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ABSTRACT

A driving skill is a routine sensorimotor skill, regarded as a fascinating but a

challenging research target in the area of sensorimotor skill control and learning.

In this thesis, we propose human-like haptic assistance, an advanced data-driven

framework using artificial neural networks and performance-based haptic feed-

back, for driving skill enhancement and training.

As an initial study, we conducted a training experiment to show the feasibility

of hybrid haptic assistance that combines two haptic assistance methods (haptic

guidance and disturbance) for virtual steering task. In the hybrid scheme, haptic

guidance is used in the initial phase of learning, but it is progressively turned

into haptic disturbance as the learner’s performance improves. Experimental
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results indicate some advantages of hybrid scheme, but did not show statistically

significant differences in any retention tests.

To extend the prior work to practical driving, we developed a haptic driving

training simulator which can provide realistic driving experiences. We recruited

experienced drivers and recorded their driving data by using the simulator. Then,

we trained neural networks with the collected data to obtain the optimized skill

models which can predict the expert drivers’ steering and pedaling behavior. We

tried to show the validity and applicability of our modeling approach in human

experiments. In results, our approach was valid to extract expert driving skills.

However, only the steering model was applicable to performance-based haptic

feedback.

Therefore, we implemented an autopilot algorithm using both expert skill

models instead of performance-based haptic feedback, and conducted a test of

autopilot runs on various paths. In results, the autopilot algorithm utilized by

expert skill models can complete driving on every path. Further, we found the

simulator can shows a steering control similar to human behavior due to the

models trained by human expert drivers. Therefore, we named our framework as

human-like haptic assistance, and we implemented human-like haptic guidance

under this framework.

We conducted a final training experiment comparing two performance-based,

progressive haptic assistance methods for steering skill: human-like haptic guid-

ance and conventional robotic haptic guidance. In results, human-like haptic

guidance showed a better performance improvement than robotic haptic guid-

ance in both the accuracy and stability, because it mirrors an intrinsic nature

of human steering skill. In conclusion, our human-like haptic assistance can be
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effective on driving skill enhancement and training, and also it can be extendable

to other sensorimotor skills such as trajectory-following.
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I. Introduction

1.1 Preface: Research Motivation

Humans like us always make movements (motions). We breathe, walk and

run to move to other locations, we play games and sports to have a fun, and we

manipulate tools and objects to perform everyday functions. There are two main

forms of human movements: one form is based on inherited, intrinsic movements

such as eye blinking and breathing, and another form is based on learned move-

ments [69]. In this thesis, the author is focusing on the later one, the learned

movements.

Most of those movements have a specific goal; often we call a such goal as a

task. A sensorimotor task requires the process of (1) perceiving various sensory

information such as visual, auditory, haptic sensations and (2) reacting through

movements. To achieve a better outcome of sensorimotor tasks, humans perceive

environmental information from sensory channels beforehand, and then they in-

tentionally move their body (muscles and joints) to perform voluntary actions.

After the sufficient experience (or, practice) for the sensorimotor task, we learn;

our cognitive reactions and behavioral movements become optimized according

to the environmental states. The optimized behavioral control strategy against

a sensorimotor task is usually called a sensorimotor skill. See this definition of

the skill: “the ability to bring about some end result with maximum certainty

and minimum outlay of energy or of time and energy” [25]. A sensorimotor skill,

hence, includes human movements with increased efficiency of temporal and spe-

cial movements without inefficient consumption of physical energy in a particular

task circumstance.
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In previous decades, experimental psychologists have investigated the behav-

ioral nature of sensorimotor skill control and learning. In this area, controlling

an automobile (so-called driving) is regarded as a fascinating research domain for

several reasons. First, driving a car is routine in this era; automobiles are com-

mon, and individuals know what the driving skill is. Therefore, understanding

the nature of driving has a high potential to contribute to the society, because

it is a general and practical research domain. Second, driving is a representative

sensorimotor skill composed of learned movements such as steering and pedaling.

With simple limbs movements on mechanical manipulators (a steering wheel, ac-

celerator and brake pedals), humans can control an automobile to move to other

locations. Therefore, by measuring the kinematic and dynamic parameters of the

manipulators, limb movements can be easily quantified to obtain the numerical

task performance. Third, nevertheless, driving is a more challenging research tar-

get, compared to conventional targets like reaching/walking tasks. The dynamic

and complex controls and movements of human bodies underlie in the driving

skill. It requires a high cognitive load of visual-motor coordination to take a cor-

rect and safe action. Further, to control a nonholonomic vehicle, the skill requires

simultaneous operations of manipulators based on a coordinated motion of limbs.

However, this nature of driving frequently makes novice drivers feel unfamiliar

and frustrated before their skill levels become mature.

We still face to a lot of research demands to understand the principles on

human control and learning for the driving skill. To this end, as a research

continuum and a solution to those demands, the author introduces human-like

haptic assistance, a novel approach to (1) enhance human driving execution and

(2) educate the driving skill to novice drivers. The idea includes a robot-mediated

framework conflating various technologies such as artificial neural networks and

haptic assistance.
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1.2 Research Goal

Our framework mainly includes two main ideas.

First, artificial neural networks have been utilized to model an expert driving

behavior under considerations of human skill strategies. We collected execution

data of experienced drivers using a driving simulator, and then obtained a expert

skill model using the neural networks trained by the recorded data. Because

our model has been established by experienced human drivers, our performance-

based haptic assistance has a human-like driving behavior. We hypothesize that

this characteristics of our approach can induce unique effects for human drivers

(learners).

Therefore, second, the model has been applied to performance-based haptic

assistance, which embraces every form of robot-mediated training that utilizes

haptic feedback based on human task performance. In this thesis, we conducted

consecutive human experiments utilizing haptic feedback to show the modeling

validity and the effectiveness of our approach for driving skill enhancement and

training. The rest of this chapter contains a summarized contributions and an

overview of this research.

1.3 Contributions

The major contributions of this thesis are as follows:

1. Review of related works

2. Initial study: hybrid haptic assistance for virtual steering task

• A concept of hybrid haptic assistance: combining different performance-

based haptic assistance (haptic guidance and disturbance)

• Detailed design and implementation of hybrid haptic assistance
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• User study for the training effectiveness of hybrid haptic assistance

3. Development of haptic driving training simulator

• Integration of hardware and software for virtual driving simulation

• Detailed design and development of haptic accelerator/brake pedals

• Implementation of realistic torque feedback

4. Driving Skill modeling using neural networks for performance-based haptic

assistance

• Utilization of neural networks and its parameters

• Detailed design of expert skill model using neural networks for steer-

ing/pedaling

• Human experiment for validity of modeling

• Human experiment for applicability to driving skill enhancement

5. Human-like haptic assistance for car steering task

• A concept of human-like haptic assistance: performance-based haptic

assistance using neural networks

• Detailed design and implementation of human-like haptic assistance

• Autopilot test using human-like haptic assistance

• Human experiment for training effectiveness of human-like haptic as-

sistance

1.4 Organization

To understand the overall framework of human-like haptic assistance, the

background literature about haptics, human-robot interaction, sensorimotor skill

control and learning, and neural networks is introduced in Chapter II. As an initial
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study, this thesis involves a study on hybrid haptic assistance for training on a

virtual steering skill. The concept and implementation of hybrid haptic assistance

and the training results of human experiments are introduced in Chapter III.

Next from here, the author explains the main study of this thesis to extend

the basic idea and overcome the limitations in the initial study. In Chapter IV, the

author introduce a haptic driving training simulator, our apparatus for all of im-

plemented algorithms and human experiments, In Chapter V, the detailed mod-

eling procedure to capture an expert driving skill using neural networks, and its

validation and applicability to performance-based haptic feedback through user

studies are explained. Finally, in Chapter VI, the overall framework of human-

like haptic assistance for skill learning is introduced, and validated through an

autopilot test and a human experiment to show training effectiveness.

Then, possible recommendations and suggestions acquired from the previous

chapters to generalize the study on the human-like haptic assistance are discussed

in Chapter VII. In Chapter VIII, we summarize all findings and remaining future

works as the finale of this thesis.
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II. Background

In this chapter, the author presents previous literature necessary to under-

stand the main topic of this thesis. Our interdisciplinary study is closely related

to various research fields, including haptics, human-robot interaction, sensorimo-

tor control and learning, and neural networks.

2.1 Context of Driving Skill

Controlling an automobile is a representative sensorimotor task which re-

quires continuous executions of sub-tasks via various driving interfaces including

mechanical manipulators. For example, automobile drivers manipulate a steering

wheel to control the heading of a vehicle (steering), steps on accelerator, brake

and clutch pedals to accelerate/decelerate the velocity of a vehicle (pedaling).

Also in any particular driving events and scenarios, the drivers can change gears

or interact with interface buttons manually. However, in this thesis, the con-

text of a driving skill is narrowed down with only steering and pedaling skills

using the mechanical manipulators, because they are only concurrent sub-tasks

with full contact with limbs which providing haptic information can be efficiently

contributed.

2.2 About Sensorimotor Control and Learning

Basically, to understand how our framework can contribute to both enhance-

ment and training of the driving skill (in our context), it is necessary to remark

several previous studies about sensorimotor skill control and learning, which a

number of experimental psychologists have been studying on.
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2.2.1 Motor Program

One of the most influential theories that account for control and learning

of sensorimotor skills is Schmidt’s schema theory [69, 67]. The schema is a rule

developed by lifetime practice and experience, describing a relationship between

the outcomes achieved on past attempts at running a motor program, and the

parameters of the motor program are chosen on those attempts [67]. Here a

motor program is an abstract representation which can initiate the production

of a coordinated action sequence, and it is called a generalized motor program

(GMP) when the program is generalized by several parameters and provides

altered actions depending on the choice of the parameters [69].

According to the schema theory, a learner develops two schemas during motor

learning: the recall and recognition schema. The recall schema is concerned

with movement production, and it represents the abstract relationship between

parameters of the motor program and movement outcome, including the initial

conditions of the movement. Learning a motor task requires cognitive processing

to establish a mental model called a motor program, and its building process is

called motor programming [69, 34]. The motor program provides a reference for

reproducing the motor task according to the current task context. A sensorimotor

skill is a human behavioral control strategy against a sensorimotor task, which

requires the process of perceiving various sensory information such as visual,

auditory, and tactile senses and reacting through movements from the motor

program stored in memory. In the case of a beginner, a motor program is not well-

parameterized yet, and through learning or a self-practice, the motor program

becomes improved.

Therefore, traditionally, the sensorimotor skill learning have been facilitated

by human-to-human interaction; human instructors transfer assistive information

to help human learner developing their own GMP. This process is called a training,
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and the assistive information is usually called augmented feedback.

2.2.2 Intrinsic and Augmented Feedback

In the control and learning of sensorimotor skills, during the action, hu-

man learners receive two types of feedback: inherent feedback and augmented

feedback [69]. The former feedback is also-called task-intrinsic feedback [42].

The feedback is automatically generated during task execution in any forms of

sensory stimuli, and can be delivered to learners while paying attention (such

as observation) to their own movements and the interaction with task environ-

ments. However, in usual learning situations, the inherent feedback is not easily

recognizable for learners and also hard to be usefully evaluated for their own

practice.

The contrast type of the inherent feedback is augmented feedback, which lit-

erally augments the inherent feedback. A number of studies about sensorimotor

skill learning suggest that the learning process can be expedited by augmented

feedback, which involves external assistive information. Therefore, a more effec-

tive skill learning can be established through a training which provides augmented

feedback which refers to the knowledge pertaining to a learner’s performance (e.g.,

instructions by a coach). Augmented feedback is categorized into two classes:

knowledge of results (KR) and knowledge of performance (KP) [69]. KR is infor-

mation about the resulted outcome of task execution, that is usually descriptive,

terminal feedback about achievements after task completion. In contrast, KP is

information about the nature of task performance, also descriptive but able to

be concurrently given during task execution.

2.2.3 Haptic Augmented Feedback and Haptic Assistance

Many trainers, coaches, scientists and researchers already have utilized and

studied various classes of augmented feedback to understand human behaviors
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and to increase effectiveness of practice. Especially, recent advances of haptics

technology has enabled haptics researchers offer an opportunity of designing spe-

cial class of augmented feedback in the form of tactile or kinesthetic stimuli or

both, in addition to visual and auditory stimuli, i.e., haptic augmented feedback.

Tactile feedback is generally useful for transmitting relative simple movement

information such as timing and spatial destination [71, 30, 37]. In contrast,

kinesthetic feedback can deliver mechanical momentum and move the limbs of

interest, providing more direct, detailed, continuous information on the desired

movement as KP. The efficacy of kinesthetic augmented feedback as KP has been

investigated in various applications, e.g., writing [26, 70, 9, 17], sports [74, 19],

and rehabilitation [59, 33, 43].

2.3 About Haptic Assistance

The work we present in this thesis is also concerned with kinesthetic aug-

mented feedback, providing KP for the driving skill. To this end, the term haptic

assistance in this thesis is a generalized expression of all strategic methods and

algorithms providing haptic (kinesthetic) augmented feedback. General strate-

gies of haptic assistance can be classified into gross assistance and gross resis-

tance [62]. While the former provides the haptic assistance that facilitates ex-

ecution of a motor task (reducing performance errors), the latter increases the

difficulty of training by adding haptic stimuli that hamper movement (augment-

ing performance errors).

2.3.1 Gross Assistance and Haptic Guidance

The most representative approach in gross assistance is haptic guidance,

where external haptic stimuli, either active or passive, are provided to the learner

concurrently during training in order to communicate information on the desired
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movement. Haptic guidance has been expected to reduce the learner’s unfamil-

iarity with a new motor skill and transfer the ideal skill to the trainee, thereby

increasing the speed at which the skill is learned. A considerable body of pre-

vious studies examined the efficacy of haptic guidance, e.g., for writing [26, 70],

dynamic control [23], motion reproduction [20], and rehabilitation [40]. How-

ever, they have not yet clearly demonstrated the anticipated benefits of haptic

guidance. The common result has been that skill performance improves with hap-

tic guidance during training, but it degrades rapidly after training when haptic

guidance is not provided, even to levels below those attained by training with no

guidance. This general tendency may be attributed to the guidance hypothesis:

excessive concurrent augmented feedback may make learners dependent on the

feedback stimuli and reduce their focus during the training, rather interfering

with retention of the learned skill [66, 68].

The aforementioned drawback of generic haptic guidance inspired the de-

velopment of progressive haptic guidance, in which the amount of guidance is

decreased over the course of training to lessen the learner’s dependence on the

guidance stimuli. In this method, strong guidance stimuli are provided at the ini-

tial stage of learning to enable the learner to experience the desired movement,

then they are gradually weakened, ultimately allowing the learner to practice with

no guidance in the final stage of training [9, 38]. However, this approach generally

ignores individual differences in learning speed. A presumably better method is

to adjust the degree of guidance adaptively to the learner’s performance [10]. This

performance-based progressive haptic guidance has been frequently adopted for

training of various motor skills, such as walking [18], driving [45], and dynamic

target hitting [31]. In particular, Marchal-Crespo et al. showed that performance-

based progressive guidance can lead to faster improvement of steering skill than

can fixed-gain guidance [45].
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2.3.2 Gross Resistance and Haptic Disturbance

In gross resistance, error amplification, which provides the haptic stimuli

that increase movement errors during training, has received the most attention.

In error amplification, the learner practices a motor skill while being exposed

to an external force field that amplifies the task error, e.g., a force field that

opposes the desired movement. After practice using this method, the learner

usually exhibits an aftereffect, which can help correct the learner’s movement to

become similar to the desired one. For instance, Emken and Reikensmeyer applied

a viscous force field to the learner’s leg during normal walk [18]. Adaptation to

the force field was accelerated when larger amplification errors were induced in

the initial phase of training. Patton et al. demonstrated the benefit of error

amplification in a reaching task with post-stroke patients [59, 60]. Reisman et al.

reported that the walking symmetry of post-stroke patients could be improved by

amplifying the asymmetry of walking during practice [64]. Milot et al. compared

the effects of haptic guidance and error amplification on a timing-based task using

a pinball-like game [47]. Both methods enhanced skill performance, but training

with error amplification led to better improvement. However, error amplification

has the drawback that the learner can anticipate the feedback stimuli that will

be provided because they are determined on the basis of the learner’s current

performance.

Haptic disturbance is an extension of error amplification encompassing ele-

vated difficulty of training in any forms. In particular, haptic disturbance includes

random, unpredictable force fields that do not allow the learner to anticipate the

feedback stimuli. Our research group first proposed the idea of haptic disturbance

in [38], for a trajectory-following task using a robotic arm. This study demon-

strated that noise-type haptic disturbance can contribute to the better retention

of a motor skill than progressive haptic guidance or training with no assistance.
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A similar result was also obtained in the recent study of Powell and O’Malley [62].

