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ABSTRACT

In this work, we address the problem of rendering surface curvature and

fine texture using an electrovibration display. We proposed effective algorithms

to address each problem separately. In the first part, we introduced a gradient

based method to render 3D objects on an electrovibration display. It includes

a generalized real-time algorithm to estimate surface gradient from the surface

of any 3D mesh. In addition, a separate edge detection method is included to

emphasis sharp edges while scanning the surface of a mesh. Conducting a human

user study, we showed that in the presence of haptic feedback generated using our

algorithm, the users can better recognize 3D bumps and holes when the visual

feedback is limited and puzzling.

In the second part, we proposed a neural network based texture modeling

and rendering method. We first created an inverse neural network dynamic model
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for the electrovibration display to estimate an actuation signal from the forces

collected from the surface of real texture samples. For the force measurement,

we developed a linear motorized tribometer enabling adjusting applied normal

pressure and scanning velocity. We trained neural networks to learn from the

forces resulted from applying a full-band PRBS (pseudo-random binary signal)

to the electrovibration display and generate similar actuation signals. While the

networks are trained under known normal pressure and scanning velocity, for

untested conditions, we proposed a two-part interpolation scheme to produce

actuation signal from the neighborhood conditions. The first part, generates a

signal by taking weighted average between the signals with the same scanning

velocity but different masses. The second part, performs a re-sampling process,

either down-sampling or up-sampling, on the newly estimated signals to produce a

final signal according to the user applied normal pressure and scanning velocity.

We conducted a user study to put the proposed algorithm on test. We asked

users to rate the similarity between a real texture and its virtual counterpart.

The experimental setup included a load-cell to measure user applied pressure

and an IR-frame to track his/her finger position and eventually calculate user’s

scanning velocity. Testing six different real texture samples, we achieved an

average similarity score of 60% using the proposed algorithm against 39% using a

basic record-and-playback method. This revealed the potentials of the proposed

texture modeling and rendering algorithm accompanied by a linear interpolation

scheme in creating virtual textures similar to the real ones.
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Chapter I.

Introduction

Touch is the most fundamental sense we are equipped with from the moment

we enter this world. Even new born babies know how to use their sense of touch

to interact with their surroundings. Touch is a necessity in doing ordinary tasks

around us which without it even a very simple task would be challenging to

complete. Just imagine how difficult it can be to pick an object if you cannot feel

its shape or determine the amount of force you need to apply to hold it. Touch

is very important to us in many levels and we rely on our touch sense more than

we think we do.

Modern technologies in this digital era added new interactive agents around

us which require our touch input. Touchscreen consumer electronics such as smart

phones and tablet devices are among them. They are a versatile device that

displays visual content and takes touch input simultaneously. More specifically,

smart phones are an inevitable part of our daily life. Users spend a significant
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amount of time interacting with the digital contents on their mobile phones. So

equipping such devices with a functionality to provide some sort of touch feedback

was inevitable and seemed to be a natural course of technological development.

However, despite the technological advances, these devices lack the ability of

providing programmed tactile feedback, which can be essential for more natural

and intuitive interaction. At best, they provide some simple monotonic vibration

patterns in response to the user’s touch input. This is neither appealing nor

satisfactory given the expectations users have from such modern devices.

With the introduction of variable friction displays, this limitation has been

addressed by technologies collectively called surface haptics. These technologies

modulate friction between a user’s fingertip and a touchscreen surface in order

to create a variety of tactile sensations when the finger explores on the touch-

screen. This functionality allows the user to see and feel the digital content

simultaneously with richer haptic information, leading to improved user expe-

rience and/or usability. There exist two major approaches in surface haptics:

electrovibration and ultrasonic vibration. Whereas the former increases the sur-

face friction by modulating attractive electrostatic force, the latter decreases the

friction by vibrating the surface at an ultrasonic frequency and creating an air

gap. Such electrovibration displays have the advantages that they require only

electrical components and that the friction can be controlled uniformly on the

screen, which are particularly attractive for mobile devices with a provision of

adequate amplifiers.

The lack of appropriate tactile feedback motivated us to seek effective ways
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to tackle the challenge employing electrovibration technology. More specifically,

in this work, we focus on rendering surface features such as geometry and texture

on an electrovibration display. Many applications can benefit from this added

functionality, such as Internet shopping, education, security authentication, en-

tertainment, and etc. We believe in close future mobile phones will be equipped

with such a functionality and hence algorithms such as ours will be an asset

taking full advantage of this added quality.

1.1 Research Overview

The focus of this research is twofold: rendering surface 3D geometries and

surface fine texture on an electrovibration display. We address each fold in sepa-

rate chapters.

In chapter 2, we review technological background of the electrovibration and

the early displays fabricated based on it. We then review the recent displays,

including the one introduced in TeslaTouch project [4]. Later on, we separately

survey the literature regarding the work related to rendering 3D features and

surface textural patterns. The focus for the latter on is on data-driven texture

modeling and rendering methods.

The focus of chapter 3 is on rendering 3D geometries and seeking an effec-

tive way to improve the 3D shape perception of visual objects displayed on a

touchscreen by providing electrovibration feedback We first present the physical

characteristics of the electrostatic friction display used in our research. This is

followed by a formative user study that investigated whether users can identify
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3D features, such as bumps and holes, from electrovibration feedback alone with-

out any visual information. We adapted the basic gradient-based lateral force

rendering algorithm studied in [2] for that. The results of the formative user

study provided useful information as to how to utilize frictional force feedback

for our purpose.

Based on this finding, in chapter 4, we extended and generalized the basic

algorithm to estimate the surface gradient for any given 3D mesh. Also, we pro-

posed an additional edge emphasis algorithm for rendering sharp edges. Finally,

we conducted a summative user study to quantify the performance improvement

of 3D object shape recognition enable by our algorithm under limited visual con-

ditions. To our knowledge, this work is among the first for 3D shape rendering

using electrostatic friction displays.

The focus of chapter 5 is on data-driven texture modeling and rendering. It

includes recording texture data from the real samples, building texture models

and rendering them on an electrovibration display. We investigate the application

of NARX neural networks on capturing the dynamic behavior of the electrovi-

bration display by inversely learning from the forces resulted from applying a

full-band pseudo-random binary signal (PRBS) to the display. We show how

to synthesize actuation signals using the trained neural networks under known

experimental conditions based on the forces collected from the surface of real

materials. We also introduce a basic interpolation scheme to estimate actuation

signals for untested experimental conditions from adjacent nodes in the pressure-

velocity grid.
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Observing the poor performance of the basic interpolation scheme estimat-

ing the signals for the conditions with different scanning velocities, the aim of

chapter 6 is to find an effective solution. We pay a closer look into the problem

and propose a potential solution based on re-sampling neighboring signals. This

yields to an improved two-part interpolation scheme. In the first part, we take

weighted average between the adjacent signals having the same scanning veloc-

ity but different masses. The lower and higher normal pressures (masses) and

the user applied pressure define the weights. In the second part, we apply a re-

sampling process, either down-sampling or up-sampling, on the newly produced

signals and then take a weighted average with the lower and higher velocities

and the user applied velocity as the weights. At the end we conduct a human

user study to evaluate the performance of the proposed texture modeling and

rendering method on creating virtual textures similar to the real ones.

The manuscript ends with the conclusions and future remarks.

1.2 Contributions

The major contributions of this study are summarized bellow:

• Of first to consider lateral forces as the salient surface texture feature

• First to use a touch pen (instead of human finger-tip) to capture lateral

forces from the surface of texture samples using a motorized tribometer

• Developed a generalized real-time algorithm to estimate surface local gra-

dient at the touch point from any 3D mesh
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• Devised a neural-network-based inverse model describing the dynamic be-

havior of the friction display with respect to a full-band pseudo-binary

random signal (PRBS) as actuation signal

• Proposed a two-part interpolation scheme to estimate an actuation signal

for an untested condition from the adjacent tested conditions
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Chapter II.

Related Work

2.1 Electrostatic Friction Display

Mallinckrodt et al. in 1953 was the first to discover that touching an insulated

metalic surface, connected to a 110 V power line, creates a tingling rubber-like

feeling on the electrically grounded finger [5]. This phenomena is called elec-

trovibration by Grimnes in 1983, explaining its principle of operation based on

Coulomb’s electrostatic force [6]. Electrovibration is due to the electrostatic at-

traction force between two conductive plates separated by a dielectric. When

the finger scans an insulated electrode, a condenser is formed between the elec-

trode and the conductive substance under the skin. Exciting the electrode using

a periodic voltage induces electrostatic attraction, and this increases the friction

force between the surface and the moving finger. This electrostatic stimulation

was introduced into a tactile display by Strong et al. [7]. They developed the
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first electrostatic display using a stimulator array consisting of a large number

of small electrodes. They reported that the intensity of the perceived vibration

was mainly due to the peak applied voltage. Later, a polyimide-on-silicon elec-

trostatic fingertip tactile display was fabricated with 49 electrodes arranged in a

square array [8]. They conducted experiments to assess the intensity and spatial

resolution of the tactile percepts. In a following study, its application to present

various spatial tactile patterns such has line, triangle, square, and circle to the

visually impaired users is investigated [9]. In all these work, the dryness of fin-

gertip is emphasized to be the key factor maintaining the percept, reporting that

a small amount of sweat could cause the percept to fade or disappear. Indirect

stimulation was suggested as a solution. Yamamoto et al. built a display with a

thin slider film between electrostatic stator electrodes and fingertip for present-

ing surface roughness [10]. In another work, multiple contact pads are used for

multi-finger interaction with a large electrostatic display [11].

Despite these early work, TeslaTouch, developed at Disney Research, was

the first to adopt electrovibration technology as an effective haptic interface for

touchscreens [4]. The core of TeslaTouch is a transparent capacitive touch panel

(Microtouch, 3M, USA [12]) driven by a high voltage signal to modulate friction

on a sliding finger. The panel is made of a thick glass layer on the bottom, a

transparent electrode (indium tin oxide; ITO) in the middle, and a thin insulator

layer on the top. In the usual setup, the electrode is excited by high AC voltage,

and the human body is grounded electrically. The big advantage of TeslaTouch

is that the capacitive panel is a commercial off-the-shelf product which requires

– 8 –



only an additional high voltage amplifier for proper operation. The same panel

has been used in electrovibration displays by other groups [13–19]. Radivojevic

et al. at Nokia, introduced a flexible and bendable version by replacing indium-

thin oxide (ITO) with Graphene [20]. Another company in Finland, Senseg,

developed Tixel [21], a transparent electrostatic film targeting hand-held devices.

Senseg later introduced a short-lived commercial product called Feelscreen, a

7” Android tablet overlaid with Tixel, into the market between 2014 and 2016.

Feelscreen has been used in several projects such as 3D shape rendering [22],

texture gradients [23], and visual and haptic latency [24]. At the moment, Tanvas

[25], a startup company in USA, is commercializing similar products but on a

larger 10” tablet with some improvements such as generating stronger friction

forces and not requiring an external power supply.

Some other researchers developed their own electrovibration display not us-

ing the 3M capacitive touch panel. Pyo et al. built a tactile display that provides

both electrovibration and mechanical vibration on a large surface [26]. They

fabricated an insulated ITO electrode on top of an electrostatic parallel plate

actuator, both operating based on the electrostatic principle. A non-transparent

electrostatic friction display was also developed in [27, 28] using an aluminum

plate covered with a thin plastic insulator film.

These displays do not support multi-touch or localized friction modulation,

and all fingers in contact with the surface experience the same sensation. This

issue was addressed by several prototypes presenting local stimulation. For ex-

ample, a display panel was developed with multiple horizontal and vertical ITO
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electrodes in a grid enabling localized stimulation at the region where the vertical

and horizontal electrodes cross each other [29]. In [11], a multi-finger electrostatic

display was developed consisting of a transparent electrode and multiple contact

pads on which users place their fingers. Applying different voltages to the pads

and electrically grounding the transparent electrode induce different frictional

stimuli to the multiple fingers.

As well as fabrication, various properties of electrovibration have been inves-

tigated too. The polarity effect of the actuation signal is studied in [30], reporting

that tactile sensation is more sensitive to negative than positive pulses. Meyer

et al. showed an expected square law dependence of frictional force, measured

by a tribometer, on actuation voltage [13]. A similar approach is taken by Vez-

zoli et al. to develop a model for electrovibration effect considering frequency

dependence [28]. Kim et al. proposed a current control method to provide more

uniform perceived intensity of electrovibration [16]. In another work and by com-

paring two actuation signals, it is reported that square waves are more detectable

than sine waves at frequencies lower than 60 Hz while they are same at higher

frequencies [31]. Testing three methods, amplitude modulation, adding dc offset,

and their combination, Kang et al. investigated low voltage operation of electro-

vibration display [19]. They showed all methods increased dynamic friction force

while only dc offset increased static friction force.

