distribution

of the relative error is also represented as the box plot (See Fig. 4.19).
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Fig. 4.17 The trajectory of the force in silicone dome.
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Fig. 4.18 Relative error of the force magnitude along the test trajectory for the silicone
dome
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Fig. 4.19 Box plot of the relative force error of the planar silicone. 3D shows the relative
error by Eq. 4.28 . X,Y,and Z showed the relative error for the axes by Eq. 4.30
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4.6 General Discussion

Our modeling system can model the inhomogeneous soft-deformable object. Especially,

allowing to user the data-acquisition in the unconstrained exploration is unique aspect of

our modeling framework. In the performance evaluation, we prove the ability of the mod-

eling the inhomogeneous objects with simple planar and non-planar shapes. Especially, our

modeling system does not limit the exploratory procedure in not only data acquisition but

also rendering time. These properties are useful to handle the real inhomogeneous objects.

Especially, for the haptic augmented reality, our data-driven model can be used to change

the haptic properties.

The drawback of our work in the performance evaluation is the modeling fidelity is lower

than previous researches. The relative error is higher than human force magnitude threshold

(about 10%). This error can be originated from the error in estimating the proxy position.

The frictional phenomenon is very complicate. However, we use a relatively simple mea-

surement based model to handle the frictional phenomenon. The more complicate model

to describe the friction with the elasto-plasticity should be required [36, 75]. The second

major error source is the estimating velocity. We use a FOAW filter to estimate the velocity.

However, the accuracy of the velocity has a close relationship with the encoder accuracy. In

the previous researches, the encoders of PHANToM are upgraded [89, 38]. We can consider

the upgrading the measurement systems. Finally, strong virtual fixture also can be improve

the accuracy by controlling human error [89].



Chapter 5
Data peceptualization of
Inhomogeneous Haptic Data:
Case Study on Transferring of
Shape and Stiffness

In this chapter, we report the data-perceptualization application to consider the inhomo-

geneity of the target data. The proposed application resolves the perceptual distortion of the

shape and stiffness perception. This is a representative case of the modeling and transfer

of haptic data with a inhomogeneity. In data perceptualization, the properties of a dataset

are conveyed to the user through multi-modal sensory channels including vision (visual-

ization), sound (sonification), and touch (haptization). Data perceptualization enables the

user to see, hear, and/or touch the data with an increased bandwidth of information trans-

mission [8]. One of the components central to effective data perceptualization is a transfer

function, which maps a data variable (e.g., the density of a voxel) to a display attribute

(e.g., color, pitch, or force). A transfer function must guarantee that the information per-

ceived by the user matches the original information contained in the dataset. Otherwise,

perceptualization can give the user an incorrect understanding of the data properties.

60
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Fig. 5.1 The surface height map of “protein-on-mica” data. Higher regions are coded with
brighter colors.

Fig. 5.2 A cross-section of the height map shown in Fig. 5.1 along with the typical trajectory
of a haptic probe tip.

5.1 Data-perceptualization of Shape and Inhomogeneous Stiffness Data

Our work is motivated from an example is provided in Fig. 5.1, which was originally pre-

sented in [18]. This figure shows a surface height map of bi-lipid membrane patches with

embedded proteins on a mica substrate, with brighter colors corresponding to higher re-

gions. This topography map was acquired using an atomic force microscope, which could

measure various collocated nano-scale features on a material surface, including the topog-

raphy and stiffness distribution [87]. The given image shows the protein membrane patches

surrounded by a halo (presumably of the lipids that have dissociated from the membrane)

resting on the atomically flat mica substrate. The membrane patch is filled with a periodic

array of transmembrane protein, so it is considerably stiffer than the halo of the dissociated

lipids, but not as stiff as the mica substrate. The surface height profile of this dataset is

depicted in 5.2 by a solid line. For the sake of convenience, this dataset is called “protein-

on-mica” in this paper.

In [96, 18], we reported that the protein-on-mica dataset rendered with the traditional
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penalty-based algorithm can impart a distorted perception of its height information. In

opposite to the height model, users often felt that the halo regions were lower than the

surrounding mica region. This observation was also confirmed in the probe trajectories

recorded during a user’s strokes on the virtual surface. A typical probe position trace sim-

plified for illustration is shown in Fig. 5.2 with a dotted line, which indicates that the probe

was “dipped” into the halo region against the height profile.

To identify the underlying reasons for this, we proposed and experimentally validated a

force constancy theory, which states that humans tend to maintain a constant contact force

while scanning a surface in order to perceive its shape [96, 18]. This theory can explain why

the halo region with lower stiffness in Fig. 5.2 allows larger penetration than the mica with

higher stiffness. If the increase of penetration in the halo region due to the lower stiffness

exceeds the height difference between the halo and the mica regions, the halo region is

perceived to be lower than the mica region. This phenomenon of force constancy was also

confirmed by or utilized in other studies [14, 17, 15, 33, 16, 95, 47, 48, 79]. According to

the well-established perceptual theory of exploratory procedures (EPs) [60], the user taps on

a surface to perceive its stiffness for optimal perceptual performance, while s/he strokes the

surface to feel its shape. Combining the two theories leads to the possibility of an incorrect

haptization of the surface topography with a continuously varying stiffness distribution.

Therefore, we set the research goal as perceptually accurate haptization of a surface to-

pography with spatially varying stiffness. We previously developed a series of Topography

Compensation Algorithms (TCAs) [14, 15, 16] based on the force constancy theory. These

algorithms estimate a user-applied force and adjust the height profile to compensate for

the height distortion. They were designed for the height and stiffness data represented by

images and demonstrated perceptually accurate haptization of the surface topography.