They compared the efficacy of four haptic assistance paradigms for shared control

with two tasks (dynamic target hitting and trajectory following). Random haptic

disturbance generally outperformed the other assistance methods in the general-

ization test of the trajectory following task. The generalization test used a task

slightly modified from the task used during the training. In [36], we investigated

the usefulness of different haptic assistance methods in memorizing the selection

orders of points scattered on a 2D plane. Haptic disturbance implemented as a

viscous force field was shown beneficial for delayed recall of the selection orders.

2.4 About Driving Skill

Originally, the term cybernetics has a comprehensive definition of covering

all of the scientific studies of control and communication in the animal and the

machine. Humans always interact (intercommunicate) with other cognitive sys-

tems (or, agents), such as other human beings, animals, devices and machines;

we live in a cybernetic world.

Even in driving, a user agent (driver) and a machine agent (automobile)

interact with each other in a cybernetic framework. Information flows in both

directions between two agents via mechanical contact on mechanical manipu-

lators. First, the automobile driver can motorize an action via manipulators,

and the automobile then reflects the corresponding action. Second, information

about driving states resulted by current driving environments is provided to au-

tomobile drivers through force and torque signals via manipulators to the limbs

of the driver, as an intrinsic feedback of driving. After perceiving the feedback

about environmental states, the driver can react through better cognitive behav-

ior. Therefore, driving is a human-machine cooperative task in shared control

(also-called human-machine shared control; HSC) [50].
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2.4.1 Haptic Assistance for Driving Skill Enhancement

Recent technological advances have also enabled advanced interaction with

artificial machine agents having cognitive capabilities, usually so-called robots.

As a division of cybernetics, the studies of control and communication between

humans and robots are called Human–robot interaction (HRI); by definition, HRI

is a field of study for understanding, designing, and evaluating robotic systems

for use by or with humans [24]. In HRI, using any cybernetic interface, both a

human agent and a robot can communicate essential information to each other,

via various sensory channels.

Nowadays, intelligent vehicles (i.e., robotic vehicles) where automated, cog-

nitive systems are involved are emerging as an alternative to traditional auto-

mobiles. In these intelligent vehicles, the usual feedback loop of HSC can be

augmented; Especially, the robot agent can intelligently alters and delivers hap-

tic feedback to influence current driver’s skill maneuver. Usually, this type of

augmented HSC is also called haptic shared control [4, 5], which is mostly de-

signed to support driving skill execution.

In this thesis, we define haptic assistance as a goal-oriented expression of

haptic HSC to assist humans to enhance or to improve skill performance. A

haptic assistance system plays the role of a collaborator that encourages humans,

mostly by demonstrating appropriate maneuvers and correcting their driving per-

formance. To this end, the human driver and the system share a common goal,

i.e., successful driving, where both agents perform an effective, safe, and robust

driving control. Hence, haptic assistance is considered as a bridge to automated

driving with improved performance and reduced effort [48]. Various automobile

companies have investigated haptic assistance as advanced driver-assistance sys-

tems (ADAS) [61], such as lane-keeping assistance systems (LKAS), intelligent

parking assistance systems (IPAS), and adaptive cruise control (ACC).
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In haptic HSC, both the user and the haptic assistance system communicate

in real-time to achieve the optimum control of the shared goal. The system

continuously watches and analyzes a current user’s performance, and then exerts

personalized haptic feedback, regarding a certain baseline of task performance,

i.e., the ground truth. To this end, to design haptic assistance systems, the

process of quantifying a skill performance as a desired reference to a user’s current

performance to generate suitable feedback (which is usually called a modeling

process) should be always preveniently required.

To enhance the task performance, the most representative and effective form

of haptic assistance is haptic guidance (often called haptic shared control), where

external haptic stimuli are provided to the user in order to communicate control

information on the desired movement. Several studies have demonstrated that

haptic guidance can enhance the task performance of steering [72, 21, 65] and

pedaling skills [6, 49, 32] by transferring useful information via haptic channels.

2.4.2 Haptic Assistance for Driving Skill Training

Traditionally, sensorimotor skill training has been usually facilitated by human-

to-human interaction. Substituting the role of a human trainer by a human-robot

shared interface, a robot-mediated training on sensorimotor skills has been devel-

oped and gained a high research interests [27]. Like human teachers, a robot-

mediated training system can provide appropriate augmented feedback that per-

tains to the results of the trainee’s motor action through various kinds of sensory

information, often with reduced cost. Further, a robot-mediated training also

allows safe practice in simulated scenarios, especially those including risky situa-

tions, in virtual environments [76]. The educational efficacy of a robot-mediated

training has been tested for various applications (e.g., sports and rehabilitation),

and these previous studies demonstrated that a well-designed robotic assistive
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scheme can even improve the quality of learning, such as learning rate and the

final skill level of trainees [63].

Therefore, haptic assistance is more widely utilized in motor learning and

training, as well as rehabilitation applications. Using a number of strategies, in-

cluding haptic guidance and other algorithms, haptic assistance was investigated

to determine its training efficiency for various tasks [63, 46]. Here, a haptic assis-

tance system should play the role of a skill trainer ; while a driving skill learner

tries to drive properly, the system checks the current learner’s performance and

provides haptic augmented feedback that transfers information about KP. Thus,

the feasibility of haptic assistance, in which the system is aware of human perfor-

mance errors in order to continually generate KP [27], lies in the special benefits

to driving skill training. The effectiveness of haptic assistance under the con-

tinuous observation of a learner’s driving control was shown for several driving

tasks, especially for curve-tracing and lane-keeping tasks [45] as well as the reverse

parking task [29].

2.5 Remarks

Most of the previous studies examined the effectiveness of performance-based

kinesthetic feedback to arms or legs for a steering task [45, 44] or a pedaling

task [6, 49, 32], as a sub-skill of driving. In those studies, the task and the

skill model to learn steering or pedaling was manually abstracted into simple

deterministic forms. However, these abstraction of tasks were usually different

from real driving which requires simultaneous manipulation of the steering wheel

and pedals for lane-keeping and velocity control. This is what the work we present

in this paper focuses on: a framework of (1) building a proper skill model and

(2) utilizing the model for haptic assistance.
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Figure 2.1: Framework of driving skill modeling for haptic assistance.

2.5.1 Framework

In this thesis, the author introduces a data-driven, robot-mediated frame-

work for enhancement and training on a driving skill, that (1) models a proper

expert driving skill from experienced drivers, and (2) utilizes the model for haptic

assistance, to perform a freeway driving (lane-keeping with maintaining the same

velocity) task (Figure 2.1). Our approach is to record how experienced drivers

execute driving successfully without haptic assistance, and then to train an ad-

equate continuous model (representing a virtual expert) of associated variables

from the collected data, which was obtained from virtual environments.

A promising way is to record how expert drivers execute driving tasks and

then learn an adequate continuous model of associated variables from the col-

lected data. However, this important domain of data-driven skill modeling has

not been researched intensively. We face an immediate demand for reasonable

modeling methods of complicated driving skills, which is a prerequisite of com-

petent skill transfer systems.

2.5.2 Neural Networks

Specifically, we introduce a useful methodological solution that extracts a

behavioral model of experienced drivers using (artificial) neural networks. A

neural network (NN) is generally used to find a nonlinear function that explains
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an input/output relationship, and to identify a structure beneath a complex dy-

namic system, e.g., a human driving behavior. Zhang et al. showed that the

characterization of driving skill levels (expert, typical, and low-skill) is possible,

by analyzing individual driving manuvers using several pattern recognition algo-

rithms [77]. Also, various researchers presented the feasibility of NN-based model

of human driving skills for feedforward steering control [39, 22].

In a similar way, we extend and apply those model to the freeway driving

task which requires simultaneous manipulation of the steering wheel and pedals

to generate and provide assistive torque feedback for haptic assistance. Previ-

ously, Nechyba and Xu used neural networks to model a human driving strategy

from driving data collected under simplified driving simulation using a mouse

interface [54, 55, 56]. Their neural network model could produce a predictive

trajectory based on an individual motor behavior using experimental states and

environmental variables as inputs. However, their study did not involve realistic

driving hardware, so the usability of their behavioral model for a pragmatic driv-

ing training has not been validated yet. In this study, we complete their NN-based

modeling approach in a virtual driving simulator, and validate the suitability of

our framework via consecutive human experiments.
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III. Initial Study: Hybrid Haptic Assistance

On Virtual Steering Task

The literature about the classification of haptic assistance (Section 2.3) has

suggested that haptic guidance may accelerate the learner’s acquisition of a un-

familiar motor skill in the early stage of training, whereas haptic disturbance

can be effective in further improving the motor skill in the later stage of train-

ing [38, 63]. The present initial study investigated the validity of the following

hypothesis: Combining haptic guidance and disturbance into hybrid haptic assis-

tance may improve the effectiveness of motor learning. To this end, we carried

out a human subjects study using a simulated steering task. As previously stated,

steering is essential part of driving skill that most people learn, and it has been

the subject of many prior studies [21, 45, 44, 13]. We designed a hybrid haptic

assistance method for the steering task and then evaluated its efficacy compared

to that of progressive haptic guidance and haptic disturbance.

3.1 Methods

3.1.1 Training System and Task

For training and tests, we used a commercial steering wheel (Logitech G27

Racing Wheel; rotation angle range 900◦) that has torque feedback capability

and a 27-inch LCD monitor. Torque feedback was updated at 200 Hz using the

DirectInput library. The range of feedback commands was between -10,000 and

10,000. The actual values of this torque range were unavailable from the manufac-

turer, but we confirmed that the range was sufficient to provide distinct feedback.

Visual scenes were displayed on the screen at a 60 Hz refresh rate using OpenGL.
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The trainees were allowed to adjust the distance (0.5 and 0.8 m) between the

driver’s seat and the monitor to have both comfortable driving posture and clear

visual perception.

A driving path was drawn using three parallel white lines (Figure 3.1): a

centerline that indicated the desired path and two side lines that represented

the boundaries of the driving lane, each 1 m apart from the centerline. Green

buildings were also placed outside the two sidelines (10 m away from the center-

line) to facilitate depth perception. The height of each building and the distance

between buildings were randomly chosen between 1 and 4 m and between 10 and

13 m, respectively. The vehicle position was displayed as a red arrow instead of a

car shape, similarly to [21], to clearly visualize its position and orientation with

respect to the centerline.

Figure 3.1: Visual scene. The top-right inset shows a magnified view of the

vehicle.

Participants’ task was to control the simulated vehicle to track the centerline

of a displayed path by turning the steering wheel. The velocity of the vehicle was

fixed at v = 4 m/s to eliminate the need for accelerator and brake pedals.
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3.1.2 Driving Paths

S(20) 

S(20) 
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S(20) 
R(20) 

L(20) R(40) 

L(40) 

R(40) 
40 m 

40 m 

S(20) 

20 m 

END 

START 

Figure 3.2: Example driving path (P1). Notation is described in the text.

We designed four driving paths to use in the experiment by combining

straight and curved segments. All curves were right-angle turns, so their ra-

dius is the only factor that controls the difficulty of driving on them. The four

paths were:

P1 : S(20)→ R(20)→ S(20)→ L(40)→ S(20)

→ L(20)→ S(20)→ R(40)→ S(20)

P2 : S(20)→ L(40)→ S(20)→ R(20)→ S(20)

→ R(40)→ S(20)→ L(20)→ S(20)

P3 : S(20)→ R(40)→ S(20)→ L(20)→ S(20)

→ L(40)→ S(20)→ R(20)→ S(20)

P4 : S(20)→ L(20)→ S(20)→ R(40)→ S(20)

→ R(20)→ S(20)→ L(40)→ S(20)

where S(l) denotes a straight path with length l (m); R(r) and L(r) represent a
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right and a left curve with radius r (m), respectively. All paths had the same total

length of 288.5 m (straight path: 100.0 m; curved path: 188.5 m). An example is

provided in Figure 3.2.

These paths were designed to be reasonably difficult by making the four

curved segments have different lengths and directions. The task performance for

each path was represented by the mean absolute tracking error:

µ =
1

N

N−1∑
i=0

|e[i]|, (3.1)

where e[i] is the distance between the vehicle and the centerline in the i-th sample

(recorded at 200 Hz) (Figure 3.3).

3.1.3 Haptic Assistance Design

We tested four haptic assistance methods, including the control condition of

no assistance. The other three haptic assistance methods are described in this

subsection.

Progressive Haptic Guidance

As reviewed earlier, the performance-based progressive haptic guidance is

regarded as the most effective guidance scheme, especially for steering tasks [45,

44, 43]. Thus, we implemented the guidance algorithm presented in [45, 43] for

our experiment.

This guidance algorithm is based on the observation that a driver determines

his/her driving based on prediction, not on the current situation. Therefore, we

considered two error terms: the look-ahead direction error eang and the look-

ahead distance error edis (Figure 3.3). In our simulation, d = v∆t and ∆t = 1 s

is the look-ahead time. The same ∆t = 1 s was used in [21].

The desired angle θd of the steering wheel and the guidance torque τG to

make the current steering wheel angle θ converge to θd are determined by the
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Figure 3.3: Variable definitions. P: current vehicle position; Q: point nearest to

P on the centerline; Q′: look-ahead point on the centerline with a path length d

from Q; w: vector that indicates the orientation of the vehicle; eang: look-ahead

direction error (angle from w to PQ′); edis: look-ahead distance error (distance

between P and the point projected from Q′ onto PQ.
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following PD control-based rules:

θd = Gangeang +Bang ėang +Gdisedis +Bdisėdis, (3.2)

eθ = θ − θd, (3.3)

τG = GGeθ +BGėθ, (3.4)

where Gang = 80, Bang = 2 s, Gdis = 10 degree/m, Bdis = 0.25 degree·s/m,

GG = 10 degree−1, and BG = 0.1 s/degree. These gains allow eθ to converge

to 0 when the vehicle is autonomously driven along the four paths using haptic

guidance only, without a driver.

For progressive guidance, the guidance torque must be adjusted adaptively

according to the driver’s performance. First, we consider the performance changes

within a training trial. During each trial, the two torque gains GG and BG are

updated at each sampling time i following the rule presented in [18]:

τG[i] = K[i] (GGeθ[i] +BGėθ[i]) , (3.5)

K[i+ 1] = fKK[i] + gK |eθ[i]|, (3.6)

where K[1] = 1. fK is the forgetting factor that decreases the guidance torque

over time, and gK is the learning factor that increases the guidance torque in

proportion to the absolute tracking error. In the experiment, fK = 0.9996 and

gK = 0.00004 m−1.

Second, we consider the performance variations across the training trials.

An across-trial gain α[j] of the j-th trial is computed as

d (µ[j], µgood) =

 µ[j]− µgood if µ[j] ≥ µgood

0 otherwise
, (3.7)

α[j + 1] = fαα[j] + gαd (µ[j], µgood) (3.8)

where α[1] = 1. fα and gα are the across-trial forgetting and learning factors,

respectively. µgood is a reference for high performance and set to be a small value
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that the learner rarely outperforms. In the experiment, µgood = 0.02 m, fα = 0.8,

and gα = 0.65 m−1. It is noted that α[j] is not updated if the participant’s

performance is poor (µ > 0.04 m) in both of the two previous trials.

Combining the two adjustments, the final guidance torque at the sampling

time i during the j-th trial is

τ [i] = α[j]τG[i]. (3.9)

Using this guidance rule, we conducted a pilot experiment with three partic-

ipants to determine the number of trials necessary for training. The participants

finished 20 trials each, and their across-trial gain α[j] decreased to be lower than

0.1 after the 17th or 18th trial (Figure 3.4). Such small gains do not result in

perceptible torque feedback, so the number of training trials was determined to

be 16.

Haptic Disturbance

For haptic disturbance, noise-like torque feedback was produced by the steer-

ing wheel to elevate the difficulty of the task. The torque command was computed

by

τ [i] = τD[i] = DDPN [i], (3.10)

where DD is the disturbance gain and PN is the Perlin noise function as used in

[38]. In our implementation, PN approximated a Gaussian distribution with an

almost zero mean (0.0225) and a standard deviation of 0.4608 (both measured

empirically). The same distribution was used in all trials.

DD was determined in such a way that the distribution of τD is comparable

to that of τ used in the first training trial of progressive guidance (τ [1] = τG[1] in

(3.9)). For this purpose, we collected samples of τ in the first trials of the three

participants in the pilot experiment described in Section 3.1.3. These samples
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(a) Within-trial gain K[i] (scaled by α[j])

(b) Across-trial gain α[j]

Figure 3.4: Guidance gains of one participant observed in the pilot experiment.

– 25 –



followed a Gaussian distribution with an almost zero mean and a standard devi-

ation 2645.8. Thus, we set DD to 5000 to make the standard deviations of both

distributions to be very similar, with that of τD[i] being 2304.0 for all i.