The relationship between input signal and output friction in electrostatic

friction displays is not clearly understood and a number of studies have shown

great interest in defining such relationship. Researchers have worked on this topic
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either by measuring friction forces using a tribometer [13, 28] or by estimating

perceived intensities in psychophysical experiments [14, 32]. For instance, Meyer

et al. [13] developed a tribometer to make precise measurements of finger friction

and confirmed the expected square law of frictional force to driving voltage. They

also showed a linear mapping between friction and normal force, confirming the

Coulombic model of dry friction. Conducting a 6-value effect strength subjective

index rating, Wijekoon et al. showed a significant correlation (0.8) between sig-

nal amplitude and perceived intensity but no correlation between frequency and

perceived intensity [32]. In [14], participants assigned a number between 0 and

100 to the subjective friction intensity. A linear fit in log-log scale was observed

in the normalized results relating applied voltage amplitude to perceived friction

force intensity.

2.2 Rendering Surface Geometry

Rendering 3D objects on a flat surface, either using a haptic interface or

a variable friction display, has not been addressed much in the literature. In

an early work regarding haptic perception of curvature, Gordon and Morison

showed that the gradient is an effective stimulus for curvature perception and

humans rely on local curvature when perceiving surface [33]. Later, Minsky

et al. demonstarted that tangential force alone can be sufficient for rendering

surface texture assuming it is made of little bumps [1]. They introduced Gradient

Technique to create the illusion of bumps and valleys using a 2D force-feedback

joystick. As the user moves the joystick in a direction which is up a bump, his
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motion is opposed by a spring force proportional to the height of the bump. This

gives the sense that it is very difficult to move to the top of the bump (springs

resist being stretched), and easy to fall off the bump back into a lower region of

the simulated surface (springs like to revert to a short length). For fine grained

surfaces joystick spring forces can be computed based on a local gradient. As

the user moves the joystick on the virtual surface, the change in height in the

direction of motion is noted . We create virtual springs opposing the motion

”up” the sides of each tiny bump. Thus the spring forces applied to the hand are

computed from local gradients of the height of the surface (Fig. 2.1).

Figure 2.1: The original illustration from [1]. Left: Gradient Technique. Right:

detail of local spring force computation for x direction.

Based on the Gradient Technique, an early attempt to create the haptic

illusion of a non-flat shape on a nominally flat surface was introduced in [34] using

a force-shading algorithm. Later continuing their earlier work [35], Robles-De-La-

Torre and Hayward demonstrated that in active exploration of a physical shape,

lateral force applied to the sliding finger plays the main role in the perception of
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shape [2]. They investigated the accuracy of physical shape recognition using a

one-DoF (degree of freedom) force-feedback device without visual cues. Different

combinations of physical and virtual geometries (bump, hole, and flat surface),

e.g., a virtual bump laid on a physical flat surface, were presented to participants.

The virtual shapes were rendered using lateral force only. Participants could

accurately identify the virtual shapes in all conditions.

This study was foundational to the gradient-based algorithm of Kim et

al. [14] for rendering 3D features on a touchscreen using electrovibration. In

their work, a psychophysical perceptual model, subjectively relating the perceived

friction to the applied voltage, was formulated. The model was a straight-line in

log-log scale, fitted over averaged users’ ratings of the perceived friction inten-

sity in a scale of 0–100. The model then utilized to modulate friction and render

three lateral force profiles: height, slope and rectangular profiles. They compared

users’ preference for three types of force profile for a visual bump displayed on the

screen. Results indicated that the slope profile best matched the visual bump.

They generalized this finding to a 2D gradient-based rendering algorithm for 3D

features and applied the algorithm to many user interface examples.

2.3 Rendering Surface Texture

Haptic texture rendering has been always a challenge in the haptics com-

munity. It is all about creating virtual textures that perfectly mimic the feel of

specific real textures. While including textures has the potential to increase the

realism of haptic virtual environments, but they must be implemented in a way
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that respects the software and hardware capabilities of haptic interface systems.

Researchers have thus developed several different approaches to haptic texture

rendering [36–40]. The focus of this work is a data-driven texture modeling and

rendering method using an electrovibration display. Therefore, we limit the scope

of this survey to the work either employing a data-driven method or targeting a

flat display.

Data-driven, or measurement-based haptic rendering, is a general approach

that uses recordings from real objects to generate realistic haptic feedback in

virtual environments [41, 42]. It can be either parametric and physics-based, to

optimize parameters of a predefined model, or non-parametric and generic. It is

usually accompanied by a generic interpolation scheme to handle the data sets

not being measured. This data-driven approach enables researchers to bypass

the complex step of hand tuning a dynamic simulation of the target interaction

to try to match a haptic sensation. Instead, the goal of the modeling process is

to capture the output response of the system (e.g., force and acceleration) given

some set of user inputs (e.g., position, velocity, and force). Such methods shift

the focus from reproducing the physics of the interaction to reproducing the real

sensations felt by the user, and thus they have been largely successful at realistic

haptic simulation [43].

Manual surface exploration using a handheld sensorized stylus has been the

prevalent data collection method for isotropic texture modeling. They are inex-

pensive and easy to use, and also allow for free-form surface scanning. For exam-

ple, Pai and Rizun developed a wireless haptic texture sensor (WHaT) equipped
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with a 3D accelerometer and a 1D force sensor, all packaged compactly in a

stylus [44].

Using WHaT along with a visual marker for 3D position tracking, Lang

and his colleagues presented a series of studies for data-driven haptic modeling

and rendering in virtual environments [45–47]. Their framework is mainly for

compliance and texture. The compliance is dynamically estimated from a linear

relationship between user-applied force and resulting acceleration. For texture

modeling, a height profile is built from acceleration data using amplitude scal-

ing (to remove the effect of applied force) followed by Velvet integration. This

height profile is registered onto the object surface along the scan path for render-

ing with a force-feedback interface. An alternate method proposed by the same

group makes an acceleration model [48, 49]. Scanned acceleration data is auto-

matically segmented so that each segment includes a single decaying vibration.

Each decaying vibration is modeled using an infinite impulse response (IIR) fil-

ter. These IIR filters are registered onto the object mesh following the scan path.

Vibration amplitude is scaled using a linear function of scan velocity and applied

force.

Another series of work has been contacted by Kucknbecker’s group for data-

driven texture rendering based on contact accelerations. In their early work [43],

they collected contact accelerations under constrained conditions using a rotating

drum with texture samples attached to its exterior surface and a hand-held prob

equipped with three-axis accelerometer. The data from four different textures

are recorded under fifteen different velocities and eight different force levels, re-
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sulting in a total number of 480 data sets. An autoregressive (AR) model based

on linear predictive coding (LPC) is fit to each data set. The model is optimized

by minimizing the residual error between recorded and predicted accelerations.

The model resembles an IIR filter of order n. Once trained, the inverse model

is used to synthesize accelerations by feeding a Gaussian white noise with zero

mean and variance equal to average signal power remaining in residual. For

scanning velocities and normal forces not used in training, acceleration values are

calculated by a model for which its coefficients are bilinearly interpolated from

four adjacent models. Later, they improved their stylus by adding a force sensor

and two voice-coil actuators to the three-axis accelerometer for haptic interaction

with a tablet computer [50]. The same stylus is used for both data collection and

texture rendering. Using the same modeling and synthesis methods and conduct-

ing a user study, they reported moderately high similarity ratings (M 65.4, SD

19 in a 0–100 scale) between real and virtual textures. Their model was further

refined by replacing LPC with an autoregressive moving average (ARMA) to bet-

ter handle the weak stationary nature of the data and also to reduce the size of

model [51]. In their next work [52], data collection are conducted manually un-

der free conditions not constrained by predefined scanning velocities and normal

forces. They applied Auto-PARM algorithm to automatically segment recorded

data. With an AR model for each segment, this new approach resulted in many

simpler AR models in the space of scanning velocity and normal force. They

recently opened a public repository of one hundred acceleration-based texture

models [53], along with associated modeling and rendering software including
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a method to render the texture models using a force-reflecting interface. This

is a pivotal contribution for the advancement of haptic texture modeling and

rendering. In their last work, they investigated the importance of matching be-

tween physical friction, hardness, and texture in creating realistic haptic virtual

surfaces [54]. The virtual surfaces were created using a combination of friction,

tapping transient, and texture vibration models to capture the full haptic expe-

rience, and they were rendered using a Omni force-feedback device augmented

with a Haptuator. A Coulomb friction relationship was fit to data recorded from

dragging on the surface and was rendered using a stick-slip Dahl friction model.

The tapping vibration transients were modeled from data recorded during tap-

ping on the physical surfaces at various speeds. During rendering, the tapping

transients are displayed as momentum-cancelling force transients. Piecewise au-

toregressive texture models were created to represent the vibrations induced in

a tool as it is dragged across a textured surface. A synthetic vibration signal

is generated and displayed through a voice-coil actuator attached to the tip of

the Omni. Conducting a user study, they reported that the realism improvement

achieved by including friction, tapping, or texture in the rendering was directly

related to the intensity of the surface’s property in that domain (slipperiness,

hardness, or roughness).

A special attention to anisotropic textures has been also given. Shin et

al. compared texture modeling using unified and frequency decomposed neural

networks with the former being capable of handling anisotropic patterns [55].

In addition, a dedicated data-segmentation and interpolation method based on
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Radial Basis Function Network (RBFN) for anisotropic textures is proposed in

[56].

Despite these endeavors using conventional or customized haptic interfaces,

little work has been done on data-driven texture rendering using variable friction

displays or particularity electrovibration displays.

An electrostatic friction display creates clearly perceptible stimuli when the

surface is laterally scanned, but not when the finger is stationary. This fundamen-

tal limitation has confined the application of electrostatic friction displays mostly

to texture rendering. In the only relevant work [15], Ilkhani et al. proposed a

data-driven texture rendering method by recording accelerations from three real

materials and playing them back on an electrovibration display. Their automated

data collection is done under single constraint condition (contact force 0.35 N

and scanning velocity 0.74 m/s) using a servomotor controlled by an Arduino

Uno. They conducted a user study to compare the perceived surface roughness

generated with their data-driven signals and with that of square wave signals.

The frequency of each square wave is set based on the main frequency of the

corresponding acceleration. Using a visual indicator, they made user to keep a

constant scanning velocity, but not equal to the data-collection velocity and pre-

sumably very slower than that. In addition, there is no mention of contact force

status during experimentation. Nevertheless, they reported higher percentage of

similarity between data-driven textures and real ones in comparison with square

wave patterns. In their extended work [57], they applied the same approach on

the data from Penn Haptic Texture Toolkit [58] and performed MDS analysis

– 18 –



to create a perceptual space and to extract underlying dimensions of the tex-

tures. Their results showed roughness and stickiness as the primary dimensions

of texture perception.

In [59], authors presented a high-fidelity surface haptic display for texture

rendering using a non-contact position sensor and a low-latency rendering scheme.

The friction was controlled by modulating amplitude of ultrasonic vibrations of

a glass plate while a finger was sliding along the plate. They applied a lead-lag

compensator to correct the amplitude attenuation and a high-order filter to ad-

dress the effects due to the frictional mechanics of the finger. To achieve a better

flatness of the force frequency response and a better time-domain tracking per-

formance, at the expense of a more complex implementation, high-order filters

were utilized. The device can reproduce features as small as 25 µm while main-

taining an update rate of 5 kHz. Signal attenuation, inherent to resonant devices,

is compensated with a feedforward filter, enabling an artifact-free rendering of

virtual textures on a glass plate.

In [60], an approach for texture simulation on a friction control device based

on comparison of the finger position with a pre-compiled map of friction is pro-

posed. Their device incorporated an open loop control of the friction on the finger

sliding on an ultrasonic vibrating plate. The key challenge was the bandwidth

of the position sensor determines the maximum reproduction bandwidth of the

device which can be as law as 50 Hz for a capacitive touchscreen which is largely

insufficient to reproduce real textures. Two different texture rendering schemes

were introduced, a classic one for object representation (SHO: surface haptic
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object) and a digital synthesis for texture representation (SHT: surface haptic

texture). By defining two different signals, the SHO, spatially located, and the

SHT, spatially periodical, they proposed a solution to overcome the limitation of

the slow position acquisition. They conducted a psychophysical experiment to

analyze the advantages of the two texture rendering techniques concluding that

the SHT approach performed significantly better than the SHO for a large spa-

tial frequency (17 stimuli/cm) while it was the opposite for a spatial frequency

around (0.7 stimuli/cm).
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Chapter III.

Basic Gradient Algorithm For

Rendering 3D Geometries

In this chapter, we investigate whether lateral forces can be used to render

basic 3D geometries on an electrovibration display. The study was motivated by

our on-going research for an integration of a multi-focus autostereoscopic 3D vi-

sual display and an electrostatic display onto a touchscreen. Multi-focus displays

provide greatly superior 3D visual perception than regular touchscreens, and we

have been seeking the methods to further enhance 3D perception by means of

haptic feedback. The present study was carried out for the following two research

questions:

Q1 Can users identify primitive 3D features, such as bumps and holes, from

electrovibration alone without any visualization?
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Q2 How close is the recognition performance to that of the case using an active

kinesthetic interface?