In this chapter, we present an algorithm (TCA-MESH) to haptize an object shape with

a continuous stiffness distribution when the data are represented by a mesh, a considerably

more general data structure. We assign a stiffness value to each vertex of the mesh in or-

der to represent a stiffness distribution over the mesh surface. The previous TCAs for the

image-represented data are extended to take care of meshes, with the following two pri-
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mary improvements. First, the entire algorithm is adapted to work with a constraint-based

haptic rendering approach and an existing collision detection algorithm for meshes. To this

end, new strategies including the translation of meshes as well as many implementation

techniques for mesh management are employed. Second, a new method is developed for

estimating the user-applied force to the mesh surface, where a large number of sharp normal

direction changes may exist.

The performance of TCA-MESH is demonstrated by means of the probe trajectories

collected from complex objects. Its perceptual performance is also examined via a user

study for both shape and stiffness haptization.

5.2 Topography Compensation Algorithm for Mesh

5.2.1 Algorithm Overview

TCA-MESH uses a mesh M that stores the shape and stiffness of perceptualization data.

Each vertex of M is assigned with a normal vector and a stiffness value. For a point q

on the surface of M, we can obtain its normal n(q) and stiffness k(q) using barycentric

interpolation. Three examples of such meshes are shown in Fig. 5.3.

Let n be the time index for haptic rendering loops. Important points and meshes used in

TCA-MESH and their relationships are depicted in Fig. 5.4. The probe position of a haptic

interface, called the haptic interface point (HIP), is denoted by p(n). If contact occurs with

p(n), the ideal haptic interface point (IHIP) (also called the god object or virtual proxy),

q(n), that is constrained on the mesh M can be determined using a general constraint-based

algorithm [102, 84, 37]. Then, the response force can be computed using k(q), n(q), and

the penetration depth. This simple method is effective in rendering the stiffness of a virtual

object as well as its geometry, even for non-constant stiffness. The range of the stiffness

that allows stable rendering depends on the haptic interface (virtual coupling with zero

damping). We will call this method the constraint-based algorithm (CBA). CBA is subject

to the aforementioned topography compensation problem.

TCA-MESH considers a compensated mesh Mt(n) in which the vertices are translated by
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(a)

(b) (c)

Fig. 5.3 Mesh models with a continuous stiffness distribution. Higher stiffness values are
represented by darker colors. The stiffness range of all the meshes is 0–1.0 N/mm. (a) The
protein-on-mica model, (b) the Stanford bunny model [90], and (c) a human head model.

a vector t(n) from the original vertices of M. IHIP q(n) is constrained on Mt(n), not on M.

From q(n), we find a compensated ideal haptic interface point (CIHIP), q′(n):

q′(n) = q(n)+ s(n), (5.1)

The output force f(n) is computed using q′(n) and p(n).

Here, s(n), called the point compensation vector, represents the translation of IHIP neces-

sary for accurate shape rendering in spite of stiffness changes. t(n), the mesh compensation

vector, preserves the accumulated effect of s(n) by translating the entire mesh to enable

seamless interaction between successive contacts. The computation of these two terms is

the core of TCA-MESH, and it uses the force applied by the user onto a virtual surface that

is estimated on the basis of the force constancy theory.

The overall behaviors of TCA-MESH are described below (also see Fig. 5.5).

• S1 (Fig. 5.5a): The algorithm initializes t(0) = 0 and s(0) = 0.

• S2 (Figs. 5.5b and 5.5c): After the first contact, the algorithm updates s(n) in a way

that minimizes the shape distortion. At same time, s(n) is restored to 0, gradually
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Original Mesh, M

Fig. 5.4 Meshes and major points used in TCA-MESH.

and imperceptibly, to prevent the effect of inevitable errors on the estimation of the

user-applied force. t(n) remains as 0.

• S3 (Fig. 5.5d): When the contact is released, the surface offset due to s(n) should be

taken into account for subsequent contact detections. Otherwise, the user can easily

notice an abrupt change in the surface position. To this end, t(n+ 1) is set to s(n),

and s(n) is reset to 0. The translated mesh Mt(n) is used for subsequent collision

detections. While no contact occurs, t(n) is also iteratively restored to 0 to prevent

the accumulation of the mesh offsets.

• S4 (Fig. 5.5e): When another contact is detected, t(n) stops being updated, and the

algorithm starts calculating s(n) based on Mt(n). At this moment, t(n) may or not be

0. In the former case, the translated mesh has been fully restored to the original mesh.

The latter case can occur when the user touches the surface quickly and repeatedly;

maintaining the translated mesh enables the user not to notice the surface offset.

• S5 (Fig. 5.5f): The algorithm is repeated from S2, except that t(n) may no longer be

0.

Further details are presented below.

5.2.2 Initial State

At the beginning of rendering (n = 0; Fig. 5.5a), TCA-MESH assumes no collision between

the HIP p(0) and the mesh M, rendering zero force. Several variables are initialized as
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(e) Another contact occurred (n = n3)

x(n1) x(n)

x(n3)

x(n)

Fig. 5.5: Behaviors of TCA-MESH.

follows: s(0)← 0, s(0)← 0, t(0)← 0, and COLLISION←FALSE, where s(n) denotes the

signed magnitude of s(n). This state is maintained until the first contact occurs between

the line segment from p(n−1) to p(n) (representing the probe trajectory) and the mesh M.

Then, COLLISION is set to TRUE, and TCA-MESH transitions to the next state. Contact

detection between a line and a mesh is supported in most collision detection packages, and

our implementation uses the OBB tree [34].

5.2.3 When First Contact Occurs

Assume that the first contact occurs at n1 (Fig. 5.5b), that is, p(n1) has entered M. Then,

we find IHIP q(n1) that is constrained on the surface of M by using an efficient point-based

3-DOF rendering algorithm [37]. We also perform a force shading algorithm for smooth

movements of q(n) around edges [70].