Hybrid Haptic Assistance

Hybrid haptic assistance combines haptic guidance and disturbance accord-

ing to the learner’s performance. In our progressive guidance algorithm, the

across-trial gain α[j] is decreased during training to reduce the guidance torque.

To determine the amount of disturbance torque, we define another across-trial

gain β[j] as

β[j] = 1− α[j] (3.11)

Then the hybrid assistance torque at time i during the j-th trial is computed by

τ [i] = α[j]τG[i] + β[j]τD[i]. (3.12)

If a trainee performs better in the current trial j than in the previous trial,

α[j] is decreased but β[j] is increased in the subsequent trial. Hence, the guid-

ance component in the feedback torque α[j]τG[i] is decreased, but the disturbance

component βjτD[i] is increased. With this hybrid assistance scheme, we expected

that participants could practice with haptic guidance in early trials while experi-

encing the desired wheel operations. Then, the participants would be challenged

with disturbance torque in later trials, which may stimulate them to further im-

prove their skill that they acquired as a result of previous training facilitated by

haptic guidance.

The initial values were α[1] = 0.9 and β[1] = 0.1, and α[j] and β[j] were

expected to be close to 0.1 and 0.9 in the last (16th) trial (α[j] was about 0.1 after

training was completed in the pilot experiment described earlier in Section 3.1.3).
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3.1.4 Participants

To recruit participants, we tried to control their gender, age, and driving

skill level. Gender and age are generally regarded as important factors for motor

learning, especially for steering tasks [63]. Eligible participants were those who

did not have a driving license, or had not driven a car or motorcycle in the

previous two years1. As a result, 40 eligible participants (all male; 18–25 years

old; M 21.03; SD 2.19) participated in the experiment. They were paid KRW

15,000 (' USD 15) after the experiment.

3.1.5 Procedure

Ten participants were randomly assigned into each of four groups in a between-

subjects design. The three groups were: no assistance (N), haptic guidance (G),

haptic disturbance (D), and hybrid haptic assistance (H). Within-subjects designs

were inappropriate because the degrees of learning were different among the three

methods.

The experiment was conducted on two consecutive days. On day 1, each

participant finished three sessions for pre-practice (S-PP), training (S-TR), and

an immediate retention test (S-IR). On day 2, 24 hours after the onset of day 1,

each participant completed another session for a delayed retention test (S-DR).

In S-PP, the participant freely drove a 60 m straight path only once. The

purpose was to familiarize the participant with our driving simulator, while min-

imizing their improvement of driving skills before actual training. Three partici-

pants asked to conduct an additional practice trial, and they were allowed to do

so.

S-TR was for main training and consisted of 16 trials. Torque feedback was

provided according to the training method assigned to the participant. The four

1In Korea, many young people who have passed a driving license do not own a car. Their

driving skills remain very low.
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driving paths P1 − P4 were grouped into one block with the fixed order within

each block, and four such blocks of trials were repeated. The participant was

required to rest for 1 min between blocks to prevent fatigue.

After S-TR, the participant rested for 1 min and then proceeded to S-IR that

was included to assess their performance improvement immediately after training.

In S-IR, each participant finished one block of the same four trials using P1 − P4

with no haptic assistance.

After S-IR, the participant was asked to answer the following five questions on

a 7-point Likert scale: (1) Was the training easy/difficult to follow? (Easiness);

(2) Was the training effective? (Effectiveness); (3) Was the training comfort-

able/uncomfortable? (Comfort); (4) Was the training fun? (Fun); and (5) Do

you think the training helped to improve your skill? (Helpfulness). The first-day

experiment took about one hour per participant.

On day 2, S-DR was conducted. It had the same procedure as S-IR. The

purpose of S-DR was to evaluate the long-term effectiveness of each training

method. This session took about 10 min for each participant.

3.2 Results

3.2.1 Learning Curves in Training Session

Figure 3.5 shows the mean absolute tracking errors µ defined in (3.1) that

were averaged across the participants of each group for each experimental trial.

The control condition N, training with no haptic assistance, resulted in a typical

learning curve. Compared to the N group, the haptic guidance group G exhibited

smaller µ during training (in S-TR). The haptic disturbance group D showed

the steepest learning curve, with the highest µ in S-TR. These results of µ are

consistent with the nature of each assistance method [38].

The results of the hybrid assistance group H were more complex. In the
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Figure 3.5: Means of the absolute tracking errors for each trial. T1–T16, I1–I4,

and D1–D4 denote the trials in session S-TR, S-IR, and S-DR, respectively.

early trials of S-TR, µ’s of this group were low and rapidly decreased, similar to

group G. However, µ began to increase with further trials (after T4 in Figure 3.5)

and stabilized after T8 until the end of S-TR, similar to group D. This tendency

clearly demonstrates the hybrid nature of this assistance method.

3.2.2 Mean Absolute Tracking Errors for Entire Path

This subsection reports the results of the two post-training retention test

sessions S-IR and S-DR. Each session consisted of one block of four trials, and the

mean tracking errors of each participant group for each trial were averaged over

the four trials. The results are shown in Figure 3.6a. For statistical analysis, we

applied a mixed-factor two-way ANOVA with participant group (haptic assistance

method) as a between-subjects factor and path (P1–P4) as a within-subject factor.

In S-IR, the ranking of the average µ’s was: H < G < N < D. No statistically
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(c) Curved segments only

Figure 3.6: Mean absolute tracking errors µ measured in the two test sessions.

Error bars represent standard errors.
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significant differences were found among the participant groups (F (3, 36) = 1.00,

p = 0.4035) or among the paths (F (3, 108) = 0.44, p = 0.7272). In S-DR, the

ranking was changed to: H < N < G < D. Statistically significant differences

were observed among the paths (F (3, 108) = 5.35, p = 0.0018), but not among

the participant groups (F (3, 36) = 0.18, p = 0.9103). As shown in Figure 3.5,

the first trial using P1 in S-DR resulted in the highest tracking errors, likely due

to the one day recess from the first day training.

3.2.3 Mean Absolute Tracking Errors for Straight and Curved

Segments

The driving paths consisted of straight and curved segments, and we ob-

served during the experiment that the required driving skill was dependent on

the segment type. While the participants mainly relied on tracking the centerline

on the straight segments, they had to rotate the steering wheel to a large degree

in order to make turns on the curved segments. To distinguish the two cases,

we computed the mean tracking errors separately for the straight and curved

segments.

The mean absolute tracking errors for the straight segments, µs, are shown

in Figure 3.6b. In S-IR, the ranking of the average µs’s was: G < H < N < D. No

statistically significant differences were found for either factor (participant group:

F (3, 36) = 1.22, p = 0.3163; path: F (3, 108) = 0.38, p = 0.7658). In S-DR, the

ranking was changed to: N < G < H < D. Only path was a statistically significant

factor (participant group: F (3, 36) = 1.03, p = 0.3890; path: F (3, 108) = 4.75,

p = 0.0038).

The mean absolute tracking errors for the curved segments, µc, are shown

in Figure 3.6c. In S-IR, the ranking of the average µc’s was: H < G < N < D.

Neither factor was statistically significant for µc (participant group: F (3, 36) =

0.97, p = 0.4198; path: F (3, 108) = 0.80, p = 0.4951). In S-DR, the ranking

– 31 –



was: H < G < D < N. Only path was a statistically significant factor for

µc (participant group: F (3, 36) = 0.24, p = 0.8701; path: F (3, 108) = 5.59,

p = 0.0013).

3.2.4 Summary of Quantitative Results

In the immediate retention test, the two training methods that include guid-

ance feedback, G and H, generally showed better tracking performance. The

highest performance was achieved with H for the entire path, G for the straight

segments, and H for the curved segments. However, training method did not have

statistically significant effect on any of the three tracking errors. In the delayed

retention test, the skills of the four participant groups seem to have improved to

a similar level, without noticeable patterns or statistically significant differences.

Therefore, our hypothesis of the present study, combining haptic guidance and

disturbance into hybrid haptic assistance may improve the effectiveness of motor

learning, remains inconclusive.

E a s i n e s s E f f e c t i v e n e s s C o m f o r t F u n H e l p f u l n e s s
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Figure 3.7: Subjective scores responded from the participants for the question-

naire (7-point Likert scale).
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3.2.5 Subjective Questionnaire

The mean scores for the five subjective questions in the questionnaire are

shown in Figure 3.7. The post-hoc Kruskal-Wallis test did not show any statis-

tically significant difference for any of the five questions. Hence, only noticeable

results are summarized in the following for each training method. Method N was

ranked at the first on easiness, but at the lowest or second lowest on all other

criteria. H was ranked the highest on all criteria except easiness and comfort. G

was ranked the highest on effectiveness (a tie with H) and comfort. D was ranked

the lowest or second lowest on all criteria except helpfulness.

3.3 Conclusions and Discussion

We designed a hybrid haptic assistance scheme for the learning of a steering

skill by combining haptic guidance and disturbance. In this method, the feedback

force provided to the learner initially guides the learner’s movement by correct-

ing errors, but the force is progressively changed to random disturbing force to

improve the learner’s skill level further. The effectiveness of this hybrid assis-

tance method was investigated by a human subjects experiment in comparison

to other three methods of no haptic assistance, progressive haptic guidance, and

haptic disturbance, with emphasis on the retention performance. According to

the experimental results, the methods that included guidance feedback, i.e., hap-

tic guidance and hybrid haptic assistance, seemed to be generally advantageous

for immediate retention of the learned skill, but its statistical significance was not

supported. It is noted that individual performance differences were very large in

our experimental data. The four methods also showed similar performance in the

delayed retention test conducted one day later.

The steering task used in the present study requires simultaneous execution

of two kinds of motor skills. One is the open-loop road tracking skill, which
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Figure 3.8: Example of the steering wheel trajectories of P1 collected in S-IR. P1

belonged to group N and showed median performance in S-IR within the group.

A black solid line shows the raw data. A red dashed line represents the data

obtained by applying a low-pass filter with 0.1 Hz cutoff frequency to the raw

data.

is necessary to follow a road on the basis of the visually-perceived curvature of

the road by rotating the steering wheel relatively slowly. The other is the error

canceling skill, which is used to control the vehicle to stay on the centerline

in a closed-loop by correcting small tracking errors with relatively fast wheel

operations based on visual feedback. This classification is similar to that of point-

to-point movements that generally consist of an open-loop transfer motion and

smaller corrective movements [15]. We initially expected that the road tracking

skill would be more important in curved segments, while the error canceling skill

would be more critical in straight segments.

To gain more insights, we attempted to extract the participants’ movement

characteristics corresponding to each of the two skills from the experimental data.

An example is given in Figure 3.8. We can regard smooth low-frequency move-

ments in the figure as a representative of the road tracking skill, and the difference

between the original and low-frequency trajectories as a representative of the er-
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ror canceling skill. For further analysis, we applied a high-pass filter with 0.1 Hz

cutoff frequency to the steering angle data collected in S-IR and S-DR, which

allowed us to isolate the trajectories for error canceling movements. Then we

computed the energy of this trajectory and divided the energy by that of the

original trajectory to find the normalized energy ÊEC used for error canceling

movements. Results are shown in Figure 3.9.

While driving on straight segments, the need for the error canceling skill can

be greatly more significant than that for the road tracking skill. This anticipa-

tion is confirmed in Figure 3.9b; ÊEC on the straight segments is greatly higher

than ÊEC on the entire path or the curved segments for each of the four training

methods. We also expected that the noise-like disturbing forces provided by hap-

tic disturbance or hybrid haptic assistance could contribute to further improving

error canceling skills, but this expectation was not supported. This is against the

positive results of haptic disturbance reported in two previous studies that used

a similar path following task [38, 62]. Finding out reasons for this inconsistency

will be one of our future research topics.

To follow a curved road, the need for the road tracking skill can be much

higher, as can be seen from the low ÊEC values in Figure 3.9c. The road tracking

skill consists of a sequence of large-angle left/right rotations, and each of these

rotations is close to an open-loop, discrete motor skill2. Thus, the road tracking

skill is a serial motor skill, and its competent execution is likely to require a well-

parameterized GMP. In this case, haptic guidance may help the learner develop a

better general motor program during training by providing kinetic references to

ideal movements. This trend can be observed in Figure 3.6c in which the haptic

guidance and hybrid assistance group showed the better retention performance on

2 A motor skill that has specific definitions of the start and end of that skill is called a discrete

motor skill. A serial motor skill generally consists of a number of discrete motor skills that are

executed one after another [42, 69].
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Figure 3.9: Energy used for error canceling movements normalized by the total

energy. Error bars represent standard errors.

the curved segments. Seeking for stronger evidence for this conjecture is another

line of research we can plan to pursue.
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IV. Haptic Driving Training Simulator: An

Extension to a Realistic Driving

Hardware 

Status

TachometerSpeedometer

Figure 4.1: A visual scene of driving simulation.

This chapter describes the haptic driving simulator (Figs. 4.1 and 4.2) that

we developed for two purposes:

1. Driving skill modeling: The simulator records the driving data of experi-

enced drivers. It provides realistic driving experiences to acquire reliable

data, including realistic torque feedback to the steering wheel and pedals;

and

2. Haptic assistance: The simulator generates torque feedback in order to

assist a current driver’s driving skills with high fidelity.
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Driving Seat
Haptic Pedals

SENSO-Wheel

55’’ LCD Display

Brake Pedal Acc. Pedal

Figure 4.2: Haptic driving training simulator.

4.1 Hardware

The simulator consists of a large visual display, a steering wheel, an accelera-

tor pedal, and a brake pedal (Figure 4.2). All devices are fastened to an aluminum

frame to imitate a real driving seat. We used a 55-inch LCD (55LW6500, LG

Electronics), and the distance from the display to the seat is about 1.2 m for a

comfortable field of view of 60 ◦. The simulator also uses a commercial steering

wheel (SENSO-Wheel SD-LC, SensoDrive) to provide high-fidelity torque feed-

back. The maximum instantaneous torque and the maximum continuous torque

are 16.58 Nm and 7.5 Nm, respectively.

We have custom-designed and built the accelerator and brake pedals with

appropriate torque feedback capability. Two sets of AC servo motor (SGMGV-

20A, Yaskawa Electrics) and servo pack (SGDV-18011A, Yaskawa Electrics) were

used to provide independent torque feedback. The communication between the
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device and PC is done using a MechatroLink-II network control board (PCI-

R1604-MLII, Ajinextek). The maximum instantaneous torque and the maximum

continuous torque of each motor are 27.8 Nm and 10 Nm, respectively.

For compact housing, both motors should be mounted on the same side,

maintaining the alignment of the two rotation axes of the pedals. For this reason,

while the accelerator pedal is directly connected to the motor with a coupler, the

brake pedal is connected to another motor through a four bar mechanism. The

loop that is formed by the four-bar mechanism is designed to be a parallelogram

for a simple kinematic relationship between the pedal and the motor. The steering

wheel and the pedals are controlled with a sampling rate of 800 Hz.

4.2 Software

To achieve a realistic simulation, the simulator renders virtual driving en-

vironments including visual and auditory stimuli based on Vehicle Physics Pro

(VPP [1]), which is a commercial vehicle physics engine running in the Unity 5

game engine (Figure 4.1) with an update rate of 50 Hz. The controller process

(running in 800 Hz) and this simulation process are connected via shared memory

and continuously exchange necessary variables and parameters.

Figure 4.3: Visualization of 3D Vehicle Model.
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(a) Reference engine curves [2] (b) Simulated engine curves

Figure 4.4: Comparison between real and simulated engine torque/power curves.

For the realistic simulation of car dynamics, a specific vehicle (Genesis G80,

Hyundai Motors) was chosen to determine the physical parameters of VPP. Fig-

ure 4.3 represents a simulated vehicle in our driving simulator. Its size was

1.8 m (W)× 5.0 m (D)× 1.5 m (H), and its weight is 1900 kg. Figure 4.4 shows a

comparison between the real and simulated parameters of engine torque/power

curves. We formed the simulated engine torque/power curves of the virtual ve-

hicle engine to have a similar shape and peak values to the realistic reference [2].

Other physical parameters, such as tire parameters and gear ratios, were also

carefully tuned for realistic simulation.