3.1 Device Characterization

In this study, we used a Feelscreen development kit (Senseg, Finland) for

a tablet, in which an electrostatic display was overlaid on a commercial tablet

(Google Nexus 7). This device can provide strong and clear sensations of elec-

trovibration. Its software development kit (SDK) supported nine haptic effects

(called haptic grains) that resulted in noticeably different friction patterns. The

intensity of haptic grain could be controlled using a normalized value (0.0–1.0).

However, the Feelscreen SDK did not allow completely-customable input, e.g.,

a sinusoidal wave with certain frequency and amplitude, and the characteristics

of generated friction forces was unknown. Therefore, it was necessary to char-

acterize FeelScreen’s various haptic grains, and we built a tribometer for that

purpose.

3.1.1 Tribometer

Our tribometer is similar to those used in the research of electrostatic dis-

plays [13,28], but also has a few differences. The previous studies required great

care in controlling the electrical skin impedance of fingertip since it depends

greatly on person, temperature, and moisture. In particular, the skin moisture

level can change even in a short period of use. We found that the electrostatic

display of Feelscreen also responded to some touch pens. The sensations of elec-

trovibration resulted from the use of such a touch pen and the bare finger were
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very similar. Hence, our tribometer uses a touch pen instead of the human fin-

gertip for data collection in order for precisely regulation of the measurement

condition. Our tribometer is also rotary for a simpler mechanical design whereas

the previous studies used linear scanning movements.

(a) Top view

(b) Bottom view

Figure 3.1: Rotary tribometer.
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Our tribometer consists of a DC motor (RB-35GM, DnJ, Korea) with a touch

pen attached to its shaft using a holder and a six-axis force/torque sensor (Nano

17, ATI Technologies, USA) placed under the tablet (Fig. 3.1). The length of the

pen holder is 6 cm, which makes the rotation radius 3 cm. A balancing beam with

a counterweight on the opposite end of the touch pen is used to adjust the normal

pressure. The beam is pivoted at the middle to provide free vertical movement.

The counterweight mass (' 470 g) is selected to approximate the normal pressure

of human hand. The rotation velocity (' 6.5 cm/s) is chosen for the usual human

hand velocity during surface scanning. The force data is sampled at 10 KHz using

a 16-bit data acquisition board (NI USB-6251, National Instruments, USA).

3.1.2 Output Characteristics

To characterize the output friction force of Feelscreen, we customized an

Android application, originally developed by Senseg, that aligned a number of

vertical edges in the landscape orientation (Fig. 3.2). When each edge was crossed

by the rotating touch pen of the tribometer, a haptic grain was played back with

the designated intensity. A representative data of the measured tangential and

normal forces is presented in Fig. 3.3 (haptic grain EDGE-SOFT; intensity 1.0).

The upper panel shows that whenever an edge was crossed by the touch pen,

a vibratory tangential force occurred with the peak-to-peak (p-p) amplitude of

approximately 0.25 N (averaged over 50 largest p-p amplitudes). Vibratory forces

were also observed in the normal direction, but their p-p amplitude was much

lower (less than 0.05 N). Therefore, the tangential force should be the dominant

sensory cue for the perception of haptic effects. These output behaviors are in
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Figure 3.2: Graphical user interface for device characterization. When each ver-

tical line is crossed, a haptic grain is rendered.

good agreement with those reported in the previous related work [13].

We then identified the relationship between input intensity and the magni-

tude of output tangential force. While changing the input intensity from 0.1 to

1.0 (step size 0.1), we collected 20 s of force data (corresponding to seven full

rotations of the tribometer’s shaft). After applying a low-pass filter with a cut-

off frequency of 500 Hz, we computed the p-p amplitudes of the tangential force

and then averaged the 50 largest. The mean p-p amplitude showed a quadratic

relationship to the input intensity, as shown in Fig. 3.3(c) (haptic grain EDGE-

SOFT). Assuming that input voltage to the electrostatic film of Feelscreen is
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(a)

(b)

(c)

Figure 3.3: Example of force measurements. Blue: tangential force and red:

normal force. (a) Raw data. (b) Detail from the region highlighted with two

vertical lines in (a). (c) Peak-to-peak amplitude of tangential force vs. input

intensity.
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linearly proportional to input intensity, this result conforms to the classic theory

of electrovibration that the output force magnitude is in proportion to the square

of input voltage [5].

We also looked at the static behavior of friction force. For measurements, the

touchpen was rotated on the Feelscreen surface by our tribometer. The surface

was divided into eight equal segments, and the EDGE-SOFT haptic grain was

enabled for only the first segment (between 0◦ and 45◦) and disabled for the other

segments (Fig. 3.4(a)). We computed two average forces from the segments when

electrovibration was on and off (Fig. 3.4(b)) and used their difference to represent

the increase of static friction force. This procedure was repeated for each input

intensity between 0.1 and 1.0 (step size). The average increases of static friction

force are shown in Fig. 3.4(c) for input intensities. The relationship was quadratic

again, as was for the vibratory friction force.

3.2 Formative user study

As stated earlier, this perceptual experiment aimed to assess how well users

can recognize primitive 3D geometrical shapes when they are provided with de-

pictions of the shapes using only the friction force produced by an electrovibration

display. This idea was motivated by the prior work [2] that had demonstrated

that rendering tangential force alone can be extremely effective in recognizing

geometrical shapes such as bumps and holes. This method was also implemented

using a force-feedback haptic interface for inclusion in the experiment as the

baseline.
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(a) Raw force data

(b) Filtered (blue) and averaged (black)

(c) Quadratic fit

Figure 3.4: Static behavior of the electrostatic friction display. (a) Raw tangential

force data. (b) After filtering, the data were averaged to estimate the static

friction force increase. (c) Static friction force increase vs. input intensity.
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3.2.1 Force Profiles

Following [2], we designed two basic 3D geometries, Gaussian bump and hole,

as well as a flat surface for the experiment. The Gaussian profiles had a length

of 5 cm and a height of 0.8 cm. They were computed using (3.1) with µ = 0 and

σ = 0.5:

y(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (3.1)

An exemplar Gaussian bump is shown in Fig. 3.5. The bumps and holes used in

the experiment had a width of approximately 2.6 cm.

Figure 3.5: Gaussian bump (blue) and the corresponding force profile (red) taken

from [2]. The scanning direction is from left to right.

For Force-Feedback Device

To compute force profiles for Gaussian bumps and holes, we followed the

footstep introduced in [2]. Assuming the user applies force Fs at position p(x, y)
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when exploring a friction-less physical surface, the surface returns Fp = −Fs (Fig.

3.5). From the surface slope at the contact point, the relation between tangential

(Fpx) and normal (Fpy) components of the returned force can be expressed by

Fpx = −Fpy tan(α(x)),

tan(α(x)) =
dy

dx
= − 1

σ2
xy,

(3.2)

where α(x) is the angle of p(x, y).

The normal force Fpy applied by the user was measured using a force sensor

in [2]. However, impedance-type force feedback devices and electrostatic displays

generally do not have a force or a pressure sensor. Hence, we assumed in our

experiment that Fpy = 1 N based on pilot experiments we conducted using the

human hand. An example of the computed tangential force profile for a Gaussian

bump is plotted in Fig. 3.5. When the scanning direction is from left to right (in

the direction of positive x-axis), the tangential force Fpx resists the movement

during ascending and assists the movement during descending. The force changes

its direction at zero slope, right at the summit of the bump.

A computer program was developed using CHAI3D to render the computed

force profiles with a force-feedback device using two types of algorithms based

on force field and friction, respectively. In the force field-based algorithm, the

tangential force profile is directly sent to the force-feedback device. In the friction-

based algorithm, the dynamic friction coefficient of a virtual surface is adjusted

based on the force profile using a mapping explained in Section 3.2.1.

Five experimental conditions were formed by combining three geometries

(bump, hole, and flat surface) and the two rendering algorithms (force field-
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Table 3.1: Experimental conditions for force-feedback device.

Condition Code name

1 FF-BUMP-FR

2 FF-BUMP-FF

3 FF-HOLE-FR

4 FF-HOLE-FF

5 FF-FLAT

FF: force-feedback device, FR: friction-based algorithm, and FF: force

field-based algorithm.

Table 3.2: Experimental conditions for electrostatic device.

Condition Code name

1 EV-BUMP-IP0.5-HG1

2 EV-BUMP-IP0.7-HG1

3 EV-BUMP-IP0.5-HG2

4 EV-BUMP-IP0.7-HG2

5 EV-HOLE-IP0.5-HG1

6 EV-HOLE-IP0.7-HG1

7 EV-HOLE-IP0.5-HG2

8 EV-HOLE-IP0.7-HG2

9 EV-FLAT-HG1

10 EV-FLAT-HG2

EV: electrovibration, IP: intensity profile, and HG: haptic grain.

based and friction-based), as summarized in Table 3.1. Only the friction-based

algorithm was used for the flat surface.
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For Electrostatic Display

(a) Bump, IP0.5. (b) Bump, IP0.7.

(c) Hole, IP0.5. (d) Hole, IP0.7.

Figure 3.6: Profiles for the electrostatic display. Blue: geometry [cm], red: force

[N], and orange: intensity.

The tangential force profiles for a force-feedback device cannot be rendered

using an electrostatic display since it cannot provide the active force assisting

movement, e.g., when Fpx > 0 in Fig. 3.5. This is the fundamental limitation of

friction displays that are inherently passive. To handle this problem, we linearly

map the normalized force of a force profile from -1.0 N to 1.0 N to the input inten-

sity of the Feelscreen tablet from 1.0 to 0.0. This maps -1.0 N to the maximum

friction, 0 N to the friction of the half intensity, and 1.0 N to the minimum friction

(that of the touchscreen). This is the same technique used in [14]. Since the input
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Figure 3.7: Measured friction force profiles for each experimental condition.

Blue: measured force profile [N] (only absolute values are shown for clarity), red:

geometry profile, orange: intensity profile (scaled to show the trend).

intensity profile has the offset of 0.5, we call this method IP0.5 (see Fig. 3.6a and

c). A similar mapping was also used to implement the friction-based rendering

for a force-feedback device.

According to the results of device characterization (Fig. 3.3(c)), the actual

electrostatic friction for the input intensity of 0.5 is lower than 50% of the full

scale force. The minimum friction force is about 0.075 N and the maximum is

0.25 N, and the half full scale force, 0.16 N, occurs around the input intensity of

0.7. This observation led to the design of another intensity profile IP0.7 that uses

0.7 as the offset. For the mapping, we approximate the Gaussian force profiles

with piecewise linear intensity profiles (Fig. 3.6b and d).

We developed an Android application using min3d (an open-source engine

– 33 –



based on OpenGL ES) to graphically render geometrical profiles (although hidden

from the participants) and also to render intensity profiles in response to the

user’s touch position. Ten experimental conditions were prepared by combining

three geometries (bump, hole, and flat surface) with the two intensity profiles

(IP0.5 and IP0.7) and two haptic grains (HG1: EDGE-SOFT and HG2: AREA-

GRAIN). The two haptic grains were chosen based on pilot experiments. A

constant force profile with the maximum intensity 1.0 is used for the flat surface.

The ten experimental conditions are summarized in Table 3.2.

The electrovibration stimuli measured using the tribometer are shown in

Fig. 3.7 for the eight experimental conditions for bumps and holes. The geometry

and intensity profiles are also shown for reference. It is clear that the induced

electrostatic friction forces were in good match with the corresponding intensity

profiles. The friction force patterns are clearly distinguishable between bumps

and holes. The friction forces rendered using IP0.7 resulted in more symmetric

profiles than those rendered using IP0.5.

3.2.2 Participants

Twelve participants (9 male, 3 female; M 22.7 years, SD 2.6 years) were

recruited using an on-line public announcement. All of them were students en-

rolled at the authors’ university. None of them reported noteworthy previous

experiences of using kinesthetic haptic interfaces or electrostatic displays. They

signed on an informed consent prior to the experiment. Each participant was

compensated 10,000 KRW (9 USD) for their help.
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3.2.3 Procedure

In the experiment, we used a PHANToM (1.0A; Geomagic, USA) as a force-

feedback device and the Feelscreen tablet as an electrostatic display. Participants

were randomly divided into two groups. The participants in group G1 first per-

formed the five experimental conditions in Table 3.1 with the PHANToM, and

then the ten experimental conditions in Table 3.2 with the Feelscreen tablet.

These were switched for the participants in group G2. The order of the exper-

imental conditions for the PHANToM and that for the Feelscreen tablet were

randomized for each participant.

For each device, the experiment consisted of two parts. Part 1 was for

open descriptions; participants were asked to freely describe their percept and

experience in writing after exploring each stimulus. Nothing was provided to

participants that could bias their perception. Part 2 was for a closed question;

for each stimulus, participants chose one of the following four answers: 1) bump,

2) hole, 3) flat surface, and 4) none of them. They were instructed to select the

shape that best describes their percept. Part 1 was performed first, followed by

Part 2 using the same device after a short break.

During the experiment, the haptic device was placed inside a box with frontal

access to a participant. A curtain covered the box to block the participant’s view

to prevent them from obtaining any visual cues. The experimenter could see

the device from the back of the box and provided occasional guidance to the

participant’s pose and scanning speed when necessary. For the experiment with

the Feelscreen tablet, participants were asked to hold a touch pen vertically and
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scan the surface from left to right. Each of the ten experimental conditions was

presented only once. For the experiment with the PHANToM, the same touch

pen was attached to the last vertical link of the PHANToM, and a seven-inch

tablet was placed under the touch pen to enable similar scanning experiences.