The stiffness value to render in this frame is k(n1) (= k(q(n1)), for the sake of simplic-

ity). Compensation for shape distortion is not necessary yet because HIP has just initiated

contact. Thus, t(n1) = 0, s(n1) = 0, s(n1) = 0, and CIHIP q′(n) = q(n). Then the response
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force is

f(n1) = k(n1) (q(n1)−p(n1)). (5.2)

The algorithms in Section 5.2.2 and 5.2.3 are equivalent to the typical 3-DOF constraint-

based algorithm.

5.2.4 While Contact is Maintained

In later frames (n1 < n < n2), we assume that the contact made at n1 is maintained until it is

released at n2 (Fig. 5.5c). In this state, Mt(n) is still the same as M; t(n) is updated when the

contact is released (Section 5.2.5). We find IHIP q(n) on M using the efficient point-based

algorithm [37].

One of the key components of TCA-MESH is the determination of the point compen-

sation vector s(n). CIHIP q′(n) is computed by (5.1). This q′(n) is used for computing a

response force that removes the height distortion error. Here, s(n) = s(n)n(n), where n(n)

is the outward normal of the polygon on which q(n) stays. Thus, the problem of finding

s(n) reduces to that of finding s(n). s(n) represents the amount of height compensation

necessary to remove the height distortion caused by non-uniform stiffness. We compute

s(n) recursively such that:

s(n) = s(n−1)+∆s(n), (5.3)

∆s(n) =
k(n−1)− k(n)

k(n)
(x(n)+ s(n−1)) , (5.4)

where s(0) = 0. x(n) denotes the signed penetration depth, that is, the signed distance from

p(n) to q(n). In (5.4), the product of k(n− 1)− k(n) and x(n)+ s(n− 1) is the increase

in force that would be rendered due to the stiffness change if no compensation were to be

performed in this frame. This force increase is divided by the current stiffness k(n), yielding

the desired displacement change, ∆s(n), for appropriate height compensation.

Then, the response force is computed by

f(n) = k(n) (q′(n)−p(n)) = k(n)(x(n)+ s(n))n(n). (5.5)

The correctness of this algorithm is proven in Lemma 1.
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Lemma 1 Assuming that the user maintains a constant force and that the haptic interface

provides perfect transparency (infinite-gain force tracking), then ∆s(n) = −∆hd(n), where

∆hd(n) is the amount of height distortion caused by non-uniform stiffness.

Proof This lemma is proven using mathematical induction. When the first contact is made

at n= n1, hd(n1) = 0; therefore, there exists no need for height compensation. Next, assume

that hd(n− 1) = −s(n− 1), i.e., perfect height compensation at n− 1. Then, we need to

show that hd(n) =−s(n), which is equivalent to ∆hd(n) = hd(n)−hd(n−1) =−∆s(n). If

the user maintains a constant force between n−1 and n, ∆hd(n) is as follows:

∆hd(n) =


0if k(n) = k(n−1)

− fp(n)
(

1
k(n)
− 1

k(n−1)

)
if k(n) 6= k(n−1)

, (5.6)

where fp(n) is the magnitude of a user-applied force [18].

The assumption of force constancy means that the user-applied force and the output force

of the haptic interface are the same. The assumption of perfect transparency also allows the

output force to be the same as the command force to the haptic interface. Hence, the user-

applied force is equivalent to the force command:

fp(n) = |f(n)|s = k(n)(x(n)+ s(n)), (5.7)

where | · |s represents the signed magnitude.

Then ∆hd(n) in (5.6) is

∆hd(n) =− fp(n)
(

1
k(n)
− 1

k(n−1)

)
(5.8)

=−k(n)(x(n)+ s(n))
(

1
k(n)
− 1

k(n−1)

)
. (5.9)

Using (5.3) and (5.4), it is straightforward to show that

∆hd(n) =−
k(n−1)− k(n)

k(n)
(x(n)+ s(n−1)) =−∆s(n). (5.10)

This completes the proof.
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In the proposed algorithm, the estimation of the user-applied force fp(n) is the key to ac-

curate height compensation. The previous TCAs [14, 15, 16] used a rather simple estimator:

fp(n) = f (n−1). This was based on an approximation that the force output at n is similar to

the sample earlier force command at n−1. This estimator works well when the directional

changes of geometry are smooth. However, we have found that it can cause unacceptable

errors with mesh models, which can include a large number of sharp directional differences

around edges. The normal component of the user-applied force determines the penetration

depth, which subsequently determines the response force. On flat or smooth surfaces, their

normal direction changes slowly, so the force projected to the surface normal also varies

slowly if the user-applied force is constant. This is the necessary condition for the previous

TCAs to provide adequate height compensation. However, with mesh models, the surface

normal can vary abruptly around edges, and so does the projected normal component of the

user-applied force even if the user-applied force is constant. This makes the user-applied

force estimator of the previous TCAs, fp(n) = f (n− 1), contaminated with a large error.

Therefore, we use f (n), the force magnitude that will be rendered in the current frame n, as

the force estimator instead of f (n−1).

Finally, f (n) is determined from the current compensated penetration depth, x(n)+ s(n).

This rule can improve the quality of rendering to a large extent for mesh models.