4.3 Realistic Torque Feedback Control

Table 4.1: Constants for Simulated Realistic Driving Torque Feedback

Steering Wheel Accelerator/Brake Pedals

Gshaft (m) 0.75 Ka, Kb (N·m/degree) 0.2

Ds (N·m·s/degree) 0.002 Da, Db (N·m·s/degree) 0.001

Tfriction (N·m) 0.1
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In our proposed system, the steering angle θs is between θs,min = −459 ◦

and θs,max = 459 ◦, and the steering ratio is 11.8:1. The driver cannot steer

outside this range. The simulated steering torque Ts is implemented such that it

is similar to the real torque transmitted from the driving shaft to provide useful

information about the road and vehicle status, as follows:

Ts = Ts,align + Ts,damping + Tfriction, (4.1)

where Ts,align is the self-alignment torque, and Ts,damping and Tfriction are the

viscous and Coulomb frictions from the car dynamics, respectively. In four-wheel

drive, the steering reactive torque can be estimated [28] as follows:

Ts,align ≈ Gshaft ·
1

2
(Ffl + Ffr) , (4.2)

where Ffl and Ffr are the lateral forces applied to the left and right front wheels

obtained from VPP. Gshaft is the imaginary gain of the torque transmission from

the shaft. Ts,damping = Dsθ̇s, and Ts,friction is constant, both in the opposite

direction of the steering wheel rotation. From (4.2), a user can perceive driving-

like sensations on a path with respect to the direction and velocity of the virtual

vehicle.

Our haptic pedals are controlled using a spring-damper impedance control

scheme. Let the accelerator angle be θa. If θa is between θa,min = 0◦ and

θa,max = 10◦, it is normalized and sent to the throttle value of the virtual engine

in VPP. The simulated torque to the accelerator is computed as follows:

Ta = Ta,spring + Ta,max + Ta,damping + g (θa) , (4.3)

where Ta,damping = Daθ̇a is a virtual damping torque and g (·) is a gravity-

compensation term. The spring-like torque Ta,spring is determined by

Ta,spring = Ka (θa − θa,0) , (4.4)
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where Ka is the virtual spring coefficient, and θa,0(= θa,min − 5 ◦ = −5 ◦) is the

initial position of the accelerator pedal. Ta,spring pushes the driver’s right foot

upward to deliver information about how much s/he is pressing the pedal from

θa,0. Ta,max is a unilateral feedback term to provide information regarding the

maximum angle such that

Ta,max =


0 if θa < θa,max

Ka,max (θa − θa,max) if θa ≥ θa,max
. (4.5)

Ta,max enables the driver to perceive the virtual endpoint at θa,max = 10 ◦. We

used Ka,max = 10Ka.

The simulated torque to the brake pedal, Tb, is computed similarly for the

brake angle θb. The only difference was that the maximum brake angle θb,max =

5 ◦.

We carefully tuned all of the other parameters to achieve realistic experi-

ences, and their values are specified in Table 4.1.
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V. Part I: Driving Skill Modeling Using

Neural Networks for Haptic Assistance

Usually, the optimal (desired) trajectory should be obtained to represent

successful skill execution. In this chapter, we explain our data-driven model-

ing approach using neural networks to get the desired angles from experienced

drivers’ driving data. We conducted two human experiments (1) to validate our

modeling strategy and (2) to show the feasibility of our strategy for driving skill

enhancement.

5.1 Modeling Using Neural Networks

In [53], the dynamic nature of human control strategy is abstracted into a

static mapping between the input and output using NNs. In fact, a dynamic

system can be approximated using difference equations [51], such that

u [k + τ ] = f [u [k] ,u [k − τ ] , · · · ,u [k − (Du − 1) τ ] ,

x [k] ,x [k − τ ] , · · · ,x [k − (Dx − 1) τ ] ,

z [k] , z [k − τ ] , · · · , z [k − (Dz − 1) τ ]],

(5.1)

where f [·] represents a nonlinear map using NN, u [k] is the control vector, x [k]

is the system-state vector, and z [k] is a vector that describes exogenous environ-

mental features at time step k. Then, (5.1) can be rewritten as

u [k + τ ] = f [ū [k] , x̄ [k] , z̄ [k]] , (5.2)

where m̄ [k] = [m [k] ,m [k − τ ] , · · · ,m [k − (Dm − 1) τ ]]T for an arbitrary vec-

tor m. The training of f [·] using the input-output of (5.2) optimizes a future

value of u at τ -step later from the current and previous states of u, x, and z.
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Therefore, after the training, f [·] outputs

û [k] = f [ū [k] , x̄ [k] , z̄ [k]] , (5.3)

where û [k] is a predictive control vector optimized by the future control vectors

(û [k] ' u [k + τ ]).

5.1.1 Data Acquisition

We designed 25 two-lane paths to collect driving trajectories and other im-

portant variables for skill modeling. Each path consists of three segments with

a total length of 600 m. The first and third are a 200-m straight segment. The

second segment is a curve with curvature κ = 1
R = |φ|

L , where R is the radius,

L is the arc length, and φ is the angle in radians, as shown in Figure 5.1a. The

value L of the second segment is 200 m, but each path has varying φ from -180 ◦

to 180 ◦ with 15 ◦ step (Figure 5.1b). Therefore, φ = 0 ◦ results in a 600-m-long

straight path.

𝝓

𝝓 = 𝟔𝟎˚

Start Point

𝑳
𝑹

(a)

𝝓𝝓 = 𝟎𝟎˚

𝝓𝝓 = 𝟏𝟏𝟏𝟏𝟏𝟏˚

𝝓𝝓 = −𝟕𝟕𝟕𝟕˚

(b)

Figure 5.1: Driving paths. (a) Variable definitions. (b) Examples.
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Table 5.1: Statistics of Driving Experts

Expert
Age Driving Total # of Trajectory

(years) Experience (years) Samples in 50 Hz

E1 30 6 282,265

E2 25 5 286,263

E3 51 30 282,210

E4 39 19 286,386

E5 44 16 299,473

M±SD 37.6±10.8 15.2±10.3

Five experienced drivers (E1–E5; all males; age 25–51 years, M 37.6, SD

10.8; driving experience 5–30 years, M 15.2, SD 10.3) participated in the data

acquisition(Table 5.1). In each trial, the driver was instructed to complete driv-

ing following a given path, while staying only in the first lane of the path and

maintaining a velocity of 60 km/h using the speedometer. Each trial took about

36–40 s, and each driver completed six trials for each path (150 trials per driver).

5.1.2 Neural Network Design

We observed that the experienced drivers did not require the manipulation

of the brake pedal for the lane-keeping task, so excluded θb from the control

vector. In addition, we do not consider the interdependence between the controls

of the steering wheel and accelerator pedal, and we train separate NNs for each.

This allows us to use more compact networks with accurate modeling results.

Hence, in the model for the steering wheel, u = θs, and in the model for the

accelerator pedal, u = θa. For the vehicle state, we used x = [v ω r]T , where v is

the longitudinal velocity (m/s), ω is the angular velocity (degree/s), and r is the

number of engine revolutions per minute (RPMs) of the virtual car.

To define the environmental features, we rely on di (i = 1, · · · , 5; Figure 5.2),

which is the two-dimensional (2D) Euclidean distance from the driver’s position
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Figure 5.2: Five distances from the driver’s perspective.

to the road boundary of the road in the direction of -30◦, -15◦, 0◦, 15◦, and 30◦

relative to the driver’s frontal direction. The angular values of di were determined

considering the driver’s field of view (60◦) within the simulated vehicle. The

maximum value of di is set to 60 m. Then the environmental feature vector

z = [z1 z2 z3 z4 z5]
T , where

zi =
1

1 + di
. (5.4)

zi represents the future hazard of collision in the i-th direction.

Then the two NNs, i.e., fs and fa, for the steering wheel and the accelerator

pedal, respectively, are trained using the input-output of the following equations:

θs [k + τ ] = fs
[
θ̄s [k] , x̄ [k] , z̄ [k]

]
, (5.5)

θa [k + τ ] = fa
[
θ̄a [k] , x̄ [k] , z̄ [k]

]
. (5.6)

Therefore, the output variables θ̂s [k] ' θs [k + τ ] and θ̂a [k] ' θa [k + τ ] can

respresent the predictive driving behavior of experienced drivers under the current
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and previous states of θs, θa, x, and z.

Considering that the human motion bandwidth is less than 5 Hz [11], we used

the same constants for all of the input vectors: τ = 10 and Du = Dx = Dz = 5.

Then all NNs predict 0.2 s future values of execution from the five current and

previous variables in 50-Hz simulations. Before training, all input-output vectors,

u, x, and z are normalized.

5.1.3 Training Results

We trained all networks using MATLAB (R2017a, MathWorks). The train-

ing used a network training function of gradient descent backpropagation with an

adaptive learning rate and a transfer function of a hyperbolic tangent sigmoid.

The initial learning rate was 0.5. Each NN consisted of four hidden layers with

32, 24, 16, and 8 nodes. We pooled the input-output data of all the experienced

drivers for NN training. The data were partitioned into training, validation, and

test sets in the proportion of 70%, 15%, and 15%, respectively. The training

was terminated if the root mean-squared error (RMSE) of predicting a test set

decreased, and was saturated into 1% and 4.5% for θs and θa, respectively. These

values were determined by trial and error.

5.2 Experiment I: Validity of Driving Skill Modeling

Using Neural Networks

To provide haptic assistance for trajectory-following tasks, an optimal (de-

sired) trajectory should be given for the computation of task performance er-

rors [46]. In our driving task, we denote the performance error vector eθ = θ−θd,

where θ = [θs θa]
T is the current angle vector and θd = [θs,d θa,d]

T is the desired

angle vector. Therefore, we required a expert skill model that produces θd, rep-

resenting appropriate actions of the steering wheel and the accelerator pedal that
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depend on the current and the past driving situations.

Because the experienced drivers can produce appropriate actions [14], we

considered the expert skill model as the NNs trained by experienced drivers. In

other words, we set θd = θ̂, where θ̂ =
[
θ̂s θ̂a

]T
is the output vector generated

by two NNs. In Experiment I, we aim to provide logical evidence of setting

θd = θ̂, by validating whether the NN-based model can produce ideal driving

trajectories with the following research questions: Q1: Can our model produce

stable predictive outputs even in other general driving environments? ; Q2: Can

our model distinguish two different driving skill levels (experienced/novice)? ; and

Q3: Can we objectively prove that experienced drivers have enough expertise,

compared to novice drivers?

5.2.1 Data Acquisition

Our NN models were trained using the experienced drivers’ data collected

along the 25 simple paths (Section 5.1.1). The first goal of Experiment I was

to validate whether the NN models can be applied to general, longer, and more

complex driving environments. To this end, we designed a long path as a sequence

of randomly generated straight and curved segments similar to that in [52].

Start

End
Start

End

Figure 5.3: Driving paths used in Experiments I (left) and II (right).

Each straight segment had one parameter, length L. Each curved segment
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had a radius of curvature R and its sweep angle φ as parameters. The parameters

were randomly chosen from 100–150 m (L and R) and ±45◦–±135◦ (negative for

right curves) for each segment. A straight segment was followed by a left/right

curve with equal probability 0.5. A left (right) curve was followed by a straight

segment with probability 0.4 and a right (left) curve with probability 0.6. The

total length of the path was 4 km. From many randomly generated paths, we

selected two representative paths consisting of 23 and 22 segments for our exper-

iments (Figure 5.3). Compared to the short, simple, predetermined paths used

in the modeling (Section 5.1.1), the two paths in Figure 5.3 are long, arbitrary

and complex, and randomized (L, R, and φ). Thus, we deem the two paths

appropriate for our experiments.

The same five experienced (EX: E1–E5) and 18 new novice drivers (NO: N1–

N18; all male; 18–28 years old, M 22.8, SD 3.0) participated in collecting new

driving data. The latter participants either did not have driving licenses or had

licenses but with very little driving experience, e.g., young individuals who had

not owned or driven a car/motorcycle in the past two years. We controlled the

novice drivers’ gender and age as these are important factors for motor learning.

As in the practice, participants drove in three 600-m short paths (φ =

−90◦, 0◦, and 90◦). Then, they completed driving in the 4-km long path while

staying only in the first lane of the path at 60 km/h. The driving data of each

participant was applied to the NN models (fs and fa) to obtain the trajectories

of the predicted device angles (θ̂s and θ̂a).

5.2.2 Performance Measures

Modeling Performance

For each participant, the NN outputs θ̂s and θ̂a represent the control action

that the experienced drivers would make after τ steps given the control vectors
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θ̄s and θ̄a, the vehicle state x̄, and the environmental state z̄ of that participant;

see (5.5) and (5.6). Hence, the following two errors indicate the difference in the

participant’s driving action relative to the predicted output of our model:

es,p [k] = θ̂s [k]− θs [k + τ ] , (5.7)

ea,p [k] = θ̂a [k]− θa [k + τ ] . (5.8)

Let RMS (m̃) be an operator that is used to compute the root mean square

of all available samples of m [k] in the sequence m̃. Then, the normalized RMSE,

Ēs,p and Ēa,p, for each individual driving data are defined by

Ēs,p =
Es,p

θs,M − θs,m
=
RMS (ẽs,p)

θs,M − θs,m
, (5.9)

Ēa,p =
Ea,p

θa,M − θa,m
=
RMS (ẽa,p)

θa,M − θa,m
, (5.10)

where θs,M , θs,m, θa,M , and θa,m are the maximum and minimum device angles

obtained from the data of experienced drivers used for NN modeling (These values

were also used for the training data normalization in Section 5.1.2). Thus, Ēs,p

and Ēa,p quantify the similarity of the participant’s driving skill relative to that

of the experienced drivers captured in the NN models.

Objective Skill Performance

The driving skill of each participant is broken down into steering and ped-

aling performance. The steering performance is evaluated by a distance error ed,

and an angle error eδ of the virtual vehicle, as defined in Figure 5.4. The distance

error ed is the distance between the current car position and the closest point on

the (invisible) midline of the first lane. The angular error eδ is the angle between

the car heading direction and the road frontal direction at the closest point on

the midline of the first lane. Then we use Ed = RMS (ẽd) and Eδ = RMS (ẽδ)

as indicators of the steering performance.
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Predicted
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Heading

Direction

Car

Position
Closest

Point

1st Lane

2nd Lane

Midline

(Invisible)

Centerline

Virtual Car

Figure 5.4: Driving errors (ed, eδ, and ep) used in Experiments I and II. In our

simulation, d = v∆t and ∆t = 1 s is the look-ahead time.

For the pedaling performance, we first define a vehicle velocity error as

ev [k] = v [k] − vd, where vd = 62.64 km/h. In our simulator, the target speed

60 km/h imposed on the participants corresponds to the actual vehicle speed of

vd when the needle of the speedometer reaches 60 km/h from the driver’s perspec-

tive. Ev = RMS (ẽv) is used as a measure of the pedaling performance. Because

the initial vehicle velocity is 0 km/h, Ev is computed using only the velocity sam-

ples obtained after the vehicle speed first reaches vd. In addition, as a measure

of the pedaling efficiency, we compute Ωa = RMS (ω̃a), where ωa [k] = |θ̇a [k] |,

focusing on the pedaling speed. Ωa increases if the participant operates the pedal

more abruptly.
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Accelerator Pedal

Steering Wheel

(a) Experienced E4, Right: magnified at t =0–40 (s).

Accelerator Pedal

Steering Wheel

(b) Novice N11, Right: magnified at t =0–40 (s).

Figure 5.5: Examples of the recorded trajectory θ (t) (black, dotted) and the

desired trajectory θ̂ (t) (red, solid) in Experiment I.
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Figure 5.6: Mean Ēs,p (left) and Ēa,p (right). Error bars represent standard

errors. Asterisks indicate statistically significant differences.

5.2.3 Results and Discussion

Figure 5.5 shows examples of an experienced (E4) and a novice (N11) driver

who achieved a median performance of Ēs,p and Ēa,p from among the respective

groups. The experienced driver’s trajectories appear to be in better agreement

with the desired trajectories.

The means of the six performance measures are shown in Figs. 5.6 and 5.7.

We applied Welch’s t-test (unequal sample sizes and unequal variances) to as-

sess the effect of the participant group (EX and NO) on each measure. The

results are: Ēs,p: EX (1.55 %)<NO (2.55 %), t(17.99) = −4.08, p < 0.001; Ēa,p:

EX (2.18 %)<NO (5.78 %), t(18.40) = −2.48, p = 0.023; Ed: EX (0.34 m)<NO (0.46 m,

t(5.67) = −2.20, p = 0.072; Eδ: EX (1.01 ◦)<NO (1.45 ◦), t(9.62) = −4.11,

p = 0.002; Ev: EX (1.93 km/h)<NO (2.18 km/h), t(4.82) = −0.63, p = 0.557;

and Ωa: EX (1.58 degree/s)<NO (4.27 degree/s), t(18.77) = −2.53, p = 0.021.

These results provide answers to our research questions.