Participants were asked to hold the touch pen vertically and scan the surface

from left to right. Each of the five experimental conditions was repeated twice.

The numbers of bumps, holes, and flat surfaces were not known to participants

in order to prevent guessing based on counting.

Prior to the experiment, participants were given enough time to practice

and become familiar with the system. During the experiment, they were allowed

to take rest whenever necessary. Participants’ scanning velocity and vertical

pressure were not controlled. They were free to adjust their own velocity and

pressure for better perception; however it was supervised by the experimenter.

The experiment took approximately one hour to finish for each participant.

3.3 Results and Discussion

3.3.1 Open Descriptions

We compiled the participants’ answers collected in the first part of the ex-

periment. No noticeable differences were observed between the participants of

group G1 and G2 in the open descriptions.

Most of the participants described the sensations of the force feedback ren-

dered by the PHANToM using geometrical terms and figures. Frequently used

words included bump, hole, protrusion, groove, convex or concave shape, ascent,
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and descent. Only one participant did not use any geometry-related term and

instead used material-related terms, e.g., spring. These results reinforce the pre-

vious finding of [2] that the lateral force alone can render clearly identifiable

primitive 3D shapes.

For the surfaces rendered using electrovibration, the majority of the partici-

pants described their sensations with terms related to vibration and friction, and

sometimes texture. Only one participant mentioned geometrical terms (hole). It

appears that electrovibration alone is not able to elicit strong illusions for the

perception of 3D geometric shapes.

The time the participants spent to complete each experimental condition

was shorter with the PHANToM than with the Feelscreen tablet. After just

three or four scans with the PHANToM, the participants began to write down

their descriptions. The Feelscreen tablet usually required six or seven scans for

that.

3.3.2 Closed Selections

From the participants’ responses collected in Part 2 of the experiment, the

average correct recognition ratios of the geometrical shapes were computed for

the two devices and are shown in Fig. 3.8. The correct recognition ratio for

each device was calculated by dividing the total number of correct answers from

all participants received in each experimental condition by the total number of

answers in that condition. As expected, higher recognition performance was

achieved with the PHANToM than with the Feelscreen tablet—91% vs. 64%.

The Kruskal-Wallis test showed that the difference between the two devices was
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statistically significant (p < 0.001). The same test was performed between the

two participant groups G1 and G2, but their recognition performance difference

was not statistically significant (p = 0.88). These results suggest that when

participants were given explicit guidance, they were able to associate the elec-

trovibration patterns to the primitive 3D shapes at well above the chance level

(25%). However, there existed a substantial performance difference (27%) from

the best performance enabled by active force feedback.

Figure 3.8: Correct recognition ratios using the PHANToM (mean 91%) and the

Feelscreen tablet (mean 64%). Error bars show standard errors.

Fig. 3.9 shows the average correct recognition ratios measured with the

PHANToM for each experimental condition.1 On average, bumps resulted in

a higher ratio than holes (94% vs. 89%), which can be seen by comparing the

ratios of conditions 1 and 2 and those of conditions 3 and 4. In addition, the

1Only one ratio was computable for each experimental condition. Hence no error bars are

shown in Fig. 3.9 and 3.10. No statistical tests were performed with the data for the same

reason.
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Figure 3.9: Correct recognition ratios with the PHANToM for each experimental

condition (see Table 3.1).

Figure 3.10: Correct recognition ratios with the Feelscreen tablet for each exper-

imental condition (see Table 3.2).

force field-based algorithm showed higher performance than the friction-based

algorithm (97% vs. 85%; compare the ratios of condition 1 and 3 to those of

condition 2 and 4).

Similarly, the average correct recognition ratios measured with the Feelscreen
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tablet are presented in Fig. 3.10 for each experimental condition. The most

prominent observation is that holes (conditions 5–8) gained more correct recog-

nition than bumps (conditions 1–4) with 72% vs. 57%. The performance dif-

ference caused by the two different intensity profiles was negligible (IP0.5 66%

vs. IP0.7 65%), and so was the recognition accuracy difference between the two

haptic grains (HG1 69% vs. HG2 70%).

3.3.3 Summary and Discussion

The experimental results allow us to draw the following conclusions to the

two research questions of this study:

Q1 Can users identify primitive 3D features, such as bumps and holes, from

electrovibration alone without any visualization?

The answer is negative if no guidance or context implying association to

geometric shapes is provided.

Q2 How close is the recognition performance to that of the case using an active

kinesthetic interface?

If a hint to geometric shapes is given, users can associate electrovibration

patterns to geometrical shapes at well above the chance level (64%), but

the performance is clearly below the best performance (91%) achievable by

active force feedback.

Lateral force feedback using electrovibration has two important differences

from active force feedback. First, it conveys clear sensations of vibration, as

predominantly mentioned in the participants’ open descriptions. This seems to
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be one of the major reasons that preclude users from associating electrovibration

patterns to geometrical shapes unless guided explicitly. Second, electrovibration

does not allow the rendering of active tangential force that assists the movement

when the gradient of a surface profile is negative. Although we tried to imitate

this behavior using only friction, it seems that the effectiveness of that approach

has a room for further improvement.

The similar performance between the two haptic grains HG1 and HG2 is

an indication that the type of haptic grain is not a main factor for geometry

recognition, although they may provide different feelings. Delivering noticeable

friction fluctuations according to the intensity profiles appears to be sufficient.

The same can be said to the effect of intensity profile on the basis of the similar

recognition ratios of the two intensity profiles IP0.5 and IP0.7.

3.4 Conclusions

In this study, we compared an electrostatic tablet and a kinesthetic haptic

interface in terms of their performance for rendering 3D shapes using only tan-

gential force. Since the commercial electrostatic device used was a black box to

us, we first characterized its input-output behavior of generating friction force.

Then we carried out a perceptual experiment that assessed the user’s recognition

performance of primitive 3D shapes based on the tangential stimuli presented

by the electrostatic tablet and a force-feedback interface. Experimental results

demonstrated that users are not able to absolutely associate electrovibration pat-

terns to the geometrical shapes without any contextual information. However,
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when such guidance was given, participants showed moderately high recognition

performance of the primitive shapes, which is promising for the possibility of

improving the user experiences of 3D visual content with the provision of electro-

vibration. The results obtained with the force-feedback device were used as the

reference for the best performance.
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Chapter IV.

Generalized Gradient Algorithm

For Rendering 3D Meshes

The formative user study in the previous chapter indicated that electrostatic

friction displays have the potential to render 3D features by modulating friction

force according to the gradient of the profile if sufficient context is provided.

However, the algorithm used was for the explicit representation of the profile.

This motivated us to generalize the basic algorithm implemented for the formative

user study to cover general 3D objects modeled using meshes, as detailed in this

chapter.

4.1 Fundamental Algorithm

Suppose that a user explores a 3D object displayed on a touchscreen by

scanning it with a finger. We call the finger’s position a touch point (x, y) defined
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in the 2D touchscreen coordinates. For lateral force feedback, this 2D touch point

is mapped to the 3D touch point (x, y,∞) in the 3D world coordinate frame of

the 3D object; see points marked by X in Fig. 4.1. From each 3D touch point,

a vertical ray is cast along the z-direction toward the 3D object for collision

detection. If any collisions are detected, we take the collision point with the

greatest height (z-coordinate) and call it a hit point for the ray; see points marked

by O in Fig. 4.1.

Figure 4.1: Variables for the generalized lateral force rendering algorithm.

We estimate the surface gradient that the user’s finger experiences by com-
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puting the linear slope between the two consecutive hit points of the current and

previous frames. Let the current hit point be P2 = (x2, y2, z2) and the previous

hit point be P1 = (x1, y1, z1) in Fig. 4.1. Then the surface gradient at P2 is

approximated by

tan(α) =
∆z

∆r
, (4.1)

∆z = z2 − z1, (4.2)

∆r =
√

(x2 − x1)2 + (y2 − y1)2. (4.3)

Recall that the lateral force is obtained from

Fpxy = −Fpz tan(α). (4.4)

With Fpz = 1 N as in the formative user study,

Fpxy = −∆z

∆r
. (4.5)

As we have shown earlier, the relation between input intensity and output

force is quadratic. Also to preserve force direction, we consider a signed square

root of lateral force as follows:

F sq = sgn (Fpxy)
√
|Fpxy|, (4.6)

and then map F sq to the input intensity I.

An important issue here is that F sq can have an arbitrary value depending on

the object geometry and the scanning direction and velocity of the user’s finger,

but the tangential force that an electrostatic display can generate is limited.

Hence, we need to assume that F sq is also bounded, i.e., F sqmin ≤ F sq ≤ F sqmax,
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and then linearly map this interval into to the input intensity I ∈ [1.0, 0.0] of

the haptic grain to generate. Note that F sqmin (resisting force; note its sign) must

provide the maximum friction (I = 1.0) by the electrostatic display whereas

F sqmax (assisting force) should exert the minimum friction (I = 0.0). This can be

elaborated by considering the empirical observation that I lower than 0.3 does

not produce perceptually clear lateral force. That is, we linearly map F sq in

[F sqmin, F sqmax] to I in [1.0, 0.3]:

I =
0.7F sq + 0.3F sqmin − F

sq
max

F sqmin − F
sq
max

. (4.7)

If F sq ≤ F sqmin, I = 1.0, and if F sq ≥ F sqmax, I = 0.3.

4.1.1 Computing Minimum and Maximum Force

The generalized lateral force rendering algorithm is straightforward, but how

to determine (F sqmin, F
sq
max) requires some careful considerations. In the formative

user study, F sqmin = −1 and F sqmax = 1 since the minimum and maximum of lateral

force Fpx were -1 N and 1 N, respectively, for the 2D Gaussian profiles. In general

3D cases, minimum and maximum lateral forces cannot be obtained easily. They

depend on the scanning direction and speed of the user’s finger and also the

geometry of the 3D object. If (F sqmin, F
sq
max) is not set properly, the rendering will

use either a narrow range of I or the minimum or maximum friction excessively,

being unable to express the geometric changes of the 3D object appropriately.

To determine an effective range for (F sqmin, F
sq
max), we simulate the haptic

rendering process by scanning the object with various velocities and directions.

This process results in a large number of F sq values. Then we use (F sqmin, F
sq
max) =
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(µ − 2σ, µ + 2σ), where µ is the mean and σ is the standard deviation. This

corresponds to the 95% confidence interval if F sq follows a Gaussian distribution.

We empirically confirmed that this simple method generally works well for

many 3D models. It is also demonstrated in the summative user study in Section

4.2. There can also be good alternatives depending on the distribution of F sq.

4.1.2 Edge Emphasis

The generalized lateral force rendering algorithm provides haptic feedback

regarding the convexity or concavity of a 3D object. However, sharp edges on

the surface may be rendered inadequately if their neighbor faces result in F sq

close to F sqmin or F sqmax, or outside (F sqmin, F
sq
max). In such cases, the device output

is saturated, and the lateral force rendering algorithm alone cannot render sharp

tactile sensations for the edges. To remedy this problem, we detect the edges of

a 3D object and emphasize them as follows.

Many edge detection algorithms are available in computer vision and graph-

ics [61, 62], and those taking a mesh as input are pertinent to our purpose [63].

Most of such algorithms are based on the notion of dihedral angle: the angle

between two planes that share an edge. Dihedral angle roughly approximates the

principle curvature of the surface at the edge [64]. An edge with a dihedral angle

greater than a given threshold is considered as a sharp edge.

In parallel with the gradient-based lateral force calculation, we also compute

at each frame the dihedral angle θ from the polygon to which the previous hit

point belongs to the polygon on which the current hit point lies. θ can be easily

calculated from the normal vectors of the two polygons. An edge is convex if

– 47 –



Figure 4.2: Dihedral angles. Thick lines represent the cross-section of polygons.

θ < 180◦ (A and C in Fig. 4.2) and concave if θ > 180◦ (B in Fig. 4.2).

We consider only convex edges since concave ones are not reachable in reality.

Further, a convex edge becomes sharper if the dihedral angle θ is decreased from

180◦ to 0◦ (compare A and C in Fig. 4.2). Hence, we represent the sharpness S

of a convex edge by

S = − θ − 180◦

180◦ − θmin
, (4.8)

where θmin is the smallest dihedral angle of the object. This function maps

θ = 180◦ to S = 0 and θ = θmin to S = 1.

To emphasize convex edges, we play a haptic grain of different type (EDGE-

TICK) with intensity Ie. This is in comparison to the AREA type haptic grain

(AREA-EVEN) used for surface profile rendering. The two haptic effects generate

easily distinguishable frictional stimuli (Fig. 4.3). Ie is determined by linearly
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mapping the sharpness S to the intensity interval [0.3, 1.0]:

Ie = 0.7S + 0.3. (4.9)

An example of edge emphasis is given in Fig. 4.4.