The above algorithm, however, is contingent upon the assumptions that the user applies

a strictly constant force and the haptic interface is perfectly transparent, either of which

cannot be true in reality. Thus, it is necessary to remove the inevitable errors of height

compensation that can be accumulated over time. To this end, TCA-MESH uses a height

restoration term ∆rs(n), similarly to the previous TCA [16], such that

∆rs(n) =


−asds(n)if s(n−1)> asds(n)

−s(n−1)if |s(n−1)| ≤ asds(n)

asds(n)if s(n−1)<−asds(n)

, (5.11)

where as is the slope for height restoration and ds(n) represents the lateral displacement of

the probe. ds(n) is determined to be the projection of the probe trajectory, p(n)−p(n−1),
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onto the tangent plane of n(n):

ds(n) = ||(p(n)−p(n−1))×n(n)||. (5.12)

The two terms, compensation term ∆s(n) and restoration term ∆rs(n), compete with each

other. While ∆s(n) makes CIHIP deviate from IHIP, ∆rs(n) forces CIHIP to converge to

IHIP by removing the accumulated errors in the total height adjustment. In (5.11), ∆rs(n)

is a function of ds(n), representing that the more the user moves laterally, the more is the

compensated height restored. The speed of restoration is determined by as, and it is chosen

to be less than the difference threshold of slope perception reported in [16] to make the

height restoration process imperceptible to the user. Combining the two terms, we obtain

the following final update equation of s(n):

s(n) = s(n−1)+∆s(n)+∆rs(n). (5.13)

Now, it is possible that s(n) 6= 0, and so is q′(n) 6= q(n). Hence, an additional collision

detection test that uses CIHIP q′(n) is required to update the flag variable COLLISION.

A total of six relative configurations are possible among HIP, IHIP, and CIHIP, as shown

in Fig.5.6. In cases 1, 2, and 3 shown in the figure, HIP is under CIHIP, and thus a force

should be rendered. These are equivalent to when q′(n)−p(n) is in the same direction with

the surface normal n(n). Therefore, the collision test returns TRUE if

(q′(n)−p(n)) ·n(n)≥ 0. (5.14)

Then, we compute the response force using (5.5) and set COLLISION to TRUE for the next

frame.

Note that HIP can be outside of Mt(n) in case 3 of Fig.5.6. In this case, the regular

collision detection algorithm between the trajectory of HIP and the mesh cannot detect a

collision in the next frame n+ 1. Instead, we rely on the flag variable COLLISION set at

n. If COLLISION is TRUE at n+ 1, we find q(n+ 1) to be the point that is constrained

on the surface of Mt(n+1) and minimizes the distance from p(n+ 1) using the local graph

search-based algorithm of Ho et al. [37].
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HIP p(n) IHIP q(n) CIHIP q’(n)
1 2 3 4 5 6

Direction of  n(n)Direction of  q’(n)- p(n)

Fig. 5.6 Possible configurations of HIP, IHIP, and CIHIP.

The procedure described in this subsection is repeated until COLLISION is changed to

FALSE.

5.2.5 While Contact is Released

Suppose that the contact is released at n2 and that this state continues until another con-

tact is made at n3 (Fig. 5.5d). At n2, since a contact occurred in the previous frame, we

can find q′(n2) as described in Section 5.2.4. However, q′(n2)−p(n2) is no longer in the

same direction as n(n2); therefore, the collision detection test returns FALSE. Then, we set

COLLISION to FALSE and the rendering force to 0.

At this point, the point compensation vector s(n) stores the accumulated effect that is

equivalent to translating the entire mesh M by s(n). Thus, if the collision detection tests at

n > n2 use M as the reference, the user may perceive the position difference between the

meshes at n2 and n3. To prevent this problem, we use Mt(n) for collision detection, where

t(n2 +1) = s(n2).

Analogous to the restoration of s(n), t(n) is decreased over time when the user moves in

the free space, translating Mt(n) progressively back to M. This is to prevent the accumulation

of t(n) over successive contacts and releases, since this accumulation may degrade the

perception of the absolute position of M. Besides, this entire mesh translation allows us to

use the same collision detection package throughout TCA-MESH.

The proposed restoration algorithm of t(n) is based on the observation that the more
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a user moves in space, the more s/he forgets the previous absolute location of the mesh.

Specifically, while the non-contact state is maintained (n2 < n < n3), we compute a mesh

restoration term ∆rt(n):

∆rt(n) =


−t(n)if ||t(n)|| ≤ ||atdt(n)||

−atdt(n)
t(n)
||t(n)||

if ||t(n)||> ||atdt(n)||
, (5.15)

where dt(n) denotes the displacement of HIP between the current and the previous frames:

dt(n) = ||p(n)−p(n−1)| |, (5.16)

and at is the mesh restoration ratio. The upper case in (5.15) is to make ∆rt(n) = 0 when it

is sufficiently small. Since this restoration process is performed while HIP is not contacting

the surface, we can choose a relatively large value for atv as compared to ar. The mesh

compensation vector t(n) is updated as follows:

t(n+1) = t(n)+∆rt(n). (5.17)

The mesh restoration is carried out only when COLLISION is FALSE, whereas the

restoration of s(n) described in Section 5.2.4 is performed only during a contact state.

5.2.6 When another Contact Occurs

Finally, we describe the case when another contact occurs at n = n3 (Fig. 5.5e). The com-

putational procedure for response force computation is exactly the same as before, except

that it may be the case that Mt(n3) 6= M (Fig. 5.5f). Thus, q′(n) is calculated using both s(n)

and t(n) with t(n) = t(n3), which preserves the translations that occurred during previous

contacts.

5.2.7 Pseudocode

TCA-MESH explained above based on its flow can be summarized in a compact pseu-

docode. For implementation, readers can refer to Algorithm 1, where the collision detection–

response structure is clearly visible.
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Algorithm 1 TCA-MESH
1: p(n), p(n−1), t(n), k(n−1) and s(n−1).
2: if COLLISION = FALSE then
3: if p(n)−p(n−1) overlaps with Mt(n) then
4: Calculate q(n) on Mt(n).
5: Get k(n) and n(n) using q(n).
6: q′(n)← q(n)
7: COLLISION← TRUE
8: else
9: Calculate ∆rt(n) in (5.15).