Q1

Our NN models (fs and fa) were trained using the experienced drivers’

driving data on many simple paths, and the NN training ended when the RMSE
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(d) Pedaling speed Ωa

Figure 5.7: Mean objective skill measure for the steering wheel (a and b) and

the accelerator pedal (c and d). Error bars represent standard errors. Asterisks

indicate significant differences.
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was less than 1 % and 4.5 % for fs and fa, respectively (Section 5.1.1). In this

experiment, the predictive errors of our models for the same drivers’ driving data

on a more complicated and general path were also small with mean Ēs,p = 1.55 %

and mean Ēa,p = 2.18 %. Hence, our models can effectively predict their driving

actions even for complicated paths composed of arbitrary curves and straight

lanes.

Q2

The experienced drivers showed smaller values of two predictive errors than

the novice drivers with statistical significance. This result indicates that our

models can represent the specific driving skills of experinced drivers, which are

particularly different from those of other novice drivers.

Q3

All the skill-performance measures (Ed and Eδ for steering and Ev and Ωa

for accelerator pedaling) showed better performance with the experienced drivers

than with the novice drivers. The differences in Eδ and Ωa were statistically

significant. Thus, the driving skill of the experienced drivers captured by our NN

models is more professional than novice drivers.

5.3 Experiment II: Applicability To Driving Skill En-

hancement

We can design haptic assistance exerting feedback for supporting corrections

of current movement, by utilizing the performance error vector eθ = θ − θd,

where θd = θ̂ based on the behavior of expert (experienced) drivers. Of the vari-

ous haptic assistance, the most representative approach is haptic guidance, where

external haptic stimuli are provided to learners concurrently during training in
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order to communicate information on the desired movement [23]. By transfer-

ring the desired movement via kinesthetic feedback in haptic guidance, we can

hypothesize that a current driver’s skill execution can be enhanced. To this end,

we conducted an experiment comparing two performance-based haptic guidance

approaches for a driving skill; one obtains θd = θ̂ and the other conventionally

formulates θd from a fixed environments.

The followings are research questions: Q1: Can haptic guidance be imple-

mented with our NNs? ; Q2: Can haptic guidance that is implemented with our

NN provide the demonstration of experts’ driving behavior? ; and Q3: Can haptic

guidance that is implemented with our NN demonstrate the competitive driving

skill performance competitively relative to conventional haptic guidance?

5.3.1 Methods

Here, we report three different methods tested in this experiment.

N: No Haptic Guidance

A driver completes driving, receiving only realistic driving feedback (Sec-

tion 4.3).

G: Haptic Guidance with Neural Networks

A driver completes driving, receiving assitive haptic feedabck using the NN-

based expert model. First, θ̂s [k] and θ̂a [k] (50 Hz) have been smoothened to

θ̂s (t) and θ̂a (t) by moving average filters to command semi-continuous feedback

(800 Hz). Because θd = θ̂, the PID-based steering feedback Ts,assist, which is

required to deliver θ̂s can be computed as follows:

Ts,assist (t) = Kpides (t) + Ipid

∫ t

t0

es
(
t′
)
dt′ +Dpidės (5.11)

es = θs − θs,d = θs − θ̂s, (5.12)
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where t0 is the recent time when es becomes zero. The whole steering feedback

is replaced by

Ts = Ts,assist + Ts,stable, (5.13)

where Ts,stable = Dstableθ̇s provides stable feedback with increased viscosity and

without the Coulomb friction. Kpid = 0.60 N·m/degree, Ipid = 0.12 N·m·s−1/degree,

and Dpid = 0.06 N·m·s/degree, and Dstable = 5Ds. From trial and error, the gains

have been appropriately tuned for two purposes: (1) to exert the steering wheel

feedback strongly so that the virtual vehicle can complete driving only with pedal

manipulations (similar to autonomous steering), but also (2) to enable a driver

to overcome the feedback to adjust device angles.

Because the driver’s foot and the accelerator pedal are not in full contact in

any time, for assistive pedaling feedback, a unidirectional torque is utilized rather

than PID-based feedback. The Ta,assist required to deliver θ̂a is as follows:

Ta,assist (t) =


0, if θa (t) < θ̂a (t) ,

Ka,max · ea (t) , if θa (t) ≥ θ̂a (t) ,

(5.14)

ea = θa − θa,d = θa − θ̂a, (5.15)

which replaces θa,max in Ta,max to θ̂a. From (5.14), the accelerator pushes the

driver’s foot upwards when a driver pushes it more than θ̂a. Then, whole pedaling

feedback is altered to:

Ta = Ta,assist + Ta,spring + Ta,damping + g(θa). (5.16)

C: Conventional Haptic Guidance

A driver completes driving, receiving conventionally designed assitive haptic

feedback. Compared with G, C determines θd only from external environments.

The same torque control equations (6.4) and (5.14) are adopted. For steering
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feedback, predictive haptic guidance ([45]) was adopted. The predictive haptic

guidance is based on the observation that a driver determines his/her driving

based on a prediction. This method considers two error terms, a look-ahead

direction error ep and the distance error ed (Figure 5.4), and determines the

desired angle θs,d, as follows:

θs,d = Kpep +Kded. (5.17)

Using Kp = 7.65 and Kd = 1.00 degree/m and the same torque gains of G,

this method can also support the vehicle to complete driving only with pedal

manipulations.

For the accelerator, there exist several applicable algorithms [49, 32], but

none of them guarantees training effectiveness. Hence, we implemented a simpler,

deterministic feedback that only provides overspeed cues. Let vM = 66.0 km/h

be a criterion of overspeed. We computed θa,d as follows:

θa,d =


θa,max, if v < vM ,

θa,min, if v ≥ vM ,
(5.18)

From (5.18), the driver perceives an impulse-like feedback from the right foot

when the vehicle velocity exceeds vM .

5.3.2 Experimental Protocol

Every participant (the same in Experiment I) completed three different driv-

ing trials in a complicated path different from the path in Experiment I (Fig-

ure 5.3), by receiving corresponding assistive feedbacks. Since there are total

3! = 6 possible permutations from three conditions, novices of three each were

assigned to the same presentation order.

After each trial, the participant was asked to answer the following questions

for both steering and pedaling feedback, respectively, on an 1 to 7 continuous
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scale (a neutral score of 4): (1) Was the training effective for driving? (Effec-

tiveness); (2) Was the training comfortable/uncomfortable? (Comfort); (3) Was

the training fun? (Fun); (4) Do you think that a more extended training period

under the corresponding feedback can help to improve your skill (Helpfulness).

Thus, there was a total of 24 questions (4 questions × 2 devices × 3 conditions)

for each participant. Each participant was paid KRW 15,000 (' USD 13) after

the experiment.

5.3.3 Results and Discussion

This section reports the quantitative (the same metrics in Experiment I)

and qualitative results of Experiment II. For the statistical analysis, we applied a

repeated measures ANOVA, with methods (Section 5.3.1) as the within-subject

factor. Tukey’s HSD multiple testing was conducted as a post-hoc test to signif-

icant effects.

Behavioral Similarity

We computed the predictive errors (Ēs,p and Ēa,p) for each resulting trajec-

tory (Figure 5.8).

If a participant’s driving behavior is similar to experts’ behavior captured in

NNs, then the errors decrease. The ranking of Ēs,p is G (1.10 %) < C (1.42 %) <

N (2.36 %). Because the assumption of sphericity was violated from the Mauchly’s

test (χ2 (2) = 29.04, p < 0.001), the Greenhouse-Geisser estimate of sphericity

(ε = 0.54) was used to recompute the statistics. In results, there exists a sig-

nificant difference (F (1.09, 18.51) = 34.27, p < 0.001), and in the post-hoc test,

G < N (t(34) = 11.27, p < 0.001) and C < N (t(34) = 8.39, p < 0.001). The

ranking of Ēa,p is N (4.63 %) < C (6.32 %) < G (6.38 %), and the assumption of

sphericity was not violated (χ2 (2) = 5.92, p = 0.052). There exists a signifi-

cant difference (F (2, 34) = 5.55, p = 0.008), and in the post-hoc test, N < G
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(t(34) = 4.15, p = 0.016) and N < C (t(34) = 4.01, p = 0.020). Two haptic

guidance methods showed significant differences from N.
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Figure 5.8: Mean Ēs,p (left) and Ēa,p (right) for each method. Error bars repre-

sent standard errors. Asterisks indicate statistically significant differences.

Objective Skill Performance

We computed the objective skill measures (Ed, Eδ, Ev, and Ωa) for each

resulting trajectory (Figure 5.9). The ranking of Ed is N (0.46 m) < G (0.50 m) <

C (0.56 m), and the assumption of sphericity was not violated (χ2 (2) = 1.74,

p = 0.418). There exists a significant difference (F (2, 34) = 4.73, p = 0.015),

and in the post-hoc test, N < C (t(34) = 4.35, p = 0.011). The ranking of

Eδ is C (0.94 ◦) < G (1.12 ◦) < N (1.35 ◦). Because the assumption of sphericity

was violated (χ2 (2) = 25.68, p < 0.001), the Greenhouse-Geisser estimate of

sphericity (ε = 0.56) was used for recomputation. In results, there exists a

significant difference (F (1.11, 18.90) = 30.60, p < 0.001), and in the post-hoc

test, G < N (t(34) = 6.37, p < 0.001), C < N (t(34) = 11.02, p < 0.001), and

C < G (t(34) = 4.65, p = 0.007).

The ranking of Ev is C (1.62 km/h) < G (1.91 km/h) < N (2.25 km/h), and

the assumption of sphericity was not violated (χ2 (2) = 1.24, p = 0.538). There

exists a significant difference (F (2, 34) = 5.74, p = 0.0071), and in the post-hoc
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Figure 5.9: Mean objective skill measure for the steering wheel (a and b) and

the accelerator pedal (c and d). Error bars represent standard errors. Asterisks

indicate significant differences.
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test, C < N (t(34) = 4.79, p = 0.005). The ranking of Ωa is N (3.33 degree/s) <

G (4.47 degree/s) < C (4.98 degree/s), and the assumption of sphericity was not vi-

olated (χ2 (2) = 3.15, p = 0.207). There exists a significant difference (F (2, 34) =

8.08, p = 0.001), and in the post-hoc test, N < G (t(34) = 3.82, p = 0.028), and

N < C (t(34) = 5.56, p = 0.001). In summary, G exhibited a better performance

of Eδ, but a worse performance of Ωa than N. C showed better performances of

Eδ and Ev, but worse performances of Ed and Ωa than N. Comparing the two

haptic guidance methods, C achieved better performance than G in Eδ. However,

they have no differences with respect to in other measures.

Qualitative Results

We computed the mean scores for each subjective question (Figure 5.10).

For the steering wheel, the ranking of effectiveness score is N (3.84) < G (5.87) <

C (6.05). Because the assumption of sphericity was violated (χ2 (2) = 10.87,

p = 0.004), the Greenhouse-Geisser estimate of sphericity (ε = 0.67) was used for

recomputation. In results, there exists a significant difference (F (1.34, 22.77) =

22.53, p < 0.001), and in the post-hoc test, N < G (t(34) = 7.85, p < 0.001),

and N < C (t(34) = 8.55, p < 0.001). The ranking of comfort score is N (4.23) <

C (4.70) < G (5.52), and the assumption of sphericity was not violated (χ2 (2) =

0.09, p = 0.957). There exists a significant difference (F (2, 34) = 3.41, p = 0.045),

and in the post-hoc test, N < G (t(34) = 3.65, p = 0.037). The ranking of fun

score is C (3.93) < G (4.77) < N (5.09). Because the assumption of sphericity was

violated (χ2 (2) = 7.41, p = 0.025), the Greenhouse-Geisser estimate of sphericity

(ε = 0.73) was used. In results, there exists a (marginally) significant difference

(F (1.46, 24.81) = 3.73, p = 0.051), and in the post-hoc test, C < N (t(34) = 3.73,

p = 0.032). The ranking of helpfulness score is C (3.65) < G (4.60) < N (5.18).

Because the assumption of sphericity was violated (χ2 (2) = 6.28, p = 0.043),
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Figure 5.10: Subjective score responses obtained from questionnaires (1–7 contin-

uous scale). Error bars represent standard errors. Asterisks indicate significant

differences.
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the Greenhouse-Geisser estimate of sphericity (ε = 0.76) was used. In results,

there exists a significant difference (F (1.51, 25.67) = 6.06, p = 0.012), and in the

post-hoc test, C < N (t(34) = 4.88, p = 0.004). The significant differences are

observed in the every score of the steering feedback. In the post-hoc test, the

participants reported that two haptic guidance methods are more effective than

N. However, they reported that only G appears to be more comfortable, and C

appears to be less fun and helpful than N.

For the accelerator pedal, the ranking of effectiveness score is N (4.01) <

G (4.98) < C (4.99), and the assumption of sphericity was not violated (χ2 (2) =

1.19, p = 0.550). There exists a significant difference (F (2, 34) = 5.38, p = 0.009),

and in the post-hoc test, N < G (t(34) = 4.01, p = 0.020), and N < C (t(34) =

4.02, p = 0.020). The participants reported that two haptic guidance methods

are more effective than N. The rankings of comfort, fun, and helpfulness scores

are C (4.21) < N (4.49) < G (4.82), C (4.73) < G (4.84) < N (5.06), C (5.06) <

G (5.16) < N (5.21), respectively. However, there were no significant differences

in comfort, fun, and helpfulness scores.

Summarized Answers

These results provide answers to our research questions.

Q1: We successfully implemented haptic guidance which involves the performance-

error vector eθ = θ − θd, utilizing θd = θ̂, which is a predicted output of NNs.

Q2: By receiving the steering feedback based on the NNs, the novices could

steer the vehicle with smaller predictive errors (Ēs,p), which indicates that the

novices could make similar steering behavior to experts. However, upon receiving

the pedaling feedback, the novices moved the accelerator with an increased value

of predictive errors (Ēa,p), which indicates that the novices had awkward pedaling

behavior distinct from experts. Therefore, while the steering feedback was able
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to effectively transfer experts’ predictive actions, this was not possible with the

pedaling feedback.

Q3: Both haptic guidance methods helped the novices to achieve better

steering performance of Eδ than driving without guidance, which implies that the

guidance methods can be adequately applied to the skill transfer. The predictive

haptic guidance improved the performance of Eδ, but vitiated performance of

Ed, compared to haptic guidance with NN. Hence, it is inconclusive to assert

which method is the better. The qualitative results also show that two guidance

methods have competitive effectiveness. The effectiveness of the two methods

may vary depending on the implementation details, e.g., tuning the parameters.

In contrast, our implementation of the pedaling guidance using NN was in-

appropriate for the skill transfer. Only the pedaling feedback providing overspeed

cues achieved better pedaling performance of Ev, whereas haptic guidance with

NN failed to show an improvement. Both haptic guidance methods resulted in

an increased Ωa, which indicates that the novices abruptly moved the accelerator

pedal when the assistive feedback was given.

In this study, we selected haptic guidance of among the variety of types of

performance-based haptic assistance. However, haptic guidance has a disadvan-

tage which is referred to as the guidance hypothesis: excessive concurrent aug-

mented feedback may make learners dependent on the feedback and reduce their

focus during the training, interfering with the retention of the learned skill [68].

In Experiment II, the novices reported that they believe that the concurrent hap-

tic feedback may not be suitable for longer training, which is an attribution to

the guidance hypothesis.
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VI. Part II: Human-like Haptic Assistance:

Data-Driven Haptic Assistance Using Neural

Networks for Training on Car Steering Task

In the previous chapter, we introduced a NN-based modeling strategy of

driving skills in terms of two sub-skills, steering and pedaling and tested the

applicability for skill enhancement. However, because our task needed a high

cognitive capacity on simultaneous execution of both sub-skills in driving (steer-

ing and pedaling), the novice drivers could not recognize the optimized skill model

of pedaling.

Therefore, in this chapter, we focus on a steering skill only; we investigated

the training effectiveness of haptic assistance methods for a steering skill. Before

we go deeper, we should understand the characteristics of a steering skill.

6.1 Steering Characteristics

In practice, Fitts’ law is a famous approach measuring the performance of

manual accuracy tasks numerically [41]. As an extension to Fitt’s law, Accot

and Zhai have divided a whole path into infinite number of short point-based

segments to derive an index of difficulty (ID) of trajectory-based steering tasks;

it is called the steering law [7] . The steering law has been a widely accepted

theoretical model that interprets and predicts human trajectory-following tasks

and skills.

Driving is a typical example of trajectory-following tasks in continuous move-

ments. Usually for a simple trajectory-following task, usually a visual reference

is given to the trainee to show the current performance error e. However, for
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steering in a wide-banded path with only displaying boundaries as in practical

driving scenarios like ours, the performance error e (and the desired angle θd)

cannot be easily recognized.

High Accuracy &
High Stability (Precision)

= “Good” Driving
Low Accuracy &

High Stability (Precision)
High Accuracy &

Low Stability (Precision)

Figure 6.1: Various driving styles in terms of accuracy and stability (precision).