4.2 Summative User Study

We conducted another user study to evaluate the effectiveness of our general-

ized gradient-based lateral force rendering algorithm. The task was to recognize

3D objects presented to the user with limited visual information. This task was

motivated by the finding of the formative user study that frictional electrovibra-

tion can deliver 3D geometric information if its context is explicit to users. Some

visual stimuli were designed to be difficult for visual recognition. Our aim was to

assess the extent to which our electrovibration rendering algorithm can facilitate

the recognition task in such situations. This study was approved by the IRB of

POSTECH (PIRB-2016-E015).

4.2.1 Methods

Stimuli

We used two 3D objects, bumps and holes, each in two different profiles,

Gaussian and square frustum, in this experiment (Fig. 4.5). Detailed equation

and dimension are given in Fig. 4.5 for the bumps. The holes were made by

inverting the corresponding bumps.

One visual scene consisted of four bumps and holes, but their profiles were

the same (all Gaussians or frustums). Varying the numbers of bumps and holes
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(a) AREA-EVEN (b) EDGE-TICK

(c) AREA-EVEN

(d) EDGE-TICK

Figure 4.3: Plots of haptic grain AREA-EVEN (a) and EDGE-TICK (b), and

their spectrums (c and d). AREA-EVEN has a single main spectral component,

and this effect generates smooth electrostatic force. EDGE-TICK includes multi-

ple spectral components, which makes it feel rough and bumpy [3]. EDGE-TICK

conveys an impression of sudden impact and is suitable for rendering sharp edges.
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(a) (b)

Figure 4.4: (a) 3D mesh of a Monkey model. (b) Results of edge emphasis.

All convex edges are highlighted in blue. Among them, those with θ < 135◦

(relatively sharp ones) are marked in red.

(a) (b)

Figure 4.5: 3D shapes used in the summative user study. (a) Gaussian bump:

width 6, length 6, height 1.8, z(x, y) = 8
1.4π exp(−x

2−y2
1.4 ). (b) Square frustum

bump: width 6, length 6, height 2, base square 3×3, top square 1×1. All dimen-

sional units are cm.

resulted in five different configurations (Fig. 4.6): 0B4H (0 bump and 4 holes),

1B3H (1 bump and 3 holes), 2B2H (2 bumps and 2 holes), 3B1H (3 bumps and

1 hole), and 4B0H (4 bumps and 0 hole). Which were bumps or holes out of the
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four positions was determined randomly for each configuration, but once made

the same scene was used for all participants. For example, in configuration 1B3H,

a bump can be placed in one of the four locations (top-left, top-right, bottom-left,

bottom-right). We chose to fixe the bump to top-right (for Gaussian scenes) and

to bottom-right (for square frustum scenes). This was to keep the size of the

experiment manageable. We also confirmed that similar visual information was

presented regardless of the positions of bumps and holes.

To limit visual information, we controlled several design factors as follows:

1) Orthographic projection was used to render the 3D scenes. A perspective

projection may provide sufficient visual information for object identification; 2)

Only the top view was shown to the user. Looking at objects from other angle

may enable sufficient visual information even with orthographic projection; 3)

Two lighting conditions were applied: a vertical spotlight and a directional light

rotated (45◦, 45◦, 0◦) around the x − y − z axes. They create very different

shadows depending on the object configuration in the scene. 4) All objects were

rendered in gray; and 5) No textures were added to the objects. Combining all

these factors, 20 (= 2 shapes× 2 lights× 5 configurations) different scenes were

designed (Fig. 4.6).

Participants

Twenty participants (14 male, 6 female; M 22.7 years old, SD 3.0 years)

were recruited for this study. They were divided into two groups of 10: G1

(7 male, 3 female, M 22.3, STD 3.0) and G2 (7 male, 3 female, M 23.1, STD

3.1). No participants reported having sensorimotor impairments that could affect
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experimental results. The experiment took about 30 min. Each participant was

paid 5000 KRW (' 4.5 USD).

Procedure

We used a Senseg Feelscreen as the electrostatic tactile display. An Android

application (Fig. 4.7) was developed using Unity (version 5.32) [65] for both

visual and haptic rendering with an update rate of 60 Hz. The sampling rate for

tactile signal reconstruction was much higher and determined internally by the

Feelscreen library.

Each participant completed two sessions of trials. In the session for the Vi-

sual task (V), participants were asked to only look at the objects and provide

answers as to whether they were bumps or holes. No tactile feedback was pro-

vided. In the session for the Visual+Haptic task (V+H), participants were told

to also touch the objects and then provide their answers. Tactile feedback was

presented using our generalized lateral force rendering algorithm.

In the beginning of each session, participants were given enough time to

become familiar with the application. For group G1, a session for V+H was

conducted first, followed by a session for V. For group G2, the order was reversed

for balanced order. In each session, the 20 scenes were presented to participants

once, and their order of presentation was randomized for each participant.

4.2.2 Results

We first computed the correct recognition ratios for each participant in each

group. A pairwise t-test found no significant difference between the two groups
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Table 4.1: Results of Four-way Within-Subject ANOVA.

Factor F -value p-value

Task* F(1,19)=27.39 <0.0001*

Light* F(1,19)=4.56 0.0460*

Geometry F(1,19)=0.04 0.8492

Configuration F(4,76)=1.76 0.1462

Task×Light* F(1,19)=7.1 0.0153*

Task×Geometry F(1,19)=0.87 0.3636

Task×Configuration F(4,76)=0.36 0.8373

Light×Geometry F(1,19)=1.15 0.2967

Light×Configuration F(4,76)=0.91 0.4650

Geometry×Configuration F(4,76)=0.80 0.5261

Task×Light×Geometry F(1,19)=2.17 0.1575

Task×Light×Configuration F(4,76)=2.03 0.0988

Task×Geometry×Configuration F(4,76)=0.68 0.6084

Light×Geometry×Configuration F(4,76)=1.96 0.1099

Task×Light×Geometry×Configuration F(4,76)=0.33 0.8580

G1 and G2 (t = 0.14, p = 0.7091). This suggests that the order of the two sessions

did not affect the experimental results. Thus we pooled the data of both groups

for further analysis.

The experiment had four independent factors: task (V and V+H), geome-

try (Gaussian and square frustum), lighting condition (spotlight and directional

light), and configuration (0B4H, 1B3H, 2B2H, 3B1H, and 4B0H). For statistical

analysis, we applied a four-way within-subject ANOVA, and its results are shown

in Table 4.1.
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Task (under different types of sensory feedback), V vs. V+H, had a statisti-

cally significant effect on the correct recognition ratio with a very small p-value.

This can be verified by comparing the mean correct recognition ratios between

the two tasks shown in Fig. 4.8, with 75% vs. 95% for V and V+H. This result

indicates that our shape rendering algorithm using frictional feedback was effec-

tive in delivering supplemental shape information when visual rendering alone

was not sufficient, improving the correct recognition ratio by 20%.

Between the two lighting conditions, spotlight and directional light, a no-

ticeable difference was also reported (p = 0.0460). On average, directional

light showed higher recognition performance than spotlight with 88% vs. 81%

(Fig. 4.8) by 7% difference. Note, however, the p-value close to the boundary of

significance (α = 0.05).

Among the many interactions between the main factors, only task×light

was statistically significant (p = 0.0153). This means that the two light sources

had different effects depending on the task, as shown in Fig. 4.9. For task V,

light was a crucial factor in which directional light achieved higher performance

than spotlight with 83% vs. 67%. However, in task V+H with the added haptic

feedback, light was no longer a main player and both light sources showed very

similar performance (96% vs. 94%). In addition, although the performance was

generally improved from task V to V+H, the increase rate was approximately 2.5

times larger with spotlight than with directional light. This is another support

that the frictional electrovibration feedback was quite effective in rendering 3D

shape information.
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The other main factors and interaction terms did not have significant effects

on the recognition accuracy.

Aside from the main factors, we also investigated how bumps and holes were

recognized. The performance difference caused by the two different shapes was

negligible (hole 86% vs. bump 84%). A pairwise t-test did not find a significant

effect of bumps and holes on the recognition ratio (t = 0.91, p = 0.3402).

4.2.3 Discussion

Task V+H showed clearly higher performance than task V by the 20% im-

provement of correct recognition with statistical significance. This is due to the

additional haptic information provided in task V+H, but not in task V. Therefore,

the summative user study provides unequivocal evidence that our generalized lat-

eral force rendering algorithm is effective in rendering 3D shape using electrostatic

frictional force.

We could find an interesting observation on the roles of visual and haptic

cues. Shading was constant and determined by the position of the objects in

the scene with respect to the light source. For example, for bumps, the back

faces (from the light source) were always darker than the front faces. This was

not the case for haptic feedback since friction changes depended on the scanning

direction. In other words, there was no correlation between shade (visual cue)

and friction (haptic cue). Depending on the scanning direction, the dark side of a

bump could have either large or small friction. This could have created a conflict

between the two sensory cues. In spite of this situation, the recognition ratio

in task V+H was very high (95%). This implies that participants relied more on
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haptic cues than visual cues to resolve the conflict in sensory information.

We also measured the task completion times for each participant in each

trial. They were, on average, 213 s and 427 s for task V and V+H, respectively.

This was expected since task V+H required manual scanning on the objects.

4.3 Conclusions

In this study, extending the basic algorithm introduced in previous chapter,

we have presented a generalized algorithm to estimate surface gradient from the

given 3D mesh. The generalized algorithm computes the frictional rendering force

by estimating the gradient at the touch point and also emphasizes sharp edges

on the surface by rendering perceptually salient friction effects. The generalized

algorithm is also computationally inexpensive. We conducted a summative user

study to evaluate the effectiveness of our shape rendering algorithm in reducing

the visual uncertainty in 3D shape perception. We found that when frictional

feedback was provided, the correct recognition performance was notably increased

in comparison to when only visual rendering was presented. To our knowledge,

our algorithm is among the first that attempted to improve the perception of 3D

features displayed on a touchscreen using electrovibration feedback.
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Figure 4.6: Experimental conditions. Twenty scenes were composed by combin-

ing two shapes (Gaussian and square frustum), two lighting conditions (spot-

light and directional), and five configurations (0B4H, 1B3H, 2B2H, 3B1H, and

4B0H). From left to right: Gaussian-spotlight, Gaussian-directional light, square

frustum-spotlight, and square frustum-directional light. From top to bottom:

0B4H, 1B3H, 2B2H, 3B1H, and 4B0H. Some scenes can be easily confused be-

cause the direction of directional light in not known to users. For instance, the

(2, 2) scene (Gaussian-spotlight, 1B3H) can be mistaken with the (4, 2) scene

(Gaussian-spotlight, 3B1H).
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Figure 4.7: Snapshot of the GUI program. In the lower right corner, a button

was provided to move to the next scene after providing answers using the four

toggle buttons in the lower left corner. Participants checked each toggle button

for bump and unchecked it for hole, for the corresponding object in the scene.
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Figure 4.8: Correct recognition ratios for task (V 75% and V+H 95%) and light

(spotlight 81% and directional 88%). Error bars show 95% confidence intervals.

Figure 4.9: Interaction effects between task and light. Error bars show 95%

confidence intervals.
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Chapter V.

Data-driven Texture Rendering

So far, we have investigated methods to render surface geometry on an elec-

trovibration display. A natural and intuitive extension is to continue with the

surface fine texture. Texture rendering has been one of the challenging topics

in the haptics community. Realistic haptic texture rendering not only provides

richer information but also improves user experience. In this work, we propose

using neural networks for data-driven texture rendering on an electrovibration

display. While most research groups have considered contact acceleration data as

the salient feature of surface texture, in this attempt we instead focus on lateral

frictional forces. The main reason stems from the fact that an electrovibration

display modulates friction on the sliding medium; thus choosing lateral force to

study the textural behavior of surface is more natural and appropriate. We de-

signed a linear motorized tribometer for accurate and easy force measurements

from the surface of real texture sample and also that of an electrovibration display.
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By actuating the display with a full-band pseudo-random binary signal (PRBS)

and collecting the resultant lateral forces, we inversely train a neural network

to learn an appropriate input signal from the measured forces. Next we collect

forces from real samples and use the trained networks to generate corresponding

PRBS-like actuation signals. The generated signals are applied to the display

and once more the frictional forces are collected. A comparison between the real

and virtual forces in frequency domain shows promising results and reveals the

capabilities and limitations of the proposed technique.

5.1 Data Collection

This section describes the hardware we use to collect lateral frictional forces.

We then introduce the use of a capacitive touchscreen panel as an electrovibration

display.

5.1.1 Tribometer

We developed a motorized linear tribometer for precise force measurement.

It consists of two parts: a moving platform and a measurement stylus (Fig. 5.1).

The platform includes a linear servo motor (MX80L, Parker, USA) capable of

following a trapezoidal acceleration profile with a travel distance of 8 cm. The

motor comes with a dedicated motor drive and a power supply (VIX250IH and

XLPUS, Parker, USA). The stylus is made of stainless steel equipped with a six-

axis force/torque sensor (Nano 17, ATI Industrial Automation, USA). A sensitive

touch pen is attached to the lower end of the stylus to interact with the texture

sample. A mass component at the top adjusts the total weight of the stylus
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Figure 5.1: Motorized linear tribometer. The measurement stylus is attached to

the moving platform using an Aluminum link.

and hence the normal pressure. The shaft is supported by a linear bearing and

attached to the motor carriage using an aluminum link. The measurement stylus

resembles a simple mechanical mass-damper system subject to Coulomb (dry)

friction between the shaft and the linear bearing.