10: t(n+1)← t(n)+∆rt(n)
11: end if
12: else
13: Calculate q(n) on Mt(n).
14: Get k(n) and n(n) using q(n).
15: Calculate ∆s(n) and ∆rs(n) in (5.4) and (5.11), respectively.
16: s(n)← ∆s(n)+∆rs(n)
17: q′(n)← q(n)+ s(n)n(n)
18: Update COLLISION by (5.14).
19: if COLLISION = FALSE then
20: t(n+1)← t(n)+ s(n)n(n)
21: s(n)← 0
22: end if
23: end if
24: if COLLISION = TRUE then
25: f(n)← k(n)(q′(n)−p(n))
26: t(n+1)← t(n)
27: else
28: f(n)← 0
29: end if
30: return f(n), t(n+1), s(n) and k(n).



5.3. PERFORMANCE EVALUATION: TRAJECTORIES 74

5.3 Performance Evaluation: Trajectories

In this section, we present the probe trajectories, which correspond to the proximal stimuli

for topography perception delivered to the user, when complex mesh surfaces with vary-

ing stiffness are explored for the experimental comparison between TCA-MESH and CBA.

The three models shown in Fig. 5.3, captured and processed from real-world data, were

used. All the models were scaled to fit into a 100 mm× 100 mm× 100 mm cube to

match the workspace of the haptic interface (PHANToM Premium 1.5 High Force; Sens-

able Technologies, Inc.) used for data collection. The maximum stiffness of each model

was 1.0 N/mm. For TCA-MESH, as = 0.05 and at = 0.5.

In both TCA-MESH and CBA, a probe trajectory is represented by that of HIP. In TCA-

MESH, a force vector is directed from HIP to CIHIP, and its magnitude is proportional to

the distance between them, while HIP and IHIP have the same role in CBA. We show the

trajectories of these three major points in Fig. 5.7.

The first example is of the protein-on-mica model (Fig. 5.3a). This mesh with 131,072

triangles was generated from the height and stiffness maps captured using AFM [87]. With

TCA-MESH, HIP well followed the surface of the protein-on-mica model, which coincided

with the trajectory of IHIP, even in the lighter-colored, lower-stiffness halo region. In this

region, the trajectory of CIHIP deviated from the surface to compensate for the stiffness

changes. In the case of CBA, however, HIP dropped at the beginning of the halo region

(marked by point A in Fig. 5.7a) and then abruptly elevated at the end of the halo region

(point B in Fig. 5.7a), reconfirming the problem reported in [96, 18].

The second example is of the Stanford bunny model (Fig. 5.3a) with 69,451 triangles,

which was reconstructed from 3D scan data. In the original mesh, each vertex stored the

confidence of the range data. We mapped these confidence values to stiffness values, with

a maximum stiffness of 1.0 N/mm. This example demonstrates a case in which two in-

dependent types of information are separately embedded into two haptic attributes, with a

higher priority on shape rendering. In Fig.5.7b, the region enclosed by a red dotted line is

concave, and its stiffness value is lower than that of the neighborhood. The trajectory of
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(a)

(b)

TCA-MESH CBA
(c)

Fig. 5.7 Trajectories of the major points with TCA-MESH and CBA when the user strokes
three models: (a) protein-on-mica (red dotted circle: elevated area), (b) Stanford bunny (red
dotted circle: concave area), and (c) Human head (red dotted ellipse: eye). The trajectories
of HIP, IHIP, and CIHIP are represented by blue, red, and green solid lines, respectively.
An arrow-headed line indicates the stroke direction. The models and trajectories consisted
of 3D data, and hence, they are rendered here using a perspective view. All models share
the same color map for stiffness shown on the top of (a). Each figure includes trajectories
magnified from the region enclosed by a red dotted line.
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HIP with TCA-MESH well followed this complex geometry, showing a small jump when

the probe hit point C. However, CBA let HIP be dipped into the bunny and failed to deliver

the stronger sensation of contact at point C.

The last example is of the human head model (Fig. 5.3c) with 57,608 triangles. This

model shows an isosurface of the human skin reconstructed using the VTK toolkit from

the CT volumetric data included in the toolkit as a medical example [97]. This is another

example in which shape is of more importance. The stiffness value (0.4–1.0 N/mm) of

each vertex is inversely proportional to the distance between the skin and the underlying

bone. The model includes an eye (red dotted ellipse, Fig. 5.7c) which protrudes from the

surrounding skin and has lower stiffness. In the case of TCA-MESH, the HIP followed

the protruded eye skin adequately, but in the case of CBA, the HIP showed increasing

penetration at point D.

5.4 Performance Evaluation: User Study

This section reports two perceptual experiments for shape and stiffness discrimination, re-

spectively, carried out to assess the performance improvement of TCA-MESH over CBA.

5.4.1 Methods

Participants

Sixteen participants (14 males and 2 females; 19-27 years old with a mean of 21.3 years)

participated in both experiments. All participants were right-handed and reported no known

sensorimotor impairment. None had prior experience of using a haptic interface to explore

virtual objects.

Apparatus

An impedance-type haptic interface (PHANToM Premium 1.5 High Force; Sensable Tech-

nologies, Inc.) with a stylus tool and a 22-inch LCD monitor were used for haptic and

visual rendering, respectively. A barrier was placed between the haptic interface and the
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Table 5.1 Shape-stiffness models used in the perceptual evaluation.
Shape

Stiffness
H0:
plane

H1:
bump

H2:
bump

H3:
hole

H4:
hole

K0: plane M0 M5 M10 M15 M20
K1: softer center M1 M6 M11 M16 M21
K2: softer center M2 M7 M12 M17 M22
K3: harder center M3 M8 M13 M18 M23
K4: harder center M4 M9 M14 M19 M24

monitor to prevent the participants from obtaining additional visual cues by watching the

movements of the PHANToM.

Experimental Conditions

To compose virtual 3D mesh surfaces to be used in the experiments, we designed five im-

plicit shape models and five implicit stiffness models. As shown in Fig. 5.8, the shape

models were a flat surface (H0), two bumps (H1 and H2), and two holes (H3 and H4). The

stiffness models were a constant stiffness model (K0) and four non-uniform stiffness distri-

butions (K1–K4). By combining the five shape and the five stiffness models, we obtained

25 models (M0–M24), as listed in Table 5.1.