One successful way of to determine the task performance is either measuring

both the accuracy and the precision simultaneously during the task execution [35].

Usually, point-to-point human movements consist of a gross, less accurate trans-

fer motion with slower responses and fine, more accurate corrective movements

with faster responses [12, 15], in a speed-accuracy tradeoff. Hence, because our

steering task is a type of point-to-point trajectory-following task, the steering skill

can be regarded a mixture of two sub-skills: error canceling and curve initiation.

Error canceling skill incorporates a human ability to make accurate movements

to minimize current errors. On the other hand, the purpose of the curve initiation

skill is to cope with the vehicle’s future status with respect to appropriate pre-

diction of heading direction. Therefore, it incorporates a human ability to make

precise movements to optimize vehicle motions, efficiently without mistakes.

Figure 6.1 demonstrates different styles of automobile movements, which
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can be resulted by accurate precise steering skill performance. With accurate

steering movements, the automobile also can move accurately to an invisible

midline. Also, with precise steering movements, the automobile can move stably

without large variability.

In the previous chapter, we suggested two error metrics which can be mea-

sured from vehicle movements: Ed = RMS (ẽd) and Eδ = RMS (ẽδ). The

distance error Ed indicates accurate vehicle motions referencing to the midline;

if the vehicle runs close to the midline during the execution, Ed becomes smaller.

In contrast, the angular error Eδ indicates stable vehicle motions placing the car’s

heading direction to the curvature of the path; if the vehicle runs parallel to the

path, Eδ becomes smaller.

Therefore, they can represent objective steering skill performance, with re-

spect to two sub-skills in accurate and precise steering control. The numerical

error measure Ed reflects the better performance of error canceling skill with

accurate steering movements. The numerical error measure Eδ reflects the hu-

man sub-skill performance of curve initiation with precise steering movements

under human prediction. In the previous experiment described in Section 5.2,

the experienced drivers showed small Ed and Eδ resulted in both fine steering

performance of the accuracy and the stability. Therefore, in this chapter, we

designed an autopilot test to compare the driving styles which two different skill

models in each haptic assistance method can produce.

6.2 Experiment I: Automated Driving (Autopilot) Test

We have designed two different haptic assistance methods utilizing different

steering models: the first one utilizes a data-driven, NN-based model to generate

human performance errors whereas the second one utilizes a conventional model

which guides the vehicle to the determined predictive position on the path [45].
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In the previous experiment, because the driver’s foot and the accelerator pedal

are not in full contact in any time, for assistive pedaling feedback, a unidirectional

torque was utilized instead of PID-based feedback. However, the result showed

that providing the amount of performance errors (as performance-based haptic

feedback) might not efficiently enhance the pedaling performance. Therefore,

we decided not to use our pedaling skill model for training purpose; instead, we

utilized the pedaling skill model to automated control of an accelerator pedal,

in order to demonstrate the optimal execution of pedaling. With automated

pedaling, it is possible to measure the performance of the steering task objectively.

To this end, we introduce two autopilot modes which have the same imple-

mentation to haptic assistance (i.e., haptic guidance) to human drivers: human-

like haptic guidance (HG) and robotic haptic guidance (RG). They share the same

automated control methods of steering and pedaling. However, they only differ

in the steering skill model which provides the desired steering wheel angle. We

hypothesized that each autopilot mode may result different steering characteris-

tics.

6.2.1 Automated Control of Accelerator Pedal

In the previous experiment, we used the same configuration of τ = 10 (0.2 s)

for both NNs (fs and fa), which provides desired information based on 0.2-s

prediction. However, the sensing accuracy and dexterity of lower limbs are often

regarded as being less than those of the hands [73]. Moreover, the simultaneous

nature of driving which requires the manipulation of both steering and pedaling,

requires learners to learn either one of them. Therefore, compared with fs, fa

may require assistive feedback that is less frequent, resulting in ineffective skill

transfer (enhancement). Thus, we considered that an NN with τ > 10, which

leads to less frequent feedback, may result in better control efficiency.
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Therefore, we trained a new version of f
(25)
a using the configuration of τ = 25

(0.5 s) with the same data-set. Then, using the new predictive output, PID

control of automated pedaling was utilized as follows:

Ta,auto (t) = Ka,pidea (t) + Ia,pid

∫ t

t0

ea
(
t′
)
dt′ +Da,pidėa (6.1)

ea = θa − θa,d = θa − θ̂(25)a , (6.2)

where t0 is the recent time when ep becomes zero, and θ̂
(25)
a is an predicted

output of the new skill model, f
(25)
a , i.e., θa,d = θ̂

(25)
a Ka,pid = 0.008 N·m/degree,

Ia,pid = 0.24 N·m·s−1/degree, and Da,pid = 0.0008 N·m·s/degree. Then, the whole

accelerator torque for automated control is altered to:

Ta = Ta,auto + g(θa), (6.3)

where g (·) is a gravity-compensation term. We applied this automated pedaling

method to HG and RG.

6.2.2 Automated Control of Steering Wheel

Both HG and RG share the same PID control as follows:

Ts,auto (t) = Ks,pides (t) + Is,pid

∫ t

t0

es
(
t′
)
dt′ +Ds,pidės (6.4)

es = θs − θs,d, (6.5)

where t0 is the recent time when es becomes zero. Ks,pid = 0.60 N·m/degree,

Is,pid = 0.12 N·m·s−1/degree, and Ds,pid = 0.06 N·m·s/degree. Then, the whole

steering torque for automated control is replaced by

Ts = Tauto + Tstable, (6.6)

where Tstable = Dstableθ̇s provides stable feedback. Dstable = 5Ds. As previously

mentioned, two autopilot modes only differ in the steering skill model which

provides the desired steering wheel angle θs,d.
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Data-driven Approach: Human-like Haptic Guidance

In the previous chapter, we obtained an NN-based steering model whose

output is a predicted steering angle of experienced drivers. Therefore, in this

mode, we set the desired angle in the rule1:

θs,d = θ̂s, (6.7)

where θ̂s = fs [·], the output of the NN-based expert model of steering (fs).

Because the NN-based model is trained by the data of human experienced

drivers, we expected that the driving style using this data-driven mode should be

in a human-like style. Therefore, we named this autopilot mode as human-like

haptic guidance (HG).

Model-driven Approach: Robotic Haptic Guidance

This method considers two error terms, a look-ahead direction error ep and

the distance error ed (Figure 5.4), and determines the desired angle θs,d, as follows:

converge to θd are determined by the following PD-based rule2:

θs,d = Kpep +Kded, (6.8)

where Kp = 7.65 and Kdis = 1.00 degree/m.

This method is based on the observation that a driver determines his/her

driving based on prediction, not on the current situation. We named this mode

as robotic haptic guidance (RG) as an opposite term to HG, because it is a con-

ventional method used in robot-mediated strategies.
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Figure 6.2: Fifteen different 1-km roads used for the autopilot test.
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6.2.3 Experimental Protocol

In order to analyze respective driving styles where two autopilot modes can

demonstrate, we conducted an autopilot experiment that involves repeated driv-

ing trials on a number of various paths. Therefore, for this autopilot test, we

designed 15 different paths (P1–P15; Figure 6.2). Each straight segment had

one parameter, length L. Each curved segment had a radius of curvature R and

its sweep angle φ as parameters. The parameters were randomly chosen from

30–60 m (L), 90–120 m (R) and ±45◦–±135◦ (negative for right curves) for each

segment. A straight segment was followed by a left/right curve with equal proba-

bility 0.5. A left (right) curve was followed by a straight segment with probability

0.4 and a right (left) curve with probability 0.6. The total length of the path was

shortened to 1 km.

We conducted five test-run trials for each path in respective autopilot modes.

Therefore, total 150 test-run trials (15 paths × 2 modes × 5 trials) were per-

formed.

6.2.4 Results and Discussion

Both autopilot modes performed nice examples of driving in every test-run

trial. Figure 6.3 depicts example trajectories obtained in a test-run trial on P8,

and Figure 6.4 is an example trace from top-view in the same trial. The vehicle

did not fell outside of the path and successfully stayed in the first lane of the path

in most of the time (Figure 6.4a), and the accelerator pedal was automatically

controlled to maintain the same desired velocity vd = 62.64 km; i.e., the autopilot

of pedaling executed the pedaling task efficiently in both steering modes.

1It is the same implementation to G which had been used in the previous experiment.
2It is the same implementation to C which had been used in the previous experiment. The

actual driving style in terms of accuracy and precision can be varied from setting of values of

Kp and Kd. However, finding appropriate values needs an additional effort for haptic assistance

designer. Therefore, we used the same parameters in the previous experiment.
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Figure 6.3: Example trajectories as a function over P8 (left: HG, right: RG).

From top: measured and desired steering wheel angle (θs and θs,d), and gener-

ated steering wheel torque (Ts); measured and desired accelerator angle (θa and

θa,d) and generated accelerator torque (Ta); car velocity (v) and heading angle

(θheading).
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(a)

(b) (c)

Figure 6.4: Examples of autopilot runs over P8 (the unit of each axis: m).
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However, the driving style that each mode has shown differ in detail. HG

showed more variance of steering movements with frequent force generations,

whereas RG showed little variance without frequent movements. In RG, steering

torque is generated mostly when the vehicle enters curved segments. Magnified

trajectories in Figure 6.4b and 6.4c also show the difference of driving styles

according to each autopilot mode. HG seems to follow the midline of the path

more than RG, whereas RG seems to place the heading of vehicle more parallel

to the path direction compared to HG.

The summarized results in terms of mean Ed, Eδ, and the mean vehicle

velocity V are plotted in Figure 6.5. All the test-runs in every path satisfied

maintaining the desired velocity. On every path, HG showed smaller distance

errors, resulted in the better accuracy performance. In contrast to this, RG

showed smaller angular errors, resulted in the better stability performance on

every path. These results are in an agreement of the observation in Figure 6.3

and Figure 6.4.

To this end, we can summarize the findings of this experiment into: (1) The

autopilot of pedaling implemented by PID control can effectively control a ve-

hicle to maintain the same velocity on every path; (2) Both human-like haptic

assistance (or, guidance) and robotic haptic assistance (or, guidance) also can ef-

fectively control a vehicle to stay in the same lane on every path; (3) Human-like

haptic assistance has better accuracy performance compared to robotic haptic

assistance on every path; (4) Robotic haptic assistance has better stability per-

formance compared to human-like haptic assistance on every path.
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(a) Distance error Ed

(b) Angular error Eδ

(c) Vehicle velocity v

Figure 6.5: Mean performance measures for autopilot runs. Error bars represent

standard deviations.
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6.3 Experiment II: Effectiveness of Human-like Hap-

tic Assistance for Training on Car Steering Task

Because HG and RG have different driving styles, in this experiment, we

hypothesized that the novice drivers who practiced with each haptic assistance

method may develop a different driving behavior. Therefore, we finally tested the

training effectiveness of different haptic assistance methods for steering, in this

experiment. There were total three training conditions including HG, RG and the

control condition of no guidance (NG).

6.3.1 Design of Score Map

We have introduced two error metrics (RMSEs in terms of distance error

Ed and angular error Eδ), each of which reflects the performance of two sub-

tasks, respectively. However, in this experiment, the overall performance score is

required, as (1) the representative score given after each trial to promote learning

as KR, and (2) the parametric function for gain increase in performance-based

progressive algorithm (See 6.3.2). Because the dimensions of the two RMSEs are

not compatible, we designed a mapping function which transforms RMSEs into

score metrics that are summable to overall performance score, representing the

performance of the overall steering skill.

In manual accuracy tasks to make a hit on a target in rapid movements under

Fitt’s law, human errors form a Gaussian distribution [75]. Inspired from this,

we designed score functions which transform the distance error and the angular

error into the accuracy score Sd (·) and the stability score Sδ (·) are computed as

Sd (x) = 100

(
1− erf

(
x− µd√

2σd2

))
, (6.9)

and

Sδ (y) = 100

(
1− erf

(
y − µδ√

2σδ2

))
, (6.10)
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respectively. erf (·) is a zero-bounded Gauss error function erf (·), defined as

erf (z) =


erf (z) if erf (z) > 0,

0 otherwise.

(6.11)

Finally, we can get the function of overall performance score by summing two

score functions, i.e., Sall (x, y) = Sd (x) + Sδ (y). Because 0 ≤ Sd ≤ 100 and

0 ≤ Sδ ≤ 100, 0 ≤ Sall ≤ 200.

Figure 6.6: Example Score map (P8).

Because the task difficulty on each path cannot be identical, the four param-

eters (µd, µδ, σd, and σδ) are set with respect to the mean results of the autopilot

test on each path. Because HG has better accuracy whereas RG has better sta-

bility, we set µd = µd,HG and σd = (µd,HG − µd,RG) to compute the accuracy

score; and µδ = µδ,RG and σδ = (µδ,RG − µδ,HG) to compute the stability score.

Here, µd,HG and µd,RG are mean Ed of five respective autopilot test-run trials of

HG and RG, respectively. µδ,RG, µδ,RG are mean Eδ’s of five respective autopilot

test-run trials of HG and RG, respectively.

An example score map of Sall on P8 is depicted in Figure 6.6. By using

these parameters, the overall performance score should cannot biased to either
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sub-task. All autopilot test runs are similarly scored to Sall ≈ 130.1, where the

sub-scores of HG are Sd ≈ 100.0 and Sδ ≈ 30.1 for HG and the sub-scores of RG

are Sδ ≈ 100.0 and Sd ≈ 30.1, respectively.

6.3.2 Autonomy Shift: Performance-based Progressive Algorithm

In every method, the accelerator pedal was automatically driven by the sim-

ulator to assess only the steering performance. In NG, only the simulated re-

alistic steering torque (4.1) was delivered to the user. However, we applied the

performance-based, progressive algorithm for HG and RG similarly in Chapter III.

The performance-based, progressive (also called guidance-as-needed) algorithm

often regarded as effective in the training of steering tasks [45]. This guidance-as-

needed algorithm gradually shifts the autonomy of the task from machine-oriented

control to human-oriented control, trying to overcome the guidance hypothesis

that harms training effectiveness from unfamiliarity.

First, we consider the performance changes within a training trial. During

each trial, the within-trial gain is updated at each sampling time dt = 0.02 s (in

50 Hz):

αwithin(t+ dt) = fwithin · αwithin(t) + gwithin ·
200− Sall (x, y)

200
, (6.12)

where x = ed(t) and y = eδ(t) are the current distance error and the current

angular error, respectively. αwithin(0) = 1.0. fwithin is the forgetting factor that

decreases the guidance torque over time, and gwithin is the learning factor that

increases the guidance torque. From (6.12), the gain decreases as time goes on,

but increases when the driver’s accuracy/stability errors become larger. In the

experiment, fwithin = 0.998 and gwithin = 0.004.

Second, we consider the performance variations across the training trials.
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An across-trial gain αacross[j] of the j-th trial is computed as

αacross[j + 1] = facross · αacross[j] + gacross ·
200− Sall (x, y)

200
, (6.13)

where x = Ed[j] and y = Eδ[j] are the mean distance and the mean angular

error in the j-th trial, respectively. α[1] = 1.0. facross and gacross are the across-

trial forgetting and learning factors and in the experiment, facross = 0.75, and

gacross = 0.05.

Figure 6.7: Guidance gains of one example participant. (a) Within-trial Gain

αwihtin over time (scaled by αacross[j]), (b) Across-trial gain αacross over trials,

and (c) Overall gain α.

The performance-based progressive algorithm returns the autonomy back

from the training interface to the human learner at the latter trials of training.

Therefore, the torque feedback in the latter trials should become similar to re-

alistic steering torque. Let the overall gain α be the composition of αwithin and

αacross in a specific time, i.e., α = αwithin · αacross. Then, we implemented the

similar hybrid scheme as described in Chapter III, by combining the guidance

torque and the realistic torque to deliver the final torque feedback Tfinal as

Tfinal = α · Tassist + β · Treal, (6.14)

β = 1− α, (6.15)

where Tassist is the torque feedback Ts, which is determined from respective θd (t)

in HG or RG. Treal is the realistic torque feedback (See Ts in Section 4.3).
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The gains changes within and across trials are depicted in Figure 6.7. When

the across-trial gain α[j] decreased to be lower than 0.1 at the later trials, such

small gains do not result in perceptible assistance. Therefore, under (6.15), par-

ticipants can feel similar perception to real steering in actual vehicles, in the later

training trials.

6.3.3 Participants

To recruit eligible participants, we tried to control their gender, age, and

driving skill level. Gender and age are regarded as important factors motor

learning, especially for steering tasks [63]. Total 30 participants (15 males and

15 females) who did not have a driving license participated as learners in this

experiment (19–25 years old; M 20.53; SD 1.68). Before the experiment, we

requested them to have high motivations to learn. They were compensated KRW

20,000 (' USD 18) after the experiment. This experiment was approved by

the Institutional Review Board at Pohang University of Science and Technology

(PIRB-2018-E098).