Each data collection trial starts with placing a texture sample on the mount-

ing seat under the touch pen. A custom C++ program sends movement com-

mands to the motor driver via RS232 and records the force data using a data
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acquisition card (PCI-6229, NI, USA) at 1 kHz rate. In this study, the data was

taken under nine experimental conditions: three scanning speeds (3, 4, and 5

cm/s) and three vertical pressures (60, 85, and 110 g).

We apply a high-pass filter to the collected force data with a cut off frequency

of 10 Hz to remove the different DC biases the force sensor encountered during

moving left or right. We then manually extract the segments corresponding to the

constant scanning speed from each data set. The segments are then concatenated

to make a data stream for the texture sample under the given experimental

condition.

5.1.2 Electrovibration Display

We use a capacitive touch panel (MicroTouch SCT3250, 3M, USA) to make

an electrovibration display, as initially proposed in [4]. It consists of a transpar-

ent conductive layer coated with a thin insulator on top of a thick glass plate.

Applying a high voltage waveform (around 100 Vpp) to the conductor and the

electrically grounding human body modulates the friction between the sliding

finger and the touch panel. We use a high performance piezo driver (MX200,

PiezoDrive, Australia) that can amplify the input signal up to 200 Vpp. The

panel also responds well to some touch pens; we tested several types and found

one that creates almost the same level of electrostatic force as the human fin-

gertip. The main reason using the touch pen is to eliminate the effects of the

human skin properties that vary over time from force measurements, in order for

consistent data collection.
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5.2 Texture Model

In this section, we describe how to make an inverse neural network model

of the input-output dynamics of the electrovibration display. We use this inverse

model to synthesize actuation signals from the force recordings in order to create

virtual textures on the display as similar as the real ones.

5.2.1 Inverse Dynamics Model

Our first goal is to develop a model that describes the dynamics relation-

ship between the input actuation signal and the output frictional force of the

electrovibration display. We follow a classic system identification procedure to

estimate the system model based on observed input-output data. To achieve

this, we 1) define input and output variables, 2) design proper actuation signals

to drive the system, and 3) draw a dynamics model between the variables using

an appropriate framework.

Input and Output

As for our electrovibration display, the input is actuation signal u[n], and

the output is lateral force fl[n]. An usual approach is to build a model g such

that fl[n] = g(u[n]) and then use the inverse model g−1 to obtain u[n] for desired

fl[n] such that u[n] = g−1(fl[n]). Since an electrovibration display exhibits con-

siderable nonlinearity in its behavior [13, 19, 31], nonlinear basis models such as

neural networks are appropriate for system identification. The problem is that

finding an inverse model for such nonlinear systems is not always feasible. An

alternative is to identify the inverse model directly by using fl[n] as input and
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u[n] as output. This approach, however, requires care to obtain dense samples of

fl[n], and we use neural networks for the inverse model identification.

Pseudo-Random Binary Signals

Next we need a proper actuation or perturbation signal to excite the system

and observe its response. An open-loop experiment is required for such data

collection, and the input signal must contain sufficient distinct frequencies in the

frequency band of interest [66]. We use a Pseudo-Random Binary Signal (PRBS),

which is a deterministic signal with white-noise like properties. PRBS is widely

used for identification of linear systems [66] and occasionally for some nonlinear

systems [67]. In case of nonlinear systems, its applicability depends on the nature

of system nonlinearities. There are several successful implementations [68], as

well as some failed attempts [69]. For example, a quadratic Wiener model can

be identified using a PRBS while a first-order Hammerstein model cannot be. It

is claimed that because the signal has only two levels, it may not excite certain

nonlinearities of the system, so more input levels are required [70]. Nevertheless,

we show that PRBS works in our case and can adequately capture the dynamic

behavior of our electrovibration display.

A PRBS is characterized by three parameters: signal level ±c, order n, and

clock period B. A PRBS fluctuates between −c and +c; its maximum period

is 2n − 1; and it has to stay constant for at least B consecutive samples before

it changes. To have a full-band signal that spans the entire frequency band

up to the Nyquist frequency (sampling rate/2=500 Hz), clock period must be

set to 1. Furthermore, considering the slowest scanning speed of 3 cm/s, it takes
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Figure 5.2: An example PRBS9 with n = 9.

approximately 2667 ms for our tribometer to complete an 8-cm travel. Therefore,

the length of the PRBS should not be less than the longest travel time. For a

signal with n = 9 (PRBS9 for short), the maximum length becomes 29−1 = 511,

and with six repetitions, we get a signal with the total length of 3066 ms. This

is slightly longer than the maximum travel time. An example plot of PRBS9

with its frequency response is given in Fig. 5.2. It can be seen that PRBS9 has

a constant frequency response in its entire frequency band. We use a Matlab

function, idinput() to generate our desired PRBS.
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NARX Neural Network

With the PRBS in hand, we can now actuate the panel with it and record

resulting lateral forces using our tribometer. In order to provide a proper frame-

work to build a model among the observed variables, we use a NARX (Nonlinear

AutoRegressive with eXternal input) neural network [71]. NARX neural networks

are well suited for addressing nonlinear dynamics systems [67, 72, 73]. A NARX

network has a close-loop structure with a feedback loop connecting the output

to the input (Fig. 5.3(b)). The past values of both input and output are used to

predict the future output. The defining equation for the NARX model is:

y[n] = f(y[n− 1], ..., y[n− ky], x[n− 1], ..., x[n− kx]), (5.1)

where y[n] is the output to be predicted and x[n] is the external input exciting the

system. ky and kx are the tap delays for feedback and external input, determining

the numbers of past values involved in the estimation process.

The next step is to determine the number of hidden layers and the number

of neurons in each layer, as well as the size of tap delays for each input sequence.

We tested several different combinations and obtained nearly perfect performance

with three layers that have 15, 10, and 5 neurons, respectively, and both tap delays

of 10. We use the Matlab neural network toolbox for training and evaluation.

Training is initiated by removing the feedback loop and inputting the desired

target sequence along with the external input to the network (Fig. 5.3(a)). In

our case, x[n] = fl[n] and y[n] = u[n], where u[n] is the designed PRBS9. For

evaluation, we close the feedback loop by removing the reference PRBS9 from

the input and instead feeding the estimates back (Fig. 5.3(b)). A result of close-
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(a) Open-loop training.

(b) Close-loop evaluation.

Figure 5.3: Block diagram of the training and evaluation of NARX network. y[n]

is the reference signal (PRBS9) and x[n] is the external input (recorded lateral

force).

loop evaluation of the trained network is given in Fig. 5.4. The estimated PRBS

(dashed red line) almost perfectly follows the reference PRBS (solid blue line).

5.2.2 Synthesizing Actuation Signals

For synthesis, we train inverse neural networks for different lateral scanning

velocities and normal forces since the two variables affect texture responses to

large extent [74, 75]. We obtain one neural network for each combination of

scanning velocity and normal force. These inverse neural networks enable us

to synthesize actuation signals for a texture material scanned under the same

experimental condition.
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Figure 5.4: Example result of the training and evaluation of NARX network.

For clarity, only 300 ms of the recordings are shown. The blue solid line is the

reference PRBS9, and the dashed red line is an estimate from the neural network.

To this end, we first collect lateral forces from the surface of a real material

using our tribometer under different scanning velocities and normal forces. We

normalize each force sequence to handle the variability between readings from

different materials. The same process is applied to the forces collected from the

electrovibration display before training neural networks. Then we input each

force reading to the corresponding trained neural network to generate a PRBS-

like actuation signal. The estimated actuation signal attempts to recreate similar

textural patterns to the real material once applied to the capacitive touch panel.

However, these signals are only applicable to the same experimental conditions

under which they were obtained. For arbitrary scanning velocity and normal

force, we apply linear interpolation between the closest neighbors in the velocity-

force grid similarly to [43,55]. More details are provided in Section 5.3.3.
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5.2.3 Error Metric

To assess the synthesis accuracy of virtual textures, we first visually compare

the FFT plots of real and virtual textures, and then compute a relative spectral

rms error as an error metric [43,55]:

Es =
RMS(F(fv[n]))−F(fr[n])

RMS(F(fr[n]))
(5.2)

where F(·) is the operator for fast Fourier transform and RMS is for computing

the root mean square in the frequency domain. In addition, fv[n] denotes virtual

forces and fr[n] real forces. We set the length of FFT equal to the sampling

frequency, 1000 Hz, to generate a smooth and less spiky spectrum with the main

components easy to distinguish. A smaller value of Es indicates higher similarity

between two spectra and hence higher similarity between virtual and real textures.

We also applied the same error metric over repeated recordings of the same real

material under the same experimental condition in order to establish a baseline

(lower bound) of this metric.

5.3 Experimental Results

In this section, we evaluate the performance of our method of recreating

virtual textures similar to the real ones. We present FFT plots for visual com-

parison and Es values for objective evaluation. For that, we collected force data

using the tribometer from six texture samples shown in Fig. 5.5. As shown in

Fig. 5.6, we use four out of nine experimental conditions (blue squares) to train

four neural networks and four others (red circles) for cross-validation.
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Figure 5.5: Six texture samples used in the evaluation. From left to right: dot-

ted sheet (TS1), chair fabric (TS2), felt fabric (TS3), painting canvas (TS4),

transparent plastic sheet (TS5), and scrunched paper (TS6).

Figure 5.6: Force-velocity grid for cross-validation. mi indicates mass and vj

scanning velocity. For experimental conditions highlighted by blue squares, the

actuation signal is obtained from the corresponding trained neural networks. For

others marked by red circles, the signals are obtained by linearly interpolating

neighbors.
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Figure 5.7: Baseline FFT plots with error metrics. Dotted black line is the first

repetition, and solid green line is the second repetition. The average errors are

given inside parentheses on the top and left side.

5.3.1 Baseline Performance

We first evaluated the similarity between the repeated measurements from

the same material under the same experimental condition to establish a baseline

for our error metric Es. Ideally, Es should be zero in such cases, but due to

various noises and uncertainties, we expect the values of Es greater than zero.

The baseline FFT plots for the six materials are given in Fig. 5.7 with the Es

values. Average Es values are shown on top of the columns for each material,

and on the left of the rows for each experimental condition.

Several observations can be made from Fig. 5.7. Visually, the repeated mea-

surements look very similar, and for some materials such as dotted sheet, they are

almost identical. The smallest Es is 0.07 (dotted sheet), and the largest is 0.33
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(felt fabric). On average, dotted sheet showed the highest consistency between

repeated readings (Ēs = 0.09), while felt fabric showed the lowest (Ēs = 0.26).

Among the experimental conditions, (m1, v3) showed the highest consistency

(Ēs = 0.15), while (m3, v1) showed the lowest (Ēs = 0.22).

We can also observe the effects of increasing scanning speed and vertical

mass (normal force) on the spectra. Increasing the scanning speed tended to

shift the main frequency component to right (to higher frequencies). This can

be seen by comparing the first and second rows and the third and fourth rows.

However, with heavier mass, only the level of power density increased, which can

be confirmed by comparing the first and third rows and the second and fourth

rows. Furthermore, for dotted sheet the spectrum shapes were almost the same

in all the conditions. For chair fabric, the shape changed with scanning speed

but not with mass. For plastic sheet, additional main components appeared with

heavier mass. It seems that the minor components in m1 are emphasized in m3.

5.3.2 Training Performance

Next, we examine the similarity between virtual forces generated by synthe-

sized PRBS-like actuation signals and real texture forces. Initial examinations

showed that when the actuation signal is amplified with the default gain (equal

1.0 correspond to 100 Vpp), in some cases, the levels of virtual power densities

do not match those of real ones. Thus we tested a range of gains from 0.6 to 1.4

with a step size of 0.2, and picked one that generated almost the same maximum

magnitude of power density (Table 5.1).

The resulting FFT plots and Es values are shown in Fig. 5.8. In most cases,
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Table 5.1: Adjusted gains for each material (TS1–TS6) under each experimental

condition.

Exp. Cnd. TS1 TS2 TS3 TS4 TS5 TS6

(m1, v1) 1.4 1.0 0.6 0.6 1.4 1.2

(m1, v3) 1.0 1.4 1.0 0.6 1.0 1.0

(m3, v1) 1.0 1.0 0.6 0.6 0.6 0.6

(m3, v3) 1.0 1.4 1.0 0.8 0.6 1.0

the neural networks estimated actuation signals successfully so that the virtual

spectrums were similar to the real ones. Note that the Es values in Fig. 5.8

are absolute ones, and they should be interpreted in reference to the baseline Es

values in Fig. 5.7.1

Among the six materials, painting canvas showed the highest similarity (Ēs =

0.29), while chair fabric showed the lowest (Ēs = 0.49). Plastic and dotted sheet

showed the second best performance with Ēs = 0.37, followed by felt fabric

and scrunched paper with Ēs = 0.44. A closer look reveals that the three best

materials have some sort of uniform patterns on their surfaces, are made from

sturdy materials, and generally feel rough. In contrast, the three worst materials

are all made from soft fabrics with random or no clear textural patterns on their

surfaces. As for the experimental condition, although (m1, v3) showed the lowest

average error, error levels were similar regardless of scanning velocity or normal

force.