These 25 shape-stiffness models were then converted into 25 individual 3D meshes. The

geometry and the stiffness of each model were densely and evenly sampled, and mapped

onto the vertices of a corresponding mesh. A final virtual surface was constructed by em-

bedding the 25 meshes onto a flat surface in a 5×5 array, as shown in Fig. 5.9a. This virtual

surface consisted of a total of 39,200 triangles, representing a complex dataset in which a

number of objects were included with spatially-varying stiffness. Note that the mesh mod-

els using H2 and H4 included sharp edges in their geometry to see whether TCA-MESH

can handle sharp normal changes. The location of each shape-stiffness model on the surface

was randomized in each experimental trial.

Out of the 25 models, 5 models (M0, M5, M10, M15, and M20) had a constant stiffness

distribution (K0). Their shapes were generally perceived without distortion. The other
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Fig. 5.8 Five shape (H0–H4) and five stiffness models (K0–K4) used in the perceptual
performance evaluation.

20 models had non-uniform stiffness distributions, which could cause distortion in shape

perception when rendered with CBA. In particular, we expected that 12 of them could lead

to an incorrect classification of the shape. In eight models (M6, M7, M11, M12, M18, M19,

M23, and M24), a bump could be perceived as a hole, or vice versa. The other four flat

models (M1–M4) could be regarded as a bump or a hole depending on the paired stiffness

model (K1–K4). In terms of stiffness perception, we expected that all models would lead

to correct classification irrespective of the rendering method.
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Procedures

The participant’s task in each trial was as follows. The participant was provided with the

visual scene shown in Fig. 5.9b. The locations of the 25 models were represented by solid

circles that were initially black in color. The 2D location of the HIP was drawn as a small

green circle. When the HIP was sufficiently close to a model, a larger red circle was drawn

around the corresponding circle. To preclude any visual topography cues, the scene was

rendered using orthogonal projection without shading, and the HIP was always visible even

if it was occluded by the mesh.

The participant was instructed to explore the virtual surface continuously, from one

model to another, using any EPs, without a time limit. For shape discrimination, the par-

ticipant was asked to perceive the shape of each model and classify it as a bump, hole, or

plane. For stiffness discrimination, the participant was asked to compare the stiffness at the

center of each model with that of the surroundings, and then label the model as ‘harder’

(center stiffer than the surroundings), ‘softer,’ or ‘the same.’ In each case, the circle was

then colored as red, blue, or gray, respectively. The participant used a keyboard to label the

models. The trial was completed after all the models had been labeled.

Each experiment was composed of one training session and two main sessions. The pur-

pose of the training session was to familiarize the participants with their task. Therefore,

all shape-stiffness models in this session were of constant stiffness (K0) for shape discrim-

ination or flat (H0) for stiffness discrimination, not the full set described in Section 5.4.1.

The training session had two trials. In the first trial, the virtual surface included only 3×3

models for easy practice. In the second trial, the surface included 5×5 models. The virtual

surface was rendered using CBA.

Each of the two main sessions consisted of five trials. For rendering, TCA-MESH was

used in one main session, whereas CBA was used in the other. Their order was balanced

across the participants to prevent any order effects. The height restoration constant, as,

used for TCA-MESH was 0.05, which was lower than the minimum (0.09) of the various

absolute thresholds of the slope perception reported in [16]. The mesh restoration constant,

at , was 0.5. In each trial, the full 25 shape-stiffness models in Table 5.1 were used to make
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(a) (b)

Fig. 5.9 (a) Mesh surface embedding the 25 shape-surface models. (b) Visual scene pro-
vided to the participant.

a virtual surface.

To prevent fatigue, the participants were required to take at least a 1-min break between

trials and at least a 3-min break between sessions.

After each trial, the program recorded the number of correct classifications and the task

completion time. The participants were also asked to complete a questionnaire that included

four questions. Three questions were descriptive and were answered after each main ses-

sion: Q1: When you perceived the shape/stiffness, what sensation was the most salient to

you?; Q2: To discriminate the shape/stiffness, what sensation did you focus on?; and Q3:

Did you feel anything unnatural? If yes, describe when you felt so. The fourth question

was answered after each shape/stiffness discrimination experiment: Q4: Between the two

haptic rendering algorithms used in the two main sessions, which one do you prefer for

shape/stiffness discrimination?

The shape discrimination experiment took approximately 1.5 h, and the stiffness discrim-

ination experiment took approximately 1 h. Both experiments were completed in one day,

and the shape discrimination experiment was conducted first.
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Fig. 5.10 Quantitative experimental results. Error bars represent standard errors.

5.4.2 Results

The main results of the two experiments are shown in Fig. 5.10. For shape discrimination,

the average number of correct classifications was 24.4±1.1 (standard deviation) in the case

of TCA-MESH and 17.0± 2.2 in the case of CBA (left graph, Fig. 5.10a). For statistical

testing, we used the Friedman test since the numbers of correct classifications were not

normally distributed. The difference was statistically significant (χ2(1) = 117.07, p <

0.0001). The average task completion times were 163±76 s and 211±101 s in the case of

TCA-MESH and CBA, respectively (right graph, Fig. 5.10a). This difference, tested using

ANOVA, was also statistically significant (F(1,15) = 7.98, p = 0.0181).

As for stiffness discrimination, the average numbers of correct classifications were 22.7±
1.8 using TCA-MESH and 22.7±1.7 using CBA (left graph in Fig. 5.10b). This difference

was not statistically significant (Friedman test, χ2(1) = 0.1378, p = 0.7105). The aver-

age task completion times were 118.8±47.5 s using TCA-MESH and 114.1±36.1 s using
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CBA (right graph in Fig. 5.10b). This difference was not statistically significant (ANOVA,

F(1,15) = 0.26, p = 0.6177).