6.3.4 Driving Environments

(a) Day-time Driving (b) Night-time Driving

Figure 6.8: Two driving environments implemented for Experiment II.
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To provide a minimized visual cue to prevent large errors due to unintended

mistakes, small red-colored arrows were displayed on the screen to guide the

heading direction to the midline of the path when the tire of the vehicle steps

outside of the road boundary. The leftwards arrows were placed on the right side

of the screen and the rightwards arrows were placed on the left side of the screen

to minimize visual intervention.

For the experiment, we deployed two driving environments: day-time driving

and night-time driving (Figure 6.8). The night-time driving is more difficult

situation because the participants are not allowed to predict the future path,

whereas the day-time driving is a usual driving situation.

The night-time driving was implemented using a black-colored exponential

squared fog mode [3] in Unity3D. The fog density fd (·) over a distance d is:

fd (d) =
1

2(cd)
2 , (6.16)

where d is a distance between a driver’s position and the position of a certain

virtual environment. We set c = 1
6 so the environments in d = 6 m was 50 %

visible. In results, fd (·) falls down to almost 0 to the virtual environments in

d > 15 m; in other words, only the environments in a distance less than 15 m can

be only visible in this night-time driving.

6.3.5 Experimental Protocol

Ten participants (five males and five females) were randomly assigned into

each of three groups, in a between-subjects design. The three groups were: no

guidance (NG), human-like haptic guidance (RG), and robotic haptic guidance

(HG). Because the degrees of learning were different among the three methods,

within-subjects designs were not affordable.

The experiment was conducted on two consecutive days (See Figure 6.9 for

detailed procedure), with one pretest and two post-training retention tests. On
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Figure 6.9: Experimental Procedures.

day 1, each subject finished four sessions of practice (S-PR), a pretest (S-PT),

training (S-TR), and an immediate retention test (S-IT). On day 2, 24 hours after

the onset of day 1, each participant conducted another session for a delayed

retention test (S-DT).

To show only generalized improvement on motor skills without memorization

of path shapes, for this experiment, we selected several 1 km-long paths whose

autopilot performance are similar. In results, P8, P10, P11, and P14 were chosen.

In S-PR, the novice driver could freely drive the path P14 once in NG. The

purpose was to familiarize the participant with our driving simulator and virtual

environments. They completed driving using all the manipulators (a steering

wheel, an accelerator pedal and a brake pedal). For several participants asked to

conduct an additional practice trial, they were allowed to do so. After S-PR, the

participant proceeded to S-PT.

From S-PT to S-DT, every participant was instructed to practice both ac-

curacy and stability of their skill execution in every trial. In every trial, the

accelerator pedal was automatically controlled to maintain the same velocity

vd = 62.64 km/h to let the novices focus on the training of their steering skill.

Also, to motivate their own practice, the overall score of Sall was visually pro-
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vided after the completion of each trial. However, the separated scores of Sd and

Sδ were not provided to prevent biased learning of either sub-task.

S-PT was included to assess their performance improvement before training,

which includes two consecutive trials in NG: a day trial and a night trial. In the

day trial, the participant complete driving over the path P10 in the day-time

environment. In the night trial, the participant complete driving over the path

P11, in the night-time environment.

S-TR was for main training and consisted of 20 repeated driving trials in the

day-time environment on the path P8. Steering torque feedback (with performance-

based progressive algorithm) was provided according to the training method (NG,

HG and RG) assigned to the participant.

After S-TR, the participant proceeded to S-IT that was included to assess

their performance improvement immediately after training. It had the same

procedure as S-PT.

After S-IT, the participant was asked to answer the following five questions on

an 1 to 7 continuous scale (a neutral score of 4): (1) Was the training easy/difficult

to follow? (Easiness); (2) Was the training effective? (Effectiveness); (3) Was

the training comfortable/uncomfortable? (Comfort); (4) Was the training fun?

(Fun); (5) Do you think the training helped to improve your skill of day-time

steering? (Helpfulness - Day). (6) Do you think the training helped to improve

your skill of night-time steering? (Helpfulness - Night). and (7) Did the score

relevantly represent the performance of steering? The first-day experiment took

about one and half hour per participant.

On day 2, S-DT was conducted. It had the same procedure as S-PT and

S-IT. The purpose of S-DT was to evaluate long-lasting training effectiveness.

This session took about 10 min for each participant.

Between each trial and each session, every participant could freely take a
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break to prevent fatigue. After the break time, they requested for the initiation

of the next training trial (or session) to the experimenter.

6.3.6 Results and Discussion

In this section, we report each measurement in performance scores (Sall, Sd,

and Sδ) and RMSEs (Ed, and Eδ) as results of performance.

Learning Curves

Figure 6.10 and 6.11 shows the means of measurements that were averaged

across the participants of each group for each experimental trial. The control

condition NG, training with no haptic guidance, resulted in a typical learning

curve for both accuracy and precision. However, in the most of trials, the stability

score Sδ was lower than the accuracy score Sd. This means that the stable driving

was more difficult and unnatural task for novice drivers than the accurate driving.

Compared to the NG group, the robotic haptic guidance group RG exhibited

higher Sδ (smallerEδ) and lower Sd (larger Ed) during the early stage of training

in S-TR, showing the steepest learning curves. In contrast, the human-like haptic

guidance group HG showed a similar tendency to NG with slightly better scores

and lower errors than NG. This tendency means the guidance feedback in HG

did not harm the own nature of participants for the steering task. All of these

tendencies clearly demonstrate each characteristic nature of assistance methods.

Quantitative Results

Here, we report only measurements in three test sessions (S-PT, S-IT and

S-DT). To provide clear comparison, the results are depicted in Figure 6.12 and

6.13.

The stability score Sδ is nearly zero in the night trials. Thus, the major

portion of overall score Sall in the night trials is the accuracy score Sd. The lack
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(a) Overall Score Sall

(b) Accuracy Score Sd

(c) Stability Score Sδ

Figure 6.10: Means of performance scores for each trial. T1–T20 denote the

trials in the session S-TR. P–, I–, D– denote the session S-PT, S-IT, and S-DT,

respectively. –D and –N denote the day/night trials, respectively.
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(a) Distance Error Ed

(b) Angular Error Eδ

Figure 6.11: Means of two RMSEs for each trial. T1–T20 denote the trials in the

session TR. P–, I–, D– denote the session S-PT, S-IT, and S-DT, respectively. –D

and –N denote day/night trials, respectively.
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(a) Overall Score Sall

(b) Accuracy Score Sd

(c) Stability Score Sδ

Figure 6.12: Means of Sall, Sd and Sδ measured in the test sessions. Error bars

represent standard errors.
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(a) Distance Error Ed

(b) Angular Error Eδ

Figure 6.13: Means of Ed and Eδ measured in the test sessions. Error bars

represent standard errors.
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of prediction affected a bias to the error canceling skill so resulted low stability

of steering skill. This clearly reflects the previous definition of characteristics for

the steering skill in Section 6.1:

All groups in S-IT and S-DT obtained improved mean scores and decreased

mean RMSEs than S-PT. However, the amount of improvements is different ac-

cording to assistant conditions and post-training test sessions. To clarify the

results, a between-subjects one-way Analysis of Variance (ANOVA) and an one-

way Anaysis of Covariance (ANCOVA) were conducted as statistical analyses.

Analysis of Variance

Because this experiment has a pretest-posttest experimental design, we con-

sidered three different approaches for ANOVA. First, we regarded all test mea-

surements as independent variables in ANOVA: (X). Second, we regarded gain

scores that is difference between pretest measurements and posttest measure-

ments as independent variables: (X −XS−PT). Third, we regarded normalized

gain scores that is gain scores normalized by pretest measurements as indepen-

dent variables: (X −XS−PT) /XS−PT. All results of different approaches are

summarized in Table 6.1.

In results, no statistically significant difference is observed in any measure-

ments in S-PT; the initial skill levels of novice participants were homogeneous.

There exists no significant difference in any measurements in S-IT, but there were

significant differences in several measurements in S-DT.

Therefore, we observed their improvement of steering skills, in terms of gain

scores, which represents learning effectiveness after the participants practiced

with each training method. In results, Sall, Sd and Ed in the day trials in S-IT,

Sall, Sd, Sδ, Ed, and Eδ in the day trials in S-DT, and Sd in the night trials in

S-DT shows significant or marginally significant differences. We also analyzed
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Table 6.1: Between-Subjects One-Way ANOVA

X
(1) X only (2) X −XS−PT (3) X−XS−PT

XS−PT

F (2, 27) p F (2, 27) p F (2, 27) p

S− PT

Day

Sall 0.10 0.904

Sd 0.33 0.720

Sδ 0.02 0.984

Night

Sall 0.91 0.416

Sd 0.81 0.457

Sδ 0.68 0.516

S− IT

Day

Sall 1.11 0.345 2.80 0.079∗ 0.93 0.408

Sd 2.33 0.116 3.34 0.051∗ 1.10 0.347

Sδ 0.77 0.475 1.20 0.318 1.68 0.205

Night

Sall 2.15 0.137 1.26 0.301 1.36 0.274

Sd 1.79 0.186 0.93 0.407 1.21 0.314

Sδ 1.58 0.225 0.57 0.572 -

S− DT

Day

Sall 2.33 0.117 5.19 0.012∗∗ 1.13 0.338

Sd 1.44 0.255 3.58 0.042∗∗ 0.84 0.441

Sδ 2.44 0.106 4.29 0.024∗∗ 0.67 0.519

Night

Sall 2.59 0.094∗ 2.00 0.155 1.48 0.245

Sd 3.20 0.057∗ 2.91 0.072∗ 1.40 0.264

Sδ 0.67 0.519 0.13 0.879 -

S− PT

Day
Ed 0.19 0.825

Eδ 0.37 0.694

Night
Ed 1.02 0.376

Eδ 0.34 0.715

S− IT

Day
Ed 2.36 0.113 2.84 0.076∗ 2.37 0.112

Eδ 0.71 0.499 1.40 0.265 1.12 0.342

Night
Ed 2.11 0.141 0.93 0.407 0.98 0.388

Eδ 1.71 0.199 0.16 0.850 0.44 0.650

S− DT

Day
Ed 1.56 0.229 2.59 0.094∗ 2.54 0.098∗

Eδ 2.64 0.090∗ 2.62 0.092∗ 3.47 0.046∗∗

Night
Ed 3.50 0.044∗∗ 2.11 0.141 2.62 0.091∗

Eδ 4.90 0.153 0.99 0.384 1.54 0.232

-: not applicable because ∃XS−PT ≈ 0
∗∗: significance less than α = 0.050
∗: significance less than α = 0.100
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the normalized gain scores, however, the statistical power was better in the gain

scores.

Analysis of Covariance

Table 6.2: ANCOVA Assumption Tests

X

ANCOVA Assumptions Available

(Pass

/Marginal

/Fail)

Pre-post

Correl-

ation

Homogeneity of

Variances

(Levene’s Test)

Homogeneity of

Regression Slopes

(IV × CV )

r F (2, 27) p F (2, 24) p

S− IT

Day

Sall 0.599 3.73 0.037∗∗ 2.57 0.098∗ F

Sd 0.359 9.89 <0.001∗∗ 0.94 0.405 F

Sδ 0.679 2.38 0.111 3.82 0.036∗∗ F

Night

Sall 0.829 2.28 0.122 0.20 0.821 P

Sd 0.819 1.32 0.284 0.03 0.975 P

Sδ 0.660 0.84 0.445 9.41 <0.001∗∗ F

S− DT

Day

Sall 0.568 0.79 0.466 1.90 0.171 P

Sd 0.524 1.92 0.167 2.98 0.067∗ M

Sδ 0.652 0.09 0.910 0.34 0.712 P

Night

Sall 0.705 0.70 0.507 0.33 0.723 P

Sd 0.718 1.25 0.303 0.26 0.773 P

Sδ 0.315 0.19 0.825 3.95 0.033∗∗ F

S− IT

Day
Ed 0.356 10.90 <0.001∗∗ 1.27 0.299 F

Eδ 0.624 2.40 0.110 3.93 0.033∗∗ F

Night
Ed 0.806 2.01 0.153 1.22 0.313 P

Eδ 0.734 0.30 0.747 1.29 0.294 P

S− DT

Day
Ed 0.484 1.81 0.184 2.41 0.111 P

Eδ 0.534 0.08 0.925 1.01 0.379 P

Night
Ed 0.602 2.81 0.078∗ 0.43 0.653 M

Eδ 0.490 1.67 0.207 0.79 0.467 P
∗∗: significance less than α = 0.050

∗: marginal significance less than α = 0.100

However, an ANCOVA is the preferred method for analysis of pretest-posttest

designs to reduce error variance and eliminate systematic bias [16], especially for

learning experiments [57]. Therefore, we additionally conducted ANCOVA with

two posttest measurements in S-IT and S-DT (X) as dependent variables, mea-
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Table 6.3: One-Way ANCOVA

X
Available

(Pass/Marginal/Fail)

Results

F (2, 26) p

S− IT

Day

Sall F 2.59 0.094∗

Sd F 3.39 0.049∗∗

Sδ F 1.14 0.337

Night

Sall P 1.40 0.265

Sd P 1.16 0.328

Sδ F 0.85 0.438

S− DT

Day

Sall P 4.97 0.015∗∗

Sd M 3.35 0.051∗

Sδ P 4.14 0.028∗∗

Night

Sall P 2.09 0.144

Sd P 3.25 0.055∗

Sδ F 0.37 0.693

S− IT

Day
Ed F 3.34 0.051∗

Eδ F 1.67 0.208

Night
Ed P 1.59 0.223

Eδ P 1.62 0.217

S− DT

Day
Ed P 2.96 0.070∗

Eδ P 4.70 0.018∗∗

Night
Ed M 3.05 0.065∗

Eδ P 4.59 0.020∗∗

∗∗: significance less than α = 0.050
∗: marginal significance less than α = 0.100
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surements in S-PT(XS−PT) as covariates and the treatment type (NG, HG and

RG) as independent variables.

Before conducting ANCOVA, we carefully checked each measurement can

satisfy the assumptions of ANCOVA. To apply ANCOVA, (1) a correlation be-

tween measurements in the pretest and the posttest should be high enough;

(2) Levene’s test testing the homogeneity of variances should not be significant;

and (3)the interaction between independent variable (IV ) and the covariate (CV )

in the standard GLM procedure should not be significant, to satisfy the homo-

geneity of regression slopes. Further, several other assumptions of ANCOVA were

tested in a strict way, and all of them were suitable for ANCOVA. The important

results of ANCOVA assumption tests are summarized into Table 6.2.

Finally, the results of ANCOVA are reported in Table 6.3. In results, the

results of ANCOVA (Table 6.3) produced similar results than the results of gain

scores in ANOVA (Table 6.1) in this experiment.

Only for the measurements having a significant (or marginally significant)

effects which have passed the conservative assumption tests, Tukey’s HSD mul-

tiple testing was conducted as a post-hoc analysis to compare adjusted means.

The results of Tukey’s test and the adjusted means (using the population means

in S-PT) are described in Table 6.4.

The significant results can be observed in the measurements only in S-DT.

In the day trial, the ranking of the overall score Sall is RG < NG < HG, and in the

post-hoc test, RG < HG. The ranking of the accuracy score Sd is RG < NG < HG,

and in the post-hoc test, RG < HG. The ranking of the stability score Sδ RG <

NG < HG, and in the post-hoc test, RG < HG. In the night trial, the ranking of

the accuracy score Sd is RG < NG < HG, and in the post-hoc test, RG < HG.

The error metrics have a consistent tendency. However, because the stability

score in the night trial is reported to be so low. Therefore, we report an incon-
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Table 6.4: Adjust Means and Tukey’s HSD Tests on Significant Effects

X Adjust Means ± SD Tukey’s HSD

S− DT / Day / Sall

NG 107.49 ± 10.81 NG–HG 0.315

HG 130.19 ± 10.83 NG–RG 0.234

RG 81.87 ± 10.82 RG–HG 0.011∗∗

S− DT / Day / Sd

NG 73.26 ± 5.98 NG–HG 0.655

HG 80.77 ± 6.02 NG–RG 0.230

RG 59.02 ± 6.00 RG–HG 0.044∗∗

S− DT / Day / Sδ

NG 34.61 ± 6.06 NG–HG 0.268

HG 48.24 ± 6.06 NG–RG 0.418

RG 23.64 ± 6.06 RG–HG 0.021∗∗

S− DT / Night / Sd

NG 45.48 ± 4.96 NG–HG 0.130

HG 59.52 ± 4.97 NG–RG 0.920

RG 42.69 ± 5.03 RG–HG 0.066∗

S− DT / Day / Ed

NG 0.40 ± 0.03 NG–HG 0.794

HG 0.37 ± 0.03 NG–RG 0.219

RG 0.47 ± 0.03 RG–HG 0.066∗

S− DT / Day / Eδ

NG 1.55 ± 0.07 NG–HG 0.454

HG 1.43 ± 0.07 NG–RG 0.188

RG 1.73 ± 0.07 RG–HG 0.014∗∗

S− DT / Night / Ed

NG 0.58 ± 0.05 NG–HG 0.256

HG 0.47 ± 0.05 NG–RG 0.700

RG 0.64 ± 0.05 RG–HG 0.058∗

S− DT / Night / Eδ

NG 2.22 ± 0.12 NG–HG 0.257

HG 1.94 ± 0.12 NG–RG 0.337

RG 2.46 ± 0.12 RG–HG 0.015∗∗

∗∗: significance less than α = 0.050
∗: marginal significance less than α = 0.0100
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sistent results which showed significance in the error metric. In the night trial in

S-DT, the ranking of the angular error Eδ is HG < NG < RG, and in the post-hoc

test, RG < HG.