1It is unclear how to compare two different Es values, e.g., it can be additive or multiplicative,

or neither.
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5.3.3 Cross-validation

We next show how well for an untested condition (marked by red circles in

Fig. 5.6) a linear interpolation between adjacent tested conditions (marked by

blue squares), generates an actuation signal. For example, U12 is obtained by

taking a weighted average between U11 and U13 with the weights equal to the

adjusted gains. Similarly U21 is obtained by taking a weighted average between

U11 and U31. The FFT plots along with Es values are given in Fig. 5.9.

An immediate observation reveals that taking average has almost worked for

the conditions with the same scanning speed but with different mass; check the

second row for (m2, v1) and the third row for (m2, v3). Most of the main compo-

nents are preserved buy with some variations in the power densities. However,

in the conditions having the same mass, (m1, v2) in the first row and (m3, v2) in

the forth row, the obtained spectra are clearly different from the references. It

seems the main components of lower and higher speeds appeared in the resulting

spectra. This can be clearly observed for dotted and plastic sheet. This behavior

can be explained based on the fact that the Fourier transform of a linear com-

bination of two time-domain signals will include the main components of both

spectra. This is evidently the weakness of applied interpolation method. This

effect is less noticeable for materials with random textural patterns such as felt

fabric and scrunched paper.

We tested a smaller interval and performed interpolation between (m3, v1)

and (m3, v2) to obtain an actuation signal for (m3, 3.5 cm/s). From spectral plots

(not shown here), we could still observe the appearance of both components in
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Figure 5.8: FFT plots comparing virtual and real textural forces. Dotted black

lines indicate real forces, and solid green lines virtual ones. Average errors are

given inside the parentheses on the top and left sides.

the resulting spectra but to a smaller extent; the average error Ēs decreased

from 0.70 to 0.65. It seems with smaller velocity intervals, the accuracy of this

linear interpolation method increases. While reducing velocity intervals can be

a temporary solution, a nonlinear averaging or interpolation scheme would be a

better and ultimate solution.

The best performance is achieved for scrunched paper with Ēs = 0.49 and

worst for dotted sheet with Ēs = 0.78. Among conditions, (m2, v1) showed lowest

error (Ēs = 0.55) and (m3, v2) showed highest (Ēs = 0.70).
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Figure 5.9: FFT plots for cross-validation comparing virtual and real textural

forces for the experimental conditions not used for neural network training. Dot-

ted black lines indicate real forces, and solid green lines virtual ones. Average

errors are given inside the parentheses on the top and left sides.

5.4 Conclusions

In this study, we proposed an inverse NARX neural network model to gen-

erate PRBS-like actuation signals to mimic real textures on an electrovibration

display. The networks are trained based on the lateral forces collected from the

surface of display as a result of applying a full-band PRBS. Once trained, the

networks are used to estimate an actuation signal from lateral forces collected

from real samples. By comparing the spectra in frequency domain, we showed

promising results recreating virtual textures similar to the real ones. We also

showed preliminary cross-validation results to estimate an actuation signal for

untested experimental conditions by taking average between adjacent tested con-
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ditions. This simple approach showed acceptable results for cases with the same

scanning velocity but not for cases with the same mass.

For future work, we intend to conduct a human user study to evaluate the

perceptual quality of the textures generated by our approach. In addition, to

better address the nonlinear nature of electrovibration display, we have plans

to use m-level pseudo-random signals (PRMS) instead of 2-level or binary ones

(PRBS) to perturb the display and identify its dynamic system. Finally, we

believe a more sophisticated interpolation scenario can result in better estimation

of actuation signals for untested conditions.
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Chapter VI.

Improved Interpolation Scheme

In the previous chapter, we introduced a basic interpolation scheme to es-

timate and generate actuation signals for untested experimental conditions, the

ones not being used for training neural networks. We showed that while it works

appropriately for the conditions with the same scanning velocity but different

masses, it does not work well for the conditions with the same mass but different

scanning velocities. The biggest observed issue was that the main frequency com-

ponents from the lower and higher velocities both appear in the forces resulted

from the interpolated (=estimated) signals (Fig. 5.9).

In this chapter, we propose a solution to solve this problem. We first re-

define the problem with some basic examples and investigate its origin. Then

we explain our algorithm as an effective way to fix the problem accompanied

by several examples. Then we show how this algorithm can be applied as an

improved interpolation scheme to our texture rendering method. At the end, we
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conduct a human user study to rate similarity between real and virtual textures

produced by our method to show the effectiveness of the proposed algorithm.

6.1 Problem definition

In the previous chapter, we showed the effect of scanning velocity on the

location of main frequency component of the collected forces from the surface of

real materials. In most cases, with the increased scanning velocity, the component

shifted right (to higher frequencies) in the frequency domain. This behavior is

captured by the neural networks we trained over the collected data. Therefore, for

the conditions with different scanning velocity, the neural networks have learned

such a behavior and the estimated actuation signals have inherited such an at-

tribute. This means, for a given texture sample, the actuation signal estimated

under the slower velocity, produces forces with lower frequency components. In

a similar way, the actuation signal estimated under the faster velocity, generates

forces with higher frequency components. As such, when these two signals are

linearly combined (by taking weighted average), the generated signal aims to re-

create both lower and higher frequency components when FFT is applied on the

resulting forces collected from the 3M panel. This behavior can be explained

based on the fact that FFT is a linear operator which a combination of sig-

nals with different frequencies will result in a combination of their corresponding

power spectra after FFT being applied.

We provide a basic example to show this. Let us assume we have two sine

waves, y1 = sin(2πf1t) and y2 = sin(2πf2t), with two distinct frequencies f1
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and f2. Applying FFT, each sine wave creates a power spectrum with the main

component located in f1 or f2 (Fig. 6.1). Our intention is to generate a sine wave

y3 for an arbitrary frequency f3 in which f1 ≤ f3 ≤ f2. A weighted averaging

scheme yields to:

y3 =WA(y1, y2, f1, f2, f3) =
f2 − f3
f2 − f1

y1 +
f3 − f1
f2 − f1

y2. (6.1)

where WA is an operator for taking weighted average between two signals. In

extreme case, if f3 = f1 then y3 = y1 and if f3 = f2 then y3 = y2. For a middle

frequency, f3 = (f1 + f2)/2 = 15 Hz, the formula yields to y3 = 0.5y1 + 0.5y2. As

it can be seen from Fig. 6.1, the outcome is not satisfactory because we expected

a sine wave at frequency of f3 = 15 Hz with full power density but instead

we obtained two sine waves at frequencies f1 = 10 Hz and f2 = 20 Hz with half

power density. This is the same problem we observed with our basic interpolation

scheme applied on actuation signals with different scanning velocities. We do not

want to have two separate components at two distinct frequencies, we want to

have one single component at the intended frequency. Any linear interpolation

(averaging) scheme will yield to such an outcome. Therefore, either a nonlinear

or a modified linear scheme is required to achieve the desired output. We explain

our solution in the next section.

6.2 Potential solution

A closer look into the problem of having multiple components in the outcome

reveals a potential solution too. Referring to the given example of two sine waves,

if we shift the lower component to the right and the higher component to the left
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Figure 6.1: Example of two sine waves with frequencies f1 = 10 Hz and f2 = 20

Hz, and their corresponding FFT plots. y3 = 0.5y1 + 0.5y2 is calculated as an

estimation for f3 = 15 Hz by taking weighted average from y1 and y2. Its time

and frequency domain plots are given on the right.

in the frequency domain, then taking average between the shifted signals will

result in a component at the desired frequency and appropriate power density.

This is a simple yet effective technique comparing to a complicated and possibly

hard to implement nonlinear alternative.

To shift a component in the frequency domain, we require to perform a

re-sampling process, either down-sampling or up-sampling, in the time domain.

While down-sampling is also called decimation in signal processing, but with an

appropriate decimation factor, d.f., we can perform both re-sampling processes.

d.f. determines the degree of down-sampling if it is greater than 1 and up-
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sampling if it is less than 1. Decimation with d.f. ≥ 1 yields a signal with its

frequency component shifted right (to higher frequency) and with d.f. ≤ 1 to a

signal with its frequency component shifted left (to lower frequency).

Let us first define an operator,RS(.), to perform re-sampling: yr = RS(y, p, q).

yr is the re-sampled version of y with a rational decimation factor d.f. = p/q.

It technically means that y is being re-sampled at p/q times the original sam-

ple rate. p and q are obtained from the current and intended frequencies. For

example, to shift right a component from f1 to f3, decimation factor should be

d.f. = f1/f3 ≤ 1 and vice versa to shift left from f2 to f3, d.f. = f2/f3 ≥ 1. Next

we apply weighted average on the resulting two re-sampled signals. Let us denote

the re-sampled version of y1 by yr1 = RS(y1, f1, f3) and y2 by yr2 = RS(y2, f2, f3).

Then y3, an estimation based on yr1 and yr2 is obtained from:

y3 =WA(yr1, y
r
2, f1, f2, f3) =

f2 − f3
f2 − f1

yr1 +
f3 − f1
f2 − f1

yr2. (6.2)

This process is simulated for the same sine waves used in the previous ex-

ample. The intended frequency is f3 = 15 Hz, so we require to shift right the

component at f1 = 10 Hz to f3 = 15 Hz and shift left the component at f2 = 20

Hz to f3 = 15 Hz. The time and frequency domain plots are given in Fig. 6.2.

As it can be seen, each component is first shifted to the desired frequency then

combined to generate a single component with full power density.

Another example is provided for two sine waves with different frequencies and

different amplitudes: y1 = A1 sin(2πf1t) and y2 = A2 sin(2πf2t) with A1 = 1.0

and f1 = 10 Hz and A2 = 0.4 and f2 = 20 Hz. Our intention is to generate a

signal at f3 = 19 Hz. The time and frequency domain plots are given in Fig. 6.3.
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Figure 6.2: Example of re-sampling two sine waves with frequencies f1 = 10

Hz and f2 = 20 Hz to generate a signal (sine wave) at the desired frequency

of f3 = 15 Hz. Time domain plots are given on the top and FFT plots on the

bottom. The red plots are the original signals and the blue ones are re-sampled

ones. yr1, blue plot, is the re-sampled version of y1 and yr2 is of y2. y3 is obtained

by linearly combining yr1 and yr2: y3 =WA(yr1, y
r
2, 10, 20, 15) = 0.5yr1 + 0.5yr2.

As it can be seen the interpolated signal y3 is more similar to y2 than y1 in terms

of power density because the intended frequency, f3, is closer to the f2 than f1.

We finish this section with a final example. This time we intend to obtain

an estimation from y1 = 0.3 sin(2π10t) and y2 = sin(2π20t) at frequency f3 = 12

Hz. A single plot illustrating the re-sampling and averaging process is shown

in Fig. 6.4. Again the outcome is more similar to y1 in terms of power density

because f3 = 12 Hz is closer to f1 = 10 Hz.

– 85 –



Figure 6.3: Another example of re-sampling and combining two sine waves with

different frequencies and different amplitudes. For the desired frequency of f3 =

19 Hz the signal is obtained from y3 =WA(yr1, y
r
2, 10, 20, 19) = 0.1yr1 + 0.9yr2.

6.3 Test on real texture samples

A key point applying the aforementioned re-sampling process is to know the

desired frequency we intend to land and also the lower and higher frequencies

we intend to shift. For the given examples, we knew all these frequencies in

advance, but how about for a real texture sample? We are basically seeking

to apply such an algorithm on the estimated actuation signals obtained from

the trained neural networks. Just to recall, we train a neural network under a

known normal pressure and scanning velocity. For the untested conditions, we

intend to interpolate signals from the adjacent tested conditions. When the two

neighborhood conditions have different scanning velocities we must apply the
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Figure 6.4: Another example of re-sampling and combining two sine waves with

different frequencies and different amplitudes. For the desired frequency of f3 =

12 Hz the signal is obtained from y3 =WA(yr1, y
r
2, 10, 20, 12) = 0.8yr1 + 0.2yr2.

re-sampling process, otherwise, when they have the same scanning velocity but

different normal pressures we do not need to do so. For an untested condition, we

just know the lower and higher velocities and the current scanning velocity user is

applying (we will discuss this in the human user study section). But we still need

to know the corresponding frequencies of the main component to perform the re-

sampling process. For that, we require to investigate the relationship between the

scanning velocity and the frequency of the main component for a given texture

sample.

As an initial test, we investigate such a behavior for a texture sample with

an almost perfect sinusoidal patterns on its surface (Fig. 6.5). The reason is that,

we expect to see a single powerful component in the forces collected from this

sinusoidal surface, making it an ideal candidate to study the effect of scanning
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velocity on the frequency of the main component.

Figure 6.5: Rippled paper with almost perfect sinusoidal surface patterns.