In the case of shape discrimination, the participants’ responses to Q1 and Q2 of the ques-

tionnaire could be divided into two groups. One group (G1) picked the position changes of

the PHANToM stylus to both questions. The other group (G2) provided diverse answers,

but the members of the group commonly mentioned some changes in the response force,

e.g., in the force direction, tangential force, or normal force. In the case of TCA-MESH,

the numbers of participants in G1 were 9 for Q1 and 8 for Q2, and in G2, they were 7 for

Q1 and 8 for Q2. In the case of CBA, the numbers in G1 were 10 for Q1 and 9 for Q2, and

in G2, they were 6 for Q1 and 7 for Q2. In the response to Q3, only 4 participants reported

that they felt unnatural artifacts with the virtual surface rendered using TCA-MESH, but

10 participants reported such artifacts in the case of CBA. In the response to Q4, 8 partici-

pants chose TCA-MESH as the method that they would prefer for shape discrimination, 4

participants selected CBA, and the other 4 participants had no preference.

In the case of stiffness discrimination, the participants’ answers to Q1 and Q2 for stiff-

ness discrimination also showed two patterns. One group of the participants (G3) reported

that in the presence of a stiffness change, they felt a position or velocity difference when

they applied the same force to the surface. The other group (G4) relied on the magnitude

difference of the response force. The numbers of the participants in G3 and G4 were 11

and 5 for both Q1 and Q2 in the case of TCA-MESH. They were 10 and 6 for both Q1

and Q2 with CBA. In the response to Q3, 7 participants reported an unnatural sensation in

the case of CBA, but the number of such participants was 1 in the case of TCA-MESH.

In the response to Q4, 8 participants preferred TCA-MESH for stiffness discrimination, 4

participants preferred CBA, and the other 4 participants had no preference.

5.4.3 Discussion

For shape perception, TCA-MESH exhibited a considerably improved performance as com-

pared to CBA with statistical significance in both the number of correct classifications (24.4

vs. 17.0) and the task completion time (163 s vs. 211 s). In particular, the number of cor-
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Fig. 5.11 Ratios of correct shape classifications for the 12 models that have a high proba-
bility of incorrect discrimination when CBA is used. Error bars represent standard errors.

rect classifications of TCA-MESH was very close to the perfect score (25), indicating the

effectiveness of TCA-MESH.

In general, the two sensory cues, i.e., changes in probe position and changes in response

force direction, can contribute to shape discrimination [15, 26]. This general fact is con-

sistent with our experimental results. While TCA-MESH renders both sensory cues to be

consistent, CBA may cause a conflict between the two cues. The response force direction of

CBA always delivers a helpful cue, but its probe position may interfere with accurate shape

discrimination [15]. This can also be confirmed by the number of correct classifications for

the 12 models that were expected to lead to incorrect discrimination in the case of CBA, as

shown in Fig. 5.11. While the correct classification ratios of TCA-MESH were very close

to 1 for all of these 12 models, those of CBA were not. In particular, M1-M4 resulted in

very low correct classification ratios when CBA was used. These models had a flat surface

(H0) combined with one of the four non-uniform stiffness models (K1–K4). In this case, the

response force direction did not change; thus, the participants had to rely only on the probe

position changes for shape discrimination, causing such low correct classification ratios.

For the bumps and holes, however, some participants could discriminate the shape; see
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M6, M18, M19, M23, and M24 in Fig. 5.11. This could be attributed to the fact that

participants can also use the force directional cue for shape discrimination when they are

unable to make reliable discrimination based on the position cue. Research demonstrated

that the force cue could overcome the position cue for shape discrimination [82]. This was

also supported by our questionnaire results for Q1 and Q2: the participants’ preference for

using one of the two sensory cues as the main criterion was close to even.

For stiffness perception, both TCA-MESH and CBA showed a high number of correct

classifications (both 22.7) with comparable task completion times (118.8 and 114.1 s) with-

out any statistically significant difference. This indicates that TCA-MESH has high stiffness

rendering accuracy comparable to that of CBA. For both methods, most misclassifications

occurred with the constant-stiffness models (M0, M5, M10, M15, and M20). This result

of stiffness perception is despite the fact that TCA-MESH masks the relative changes in

stiffness during stroking for shape compensation. This in turn implies that the participants

mostly tapped on the virtual surface to gauge stiffness differences, which is consistent with

the theory of EPs [60]. The experimenter observed that stroking was used predominantly in

the shape discrimination experiments and that tapping was used predominantly in the stiff-

ness discrimination experiment, although the participants were allowed to use any EPs. This

could be another evidence of the adequacy of TCA-MESH for multi-attribute haptization.

Lastly, we note that the task completion time of TCA-MESH (163 s on average) demon-

strates that TCA-MESH could be used stably for a long time (>2 min). This supports that

the proposed height restoration strategy using the height restoration term ∆rs(n) and the

mesh restoration term ∆rt(n) is appropriate.



Chapter 6
Conclusion

This dissertation presents two core examples for modeling and transferring such inhomo-

geneous haptic data.