Subjective Questionnaire

1

2

3

4

5

6

7

Easiness Effectiveness Comfort Fun Helpfulness
(Day)

Helpfulness
(Night)

Releavance
to Score

No Guidance Human-Like Guidance Robotic Guidance

*

Figure 6.14: Subjective score responses obtained from questionnaires (1–7 con-

tinuous scale). Error bars represent standard errors. An asterisk indicates a

marginal significant difference.

We computed the mean scores for each subjective question (Figure 6.14).

For a statistical analysis, we applied the non-parametric Kruskal-Wallis test.

Dunn’s post-hoc nonparametric test was conducted as a post-hoc test to obtain

significant (or marginally significant) effects. For the steering wheel, the rankings

of the easiness, effectiveness, comfort, fun, helpfulness (day), helpfulness (night)

and relevance scores are: RG < HG < NG (χ2 (2) = 0.63, p = 0.730), RG <

HG < NG (χ2 (2) = 2.25, p = 0.326), RG < HG < NG (χ2 (2) = 4.26, p = 0.119),

RG < NG < HG (χ2 (2) = 1.06, p = 0.599), RG < HG < NG (χ2 (2) = 3.06, p =

0.216), RG < NG < HG (χ2 (2) = 5.63, p = 0.060), and NG < RG < HG
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(χ2 (2) = 3.69, p = 0.168), respectively. Only a marginal significant differences is

the helpfulness (night) score. In the post-hoc test, the learners in HG reported

higher helpfulness score for the night-time steering task, compared to the learners

in RG.

Several noticeable results are summarized in the following for each training

method. HG was ranked at the highest fun and helpfulness (night) and relevance.

RG was ranked the lowest on all criteria except relevance. This may due to

the lack of intrinsic human nature. NG was ranked the highest on easiness,

effectiveness, and comfort, and helpfulness (day). NG was ranked the lowest on

relevance; They were only learners who could not perceive haptic information

about accurate/stable steering behaviors. Hence, they was not convinced to the

performance score.

Summary

Even without haptic guidance, the accuracy and stability performance for

steering can be improved in repeated practice. However, while human-like haptic

guidance contributed to long-term learning, without haptic guidance and robotic

haptic guidance failed to show long-lasting effects. Especially, the robotic haptic

guidance resulted the worst performance improvement of training on the steering

task; this can be another attribution to the guidance hypothesis [66, 68]: the

excessive amount of feedback stimuli may reduce their focus during the training,

rather interfering with retention of the learned skill. Even though we applied

the performance-based progressive algorithm to our robotic haptic guidance, the

unnatural haptic feedback to novice drivers hampered their focus of learning,

leading to the ineffective retention performance.

However, the human-like haptic guidance under our framework (human-like

haptic assistance), resulted in the best performance improvement on the steer-
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ing task for a long term. Because our framework formulates the performance

error based on the natural task executions of experienced human drivers, the

guidance feedback was natural and comfortable for novice drivers and resulted a

contribution to maintain the learned skill. Thus, we conclude that human-like

haptic guidance has overcome the guidance hypothesis. To design haptic guid-

ance (a representative example of haptic assistance) to induce better long-term

skill improvement, the guidance feedback should necessarily consider the natural

execution of humans. If this cannot be satisfied, the guidance feedback even can

degrade learning effectiveness like robotic haptic guidance.
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VII. General Discussion

In the human experiments, we used four measures for the analysis of the

driving (both steering and pedaling) performance, and each measure is closely

related to the ability to demonstrate corresponding sub-skills: Eδ for motion-

initiating, Ed for fine-tuning (both for steering), Ev for motion-initiating, and Ωa

for fine-tuning (both for pedaling). The driving skill is a vague mixture of the

sub-skills: two for steering and other two for pedaling.

The model fs captured the experts’ sub-skill of gross steering more effectively

(Section 5.2). Usually, haptic guidance is effective at transferring gross skills

by providing kinetic references with specific timing and force. Hence, haptic

guidance could successfully transfer experts’ steering behavior of gross motions

(Section [44].

In contrast, fa captured experts’ sub-skill of fine pedaling more effectively

(Section 5.2). Haptic guidance may not be effective in transferring experts’ ped-

aling behavior of fine motions, which results in a failure of pedaling skill en-

hancement (Section 5.3). To this end, we established an improved pedaling skill

model, f
(25)
a using the configuration of τ = 25 with the same data-set, and we

could show that this model can conduct a nice adjustment of vehicle velocity in

autopilot mode on the various types of paths (Section 6.2).

In the thesis, the training effectiveness of human-like haptic assistance utiliz-

ing NN-based steering skill model was proven (Section 6.3). Although we could

not test human-like haptic assistance which utilizes an improved pedaling model

with increased prediction time, we still believe that the improved model would

induce a better training outcome.

Another remarkable statement in this thesis is that the human performance
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error vector eθ, which is formulated by NNs, may be employed to other types

of haptic assistance, e.g., error amplification providing the haptic stimuli that

increases the trajectory errors [18], or haptic disturbance (an extension of error

amplification) providing random, unpredictable force fields [38].

Therefore, here, from the understandings in this thesis, we propose a simple

way of designing performance-based haptic assistance for a trajectory-following

task, including a vague task like steering a car in a wide-banded path. The main

design issues can be twofolds: (1) modeling: how to model an optimized skill and

(2) feedback: how to deliver the optimized model to learners.

In simple trajectory-following tasks, a current human performance error vec-

tor e can be defined as

e (t) = θ (t)− θd (t) , (7.1)

where θ is a current control vector and θd is a deisred control vector at time t.

θd can be specified by the output of a particular model f1 (·) representing the

optimized trajectory-following skill. However, all trajectory-following skills are

sensorimotor skills based on dynamic human behavioral strategy in capable of any

type of sensory feedback. Therefore, the optimized skill model can be regarded

as a dynamic system which can be approximated using difference equations [51],

with a number of inputs of control vectors (for its own movements), system-state

vectors (for its own state) and exogenous environmental features.

Therefore, θd can be simplified to

θd (t) = f1 (θ (t) ,x (t) , z (t)) , (7.2)

where x (·) is the a current system-state vector and z (·) is a environmental feature

vector.

For easy trajectory-following tasks providing noticeable visual reference, the

optimized skill model f1 can be simple so θd is easily noticeable. Therefore, most
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of previous skill training was only conducted on this kind of simple trajectory

following tasks, with manual model-driven approaches for skill modeling.

The latter design issue of performance-based haptic assistance for trajectory

following tasks is how to utilize the performance vector e to generate feedback

vector Tassist.

Let f2 be a generalized method of haptic assistance, then

Tassist (t) = f2 (e (t)) . (7.3)

For example, the easiest form of haptic assistance is performance-based haptic

guidance which utilizes PID control. The feedback vector for PID-based haptic

guidance as an example of haptic assistance can be generated as:

Tassist,G (t) = Kpide (t) + Ipid

∫ t

t0

e
(
t′
)
dt′ +Dpidė. (7.4)

It intuitively generates Tassist almost proportional to e. Hence, a learner can

perceive his/her own performance error e, intuitively in a form of kinesthetic

feedback.

Using this framework, it is also feasible to generate error amplification meth-

ods [18, 59] with providing negative proportional gains to the proposed guidance.

Although many types of haptic assistance can be implemented with the proposed

design framework, the author suggests that the trainer should have great cau-

tion to design f2 for learners to easily recover the performance error vector to

understand the nature of the task.
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VIII. Conclusions

In this thesis, the author proposes human-like haptic assistance, a novel

data-driven framework for driving skill enhancement and training. Finally, in

this chapter, we summarize our finding and propose future works that should be

pursued.

8.1 Summary of Findings and Contributions

8.1.1 Hybrid Haptic Assistance

The author proposed hybrid haptic assistance for virtual steering task. In

a hybrid way, two methods of haptic assistance (haptic guidance and haptic

disturbance) have been combined into a performance-based, progressive scheme.

The training effectiveness of hybrid haptic assistance was investigated in a human

experiment. Even though the statistical significance was not supported due to

large individual variance, the author could observe the learner’s learning behavior

to confirm that combining two augmented feedback can induce synergistic effect

on the training the steering skill. In other words, by combining two different

assistance methods, more effective training might be possibly promoted.

8.1.2 Haptic Driving Training Simulator

We developed a haptic driving training simulator that provides realistic expe-

riences, to accomplish both modeling and driving skill training. In our simulator,

performance-based haptic feedback can be delivered to a learner to assist with

the training for the simultaneous manipulation of both a steering wheel and an

accelerator pedal.
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8.1.3 Driving Skill Modeling Using Neural Networks

To design proper haptic feedback for realistic driving skill of both steering

and pedaling, an adequate optimized model of the skill is required. To this end,

we used artificial neural networks to extract a driving expert’s motor behavior

when modeling the skill. We validated our proposed model with predictive errors,

and objectively proved the performance of haptic guidance using the model by

performing a human experiment. In results, our modeling approach showed an

ability to capture specific behavior of experienced drivers, which indicates the

validity of our modeling approach. Further, we implemented PID-based hap-

tic guidance using the performance errors obtained by the neural-network-model

of steering and pedaling, then demonstrated those errors to novice drivers to

show applicability of our approach. In results, the transfer of performance er-

rors significantly enhanced novice drivers’ steering performance, whereas it failed

to enhance pedaling performance. We conjecture the problem of pedaling skill

recognition can be incurred due to the different cognitive capacity on steering

and pedaling.

8.1.4 Human-like Haptic Assistance

To show that our framework can demonstrate the optimized skill execution of

both steering and pedaling, we designed a generalized autopilot algorithm using

PID control. In results, all the autopilot modes (implemented by the NN-based

pedaling model) using our steering model and the conventional steering model

can drive appropriately on different types of paths. However, their behavior of

steering was meaningfully different; our framework steered the steering wheel

more similar to humans. Therefore, we named our framework, human-like haptic

assistance. The human-like haptic assistance can induce more accurate driving

style but less stable driving style,compared to the conventional, robotic haptic
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assistance. Therefore, we designed the final human experiment querying whether

different styles of driving can be inherited after the training in two distinct hap-

tic assistance methods (human-like and robotic), where the optimized skill model

of steering is only different. In results, the novice drivers trained by human-like

haptic assistance resulted more improved accuracy and stability performance. Be-

cause the driving style of human-like haptic assistance is more similar to humans,

our results of the experiment indicate that to induce better training effectiveness

(or, to overcome the guidance hypothesis), the design of haptic assistance should

necessarily demonstrate natural execution of humans for a certain task.

8.2 Future Works

We should mention here is the feasibility of human-like haptic assistance for

different kinds of trajectory-following tasks. The human-like haptic assistance

outperformed the conventional haptic assistance in both terms of the accuracy

and stability performance. The most obvious characteristic of the human-like

haptic assistance is that because it its formulated by real humans, the final move-

ments to control a certain target task become similar to real humans.

For haptic assistance designers, the conventional model-driven approach al-

ways require additional considerations and efforts to present a similar behavior

to the nature of the task dynamics. However, using the neural networks as our

approach, those considerations and efforts can be minimized and even the re-

searchers might be convinced to achieve a better training effectiveness as a final

outcome. Therefore, the author suggests that human-like haptic assistance using

neural networks can be a feasible solution for future motor learning and rehabili-

tation studies targeting the training of composite continuous trajectory-following

skills.

To this end, we note that there remain opportunities for the application of
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other well-known approaches, such as Learning from Demonstration (LfD) [8],

to realize efficient reference modeling for the driving skill to design an advanced

version of human-like haptic assistance. Moreover, several machine-learning tech-

niques that are based on a human decision behavior, such as the hidden Markov

model (HMM) [55, 58], would be a novel extension to our data-driven modeling

approach for more difficult, decision-based tasks.
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요 약 문

운전 기능은 실용성 및 연구적 필요성이 높은 대표적인 감각운동 기능이다. 본

논문에서 저자는 운전 기능의 향상과 교육을 목적으로 하는 인간-유사 햅틱 어시스

턴스를 제시한다. 인간-유사 햅틱 어시스턴스는 신경망 알고리즘과 성능-기반 햅틱

피드백을 사용하는 새로운 형태의 데이터 주도 햅틱 어시스턴스 프레임워크라고 할

수 있다.

사전 연구로 저자는 혼합형 햅틱 어시스턴스라고 부르는, 기존 두 가지의 성능-

기반 햅틱 어시스턴스(햅틱 가이던스 및 디스터번스)를 혼합한 어시스턴스 방법을

개발하고 이를 이용하여 가상 조향 기능을 교육하는 실험을 진행하였다. 이 혼합형

방법은 교육 초반에는 햅틱 가이던스가 사용되지만 훈련자의 성능에 따라 점진적

으로 햅틱 디스터번스로 변화하는 형태를 가지고 있으며, 실험 결과 해당 방법의

다양한 장점을 확인할 수 있었으나 통계적 유의성은 확보할 수 없었다.

저자는 이러한 사전 연구를 확장시켜 더욱 실제 상황과 유사한 운전 교육을 진

행하고자 하였고, 이를 위해 실제와 유사한 시뮬레이션이 가능한 햅틱 운전 훈련

시뮬레이터를개발하였다. 그리고전문가모델수립을목적으로시뮬레이터를통해

숙련된 운전자의 운전 데이터를 수집, 수집한 데이터로 인공 신경망을 훈련시켰다.

그 결과, 인공 신경망을 통해 전문가의 성공적인 운전 기능(조향 및 페달)을 예측

값을 제공할 수 있는 최적화된 기능 모델을 개발할 수 있었다. 수립한 기능 모델의

타당성 및 성능-기반 햅틱 피드백에의 적용 가능성을 확인하기 위한 사용자 실험을

진행한 결과, 우리의 방법이 전문가의 조향 및 페달 양상을 타당하게 추출하는 것

을 확인하였다. 단, 성능-기반 햅틱 피드백의 적용 가능성에 대해서는 조향 모델에

대해서만 확보할 수 있었다.

이에 따라 저자는 해당 전문가 모델을 사용하여 성능-기반 햅틱 피드백이 아닌 자
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율주행 알고리즘을 개발, 다양한 도로 상황에서의 자율주행 테스트를 진행하였다.

그 결과 우리의 기능 모델로 개발된 자율 주행 알고리즘이 모든 도로에서 성공적

인 주행이 가능하다는 사실이 확인되었으며, 특히 시뮬레이터의 주행 자체가 인간

전문가에 의해 개발된 모델 덕에 인간과 유사한 조향 양상을 보인다는 사실을 확인

하였다.

이에 따라 저자는 본 논문의 프레임워크를 인간-유사 어시스턴스로 명명하였고,

프레임워크를 충실하게 따르는 인간-유사 가이던스를 개발하였다. 그리고 대조군

인 기존 로봇 가이던스에 대비하여 인간-유사 가이던스가 조향 기능 교육에 가지는

이점을 확인하기 위해 두 방법 각각에 성능-기반 점진적 알고리즘을 적용, 최종적인

조향 기능 교육 실험을 진행하였다. 실험 결과, 로봇 가이던스 교육 방법에 비해

인간-유사 가이던스 교육 방법이 조향의 정확성 및 안정성 모두를 더욱 높게 향상시

킬 수 있다는 사실을 확인하였으며, 이는 인간-유사 가이던스가 인간의 자연스러운

조향 양상을 반영하기 때문으로 이해할 수 있다. 따라서, 저자는 우리의 인간-유

사 햅틱 어시스턴스 방법이 운전 기능의 향상 및 교육에 모두 효과를 나타낸다는

사실을 입증할 수 있었으며, 궤도-추적과 같은 다른 감각운동 기능 교육에도 해당

프레임워크가 확장될 수 있을 것으로 기대한다.
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