Our first example focuses on capturing and rendering the behaviors of real objects of

inhomogeneous deformation dynamics. We adapted a framework of the “data-driven hap-

tics,” where the response forces are modeled based on the recorded haptic data, and they are

reproduced using an interpolation schemes. We first have presented a hatic shape modeling

system that provides the shape modeling ability to a regular force-feedback haptic interface

device, even for soft and deformable object. The user can sample points on an object sur-

face using the haptic device based on their own discretion. The deformation errors of the

object are compensated for by our true contact point estimation algorithm. The collected

point set is processed by the standard alpha shape algorithm for mesh reconstruction. Ex-

perimental results indicated that our modeling system can lead to comparable performance

to a standard 3D optical scanner for a range of real objects, as long as they do not contain

fine surface details. Our system is free of the optical properties of real objects and only re-

quires a force sensor in addition to a common haptic interface. Then, with the shape model

captured by shape modeling system, we can model the reaction force behaviors of inho-

mogeneous soft-deformable object. The core point is the simulation of proxy point (actual

contact point) movement based on sliding yield surface models, which possess necessary

85
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information for separating sliding and sticking states. In an off-line process, sliding yield

surface models and internal radial-basis models are built through an automatically palpation

of a target real object. During rendering, the movement of a proxy point is estimated using

the sliding yield surface models, which becomes an input parameter of the radial basis in-

terpolation models. Allowing to user the data-acquisition in the unconstrained exploration

is unique aspect of our modeling framework. In the performance evaluation, our framework

shows less than 0.5N force error ratio in most cases, both in normal lateral direction. Our

modeling system does not limit the exploratory procedure in not only data acquisition but

also rendering time.

The second example of this dissertation presents a computational algorithm for perceptually-

correct haptization of inhomogeneous scientific data captured from the real environment.

We have presented TCA-MESH, a haptization algorithm of object shape represented by a

3D mesh with a spatially varying stiffness distribution, motivated by the need for scientific

data perceptualization. TCA-MESH is based on the human exploratory behavior of force

constancy, which allows us to estimate the appropriate amount of height compensation on

the basis of the user-applied force and stiffness difference. TCA-MESH also provides an

improved estimator of the user-applied force to handle complex mesh models that may in-

clude a number of sharp normal direction changes around the edges. We demonstrated

the enhanced performance TCA-MESH by using the relevant proximal stimuli recorded

during the exploration of complex mesh objects. We also conducted two perceptual exper-

iments, which demonstrated that TCA-MESH enables the user to accurately perceive both

the shape of a virtual surface and its varying stiffness distribution. TCA-MESH exhibited

a higher accuracy and required a considerably shorter task completion time than the con-

ventional constraint-based rendering. In addition, it did not impart noticeable artifacts and

worked stably over prolonged use. A mesh is a general geometry model for describing a

complex 3D surface and is widely used for computer graphics, data visualization, and med-

ical imaging. As such, we expect that TCA-MESH can be applied to various application

areas. Moreover, it can be easily extended to other surface representations in part because

of the use of an ordinary collision detection algorithm that can be the most troublesome
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impediment to haptic rendering. One current limitation of TCA-MESH is that the mesh

compensation vector can largely deviate from the orig- inal mesh position in extreme cases.

In general use, the mesh restoration term can prevent that problem, as demonstrated in the

user study. This limitation might be resolved if the stiffness model is modulated instead

of the shape model. This is one of the future research topics in our mind, along with an

extension to volumetric models with internal stiffness definitions.
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요약문

비균일햅틱정보의모델링및전달

많은 햅틱 응용 프로그램에서 비균일한 햅틱 정보를 다루는 것은 중요한 요소이다.

특히의생물분야의정보는본질적으로비균일하며의료햅틱응용에서는비균일한

정보사이의상호작용으로발생하는정보를모델링하고재생할수있는복잡하고효

좌적인햅틱알고리즘을필요로한다. 이박사학위논문에서는비균일한햅틱정보

를다루고전달하는두가지주요한응용분야를다루기로한다.

우리는먼저비균일한동적변형을보여주는실제물체의거동을모델링하고렌더

링하는것에초점을두었다. 이를위해우리는실제물체로부터측정하고저장한햅

틱 정보를 바탕으로 하고 이를 보간하여 제시하는 “data-driven haptics” 방법론을 이

용하였다. 이방법론은다양한범위의물리적인현상을하나의프레임워크로다룰

수있다. 우리의프레임워크는특히수평적인방향의비균일적인성질,즉마찰과제

한되지않은거동즉미끄지거나문지르는거동을정확하게측정하고렌더링할수

있었으며,이는햅틱모델링및렌더링방법론에있어첫번째시도이다. 중요한요소

는 물체와 프로브 사이의 sliding/stick state를 표현하는 slding yield surface를 이용한

proxy 거동의 시뮬레이션이다. 전처리 과정 동안 sliding yield surface는 자동적으로

물체와상호작용하며작성된다. 내부적인 radial-basis function도전처리과정동안계

산된다. 렌더링시에 proxy의위치는 sliding yield surface모델을이용하여추정되며

radial basis interpolation model의입력으로 이용된다. 우리의 성능 평가에 따르면 이

프레임워크는대체로 0.5N이하의힘에러를수직,수평방향으로보여주었다.

두번째목적은비균일한과학정보의인지적으로정확한전달이다. 과학정보내
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부의 비균일 성은 포함된 정보를 사용자가 잘못 이해하도록 할수 있다. 예를 들어

AFM을이용한물체의강성과형태정보를전달할때,기존의균일강체를전달하기

위해개발된햅틱렌더링알고리즘은정확한정보전달에실패할수있다. 최악의경

우,낮은강성을가진높은위치를높은강성을가진낮은위치보다낮게인지할수

있는 것이다. 이 문제는 사용자가 물체의 형태를 알고자 할 때 일정한 힘을 가하면

서만진다는 force constancy이론을통해설명할수있다. 이논문에서는메쉬형태로

표현한물체의형태과강성을전달하는 topography compensation algorithm for mesh를

제시하고 검증하였다. 이 알고리즘은 force constancy를 바탕으로 물체의 형태를 변

형하여사용자가정확한강성정보와형태정보를모두느낄수있게한다.. 또한기

존의햅틱렌더링알고리즘의렌더링결과를비교하고사용자의실험도수행하여제

시한알고리즘의성능을평가하였다. 그결과우리의알고리즘은물체의형태를더

잘느끼게하고그에걸리는시간도줄여더정확하고효과적인정보지각화가가능

하게하였다.
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