We used our tribometer to collect lateral forces from the surface of rippled

paper with five different scanning velocities: 3,4,5,6, and 7 cm/s. A single plot

showing all five FFT plots is given in Fig. 6.6. The plot is annotated with the

values of the corresponding main component. We then plotted these frequencies

with respect to their corresponding scanning velocities (the inset plot in the Fig.

6.6). As it can be seen, there is a perfect linear relationship between frequency and

velocity. This is an important finding, because frequencies being linearly related

to scanning velocities, makes it possible to replace frequencies with velocities

in the re-sampling and interpolation process. This means, we do not need to

know the lower and higher frequencies and also the intended frequency to apply

the re-sampling and then interpolation, we instead can use the lower and higher

velocities and the current user applied scanning velocity for those purposes. We

have investigated the same relationship for all six materials used in the previous

chapter. For each material, we found a linear relationship between the frequency

of the main component and the corresponding scanning velocity. The details
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are provided in appendix A. Realizing a linear relation between frequency and

velocity, we can replace frequency with velocity in Eqn. 6.2 and re-define the

interpolation averaging scheme accordingly:

y3 =WA(yr1, y
r
2, f1, f2, f3)

=
f2 − f3
f2 − f1

yr1 +
f3 − f1
f2 − f1

yr2

=
v2 − v3
v2 − v1

yr1 +
v3 − v1
v2 − v1

yr2

=WA(yr1, y
r
2, v1, v2, v3).

(6.3)

Figure 6.6: Power spectra of forces collected from the surface of rippled paper

under five different scanning velocities. The inset plot at the upper right corner,

shows a linear relationship between the frequencies of the main component and

their corresponding velocities.
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6.4 Improved interpolation scheme

With the improved interpolation algorithm for the conditions with differ-

ent scanning velocities, we are now being able to define a complete interpolation

scheme for a general untested condition. Just to recall, we train neural networks

based on forces collected under known normal pressures and scanning velocities,

one network for each condition. The neural network is used to generate a PRBS-

like actuation signal under the same condition. For other untested conditions, the

ones are not used to train the neural networks, we propose to interpolate an actua-

tion signal from the four adjacent nodes in pressure-velocity grid (Fig. 6.7). Each

node, Ui,j , represents an estimated actuation signal obtained from the trained

neural network under the given normal pressure and scanning velocity, (mi, vj).

The interpolation scheme has two parts. First, we obtain a signal from the

nodes with the same scanning velocity but different masses. Second, we properly

re-sample the newly generated signals and then take weighted average between

them.

By assuming that user applied pressure is mu, (mi ≤ mu ≤ mi+1), and user

applied scanning velocity is vu, (vj ≤ vu ≤ vj+1), the whole interpolation process

can be formulated as below:
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1.1. Uu,j =WA(Ui,j , Ui+1,j ,mi,mi+1,mu)

1.2. Uu,j+1 =WA(Ui,j+1, Ui+1,j+1,mi,mi+1,mu)

2.1. U ru,j = RS(Uu,j , vj , vu)

2.2. U ru,j+1 = RS(Uu,j+1, vj+1, vu)

2.3. Uu,u =WA(U ru,j , U
r
u,j+1, vj , vj+1, vu)

(6.4)

The sub-steps 1.1 and 1.2 are about taking weighted average between signals

with same scanning velocity, sub-steps 2.1 and 2.2 are about re-sampling the

outcomes, and sub-step 2.3 is about taking average between the two re-sampled

signals. For the user conditions with velocities slower or faster than the lower

and upper velocity limits, or masses lighter or heavier than the lower and upper

mass limits, only the extreme limits are considered. More specifically, for user

velocities outside [vmin, vmax], or masses outside [mmin,mmax], vu or mu is set to

the corresponding extreme. For example, if vu ≤ vmin, then we assume vu = vmin.

Similarly, if mu ≥ mmax, then we set mu = mmax. This is equivalent to ignoring

second interpolation step for out-of-range user velocities and ignoring first step

for out-of-range user pressures.

We tested this interpolation scheme on the rippled paper. We trained neural

networks for the conditions with two normal pressures (60 and 110 g) and five

scanning velocities (3, 4, 5, 6, and 7 cm/s). The cross-validation is done for the

middle conditions with one pressure (85 g) and four velocities (3.5, 4.5, 5.5, and

6.5 cm/s). The results are given in Fig. 6.8. In all cases, a decent agreement

between the two spectra, real vs. virtual (=rendered), can be seen, proving the
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Figure 6.7: Improved interpolation scheme. (mu, vu) denotes user applied pres-

sure and velocity. Blue squares are the adjacent actuation signals obtained from

neural networks trained under corresponding experimental conditions. Blue ar-

rows indicate sup-steps 1.1 and 1.2, applied on the vertical nodes to yield blue

dashed circles. Long green arrows indicate sub-steps 2.1 and 2.2, applied on the

horizontal nodes to yield green dashed circles. Short green arrows, indicate the

final sub-step 2.3, applied on the re-sampled signals (green dashed circles) to

obtain green square, the output of interpolation.

effectiveness of the proposed interpolation scheme.

6.5 Human user study

So far, we have shown that our texture modeling can adequately create

virtual spectra similar to the real spectra for both tested and untested conditions.

We evaluate the performance of our texture modeling and rendering algorithm

by means of a user study. The emphasis is on the perceptual similarity between
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Figure 6.8: Real vs virtual spectra for rippled paper. The cross-validation con-

ditions include one normal pressure (85 g) and four scanning velocities (3.5, 4.5,

5.5, and 6.5 cm/s). Recordings from rippled paper are shown with dotted black

lines and recordings from 3M panel actuated with the interpolated signals with

solid green lines. In all four conditions, a satisfactory agreement between the two

spectra, real vs. virtual, can be seen, proving the effectiveness of the proposed

interpolation scheme. The error metric values, Es, are shown on top of each plot.

the virtual and the real textures. This user study is approved by the Institutional

Review Board at the author’s institution (PIRB-2017-E070).

6.5.1 Methods

Participants

We recruited twenty participants (13 males and 7 females; 18–26 years old

with an average of 22.4) who had no prior experiences on using variable friction
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displays including electrovibration. None of them reported any known sensory

or motor impairments. Participants signed an informed consent form after we

explained the goals and procedure of the experiment. Each participant was paid

KRW 5,000 (approximately USD 4.5) after the experiment.

Texture materials

We applied the modeling and rendering methods on six texture materials

used in the previous chapter:

• Dotted sheet: made of a thin plastic sheet with holes all over its surface

• Chair fabric: made of a soft material with woven patterns

• Felt fabric: made of a thick soft material with no distinguishable patterns

• Painting canvas: made of a rough and sturdy linen with uniform nodes

• Plastic sheet: made of a rigid plastic sheet with diagonal ridges

• Scrunched paper: made of a thick paper with random textural patterns

They are chosen on the basis to represent different surface texture. Chair and

felt fabrics feel soft while others generally feel rough.

Performance measure

Given a pair of textures, either real vs. real or real vs. virtual, participants

were asked to evaluate their overall similarity on a scale of 0–100, with 0 being

completely different and 100 being perfectly similar. The participants were told

to focus on the surface textural patterns not the materials themselves.
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Task and procedure

During the experiment, participants sat in a chair in front of a desk on which

the experimental setup was placed (Fig. 6.9). The setup included a 3M panel,

as electrovibration display, equipped with an IR-frame (T Series 10”, E&T Tech,

China [76]) on the top to detect finger position and a bar type load-cell (CBCL-

2L, CAS Scale, South Korea [77]) on the bottom to measure user applied pressure.

Next to the panel and on the right side is a seat to place the real texture sample.

We tried to remove all irrelevant sensory cues, therefore participants’ vision to

the 3M panel and texture sample was blocked by a curtain.

Figure 6.9: Experimental setup used for human user study. 3M capacitive touch-

screen is used as electrovibration display. Under the panel a load cell is installed

to measure user’s pressure and on top of it an IR-frame to track user’s finger

position.

The experiment consisted of two phases. In the first phase, participants

were provided with pairs of only real texture samples and were asked to rate
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their similarity. One sample is placed on the material seat to the right of user and

another sample on the 3M panel to the left of user. The objective was to measure

the upper and lower bounds of the overall similarity since humans tend to avoid

giving extreme values (e.g., see [78]). Additionally, this phase helped participants

stabilize their perceptual bases and scales for similarity scores. The participants

were randomly presented with 12 pairs of materials, six of which with the same

materials and six with the different materials representing distinguishable texture

sensation. Among six pairs of different materials, three pairs were intentionally

chosen from the materials having almost similar feeling (pla-scr, dot-pla, and

scr-can) and three pairs from the materials having different feelings (dot-flt,

can-chr, and chr-flt). The former is called moderately-different group and the

latter highly-different group.

In the second phase, participants evaluated the similarity between a virtual

texture and its corresponding real texture. The order of the six texture pairs

was randomized for each participant. The experiment was repeated three times,

yielding to a total number of eighteen pairs presented to the users. Participants

were instructed to explore each texture, either real or virtual, from side to side

maintaining a regular scanning speed, not too fast and not too slow, within the

range of 3 to 7 cm/s. In addition, they were told to apply a regular normal

pressure, not too heavy and not too lite, within the range of 60 to 110 g. When

interacting with the 3M panel, the users were asked to wear an anti-static wrist

band to ensure that their body is electrically grounded. The bracelet had a 1

MΩ current limiting resistor to prevent excessive current passing through the
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user’s body. A computer program, reads user’s pressure and finger position every

25 ms (40 Hz) and updates the output actuation signal every 100 ms (10 Hz).

A DAQ (PCI-6229, NI, USA) was used to read analog input (load-cell) and

generate analog output (actuation signal) with a sampling rate of 1 kHz. For

velocity estimation we employed a differentiation method based on the first order

adaptive windowing (FOAW) method to obtain a reliable and stable velocity

estimates from position data.

6.5.2 Results

During the experiment we collected 600 similarity scores (20 participants ×

(12+18) pairs). We first computed the average similarity score between different

real objects (Fig. 6.10(a)) and that of identical real objects (Fig. 6.10(b)). For

each pair, the average is taken between 20 scores (20 participants × 1 trial). The

mean and standard deviation values of the overall similarity scores are also listed

in Table 6.1. Among the different pairs, scr-can received the highest score (44%)

and can-chr the lowest (9%). The total average was 30%. Among the identical

pairs, chair fabric received the highest score (96%) and painting canvas the lowest

(78%). The total average was 89%.

We also computed the average similarity score between a real material and

its virtual counterpart (Fig. 6.11). For each of six material, the average is taken

between 60 scores (20 participants × 3 trials). In the given plot, we also included

lower and upper bounds (yellow bars). lower(3) indicates the average minimum

among only highly-different group (3 pairs) while lower(6) indicates the average

minimum among both highly-different group and moderately-different group (6
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(a) Different real objects (b) Identical real objects

Figure 6.10: Average similarity scores comparing two real textures. Left: two

different real materials. The red bars are for highly-different group and the blue

bars for moderately-different group. Right: two similar real materials. Error bars

show standard errors.

Table 6.1: The mean and standard deviation values of the similarity score between

real textures.

statistics dot-flt pla-scr dot-pla can-chr chr-flt scr-can total

mean 23 37 44 9 22 44 30

std 25.93 26.82 27.27 8.13 19.55 24.39 26.03

statistics dot-dot chr-chr flt-flt can-can pla-pla scr-scr total

mean 89 96 90 78 94 85 89

std 11.31 6.41 14.56 18.09 8.37 16.58 14.23

pairs). The mean and standard deviation values are given in Table 6.2 and 6.3

for the real-vs-virtual scores and for the real-vs-real bounds, respectively. Plastic

sheet received the highest score (70%) and chair fabric the lowest (43%). The
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total average was 60%.

Furthermore, to examine the statistical differences among the materials, we

performed a non-parametric Kruskal-Wallis test since our similarity scores did

not pass the Shapiro-Wilk normality test. The results showed that the material

had a statistically significant effect on the overall similarity score (χ2(5) = 19.98,

p = 0.0013).

Figure 6.11: Average similarity scores comparing real and virtual textures. Error

bars indicate standard errors. The yellow bars show lower and upper bounds,

with lower(3) including only highly-different group (3 pairs) and lower(6) both

highly-different and moderately-different groups (6 pairs).

Moreover, we calculated the average minimum score and the average max-

imum score among three trials for each material (Fig. 6.12). The mean and

standard deviation values are given in Table 6.4. As it can be seen, there are
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Table 6.2: The mean and standard deviation values of the similarity score between

real and virtual textures. The values inside parenthesis are the ratios of the above

values to the upper bound (89%).

statistics dot chr flt can pla scr total

mean 62 43 48 68 70 66 60

(0.70) (0.48) (0.54) (0.76) (0.79) (0.74) (0.67)

std 16.08 22.91 25.17 19.77 13.91 15.99 21.79

Table 6.3: The mean and standard deviation values of the lower and upper

bounds.

statistics lower(3) lower(6) upper

mean 18 30 89

std 20.07 26.03 14.23

occasions that virtual textures received scores as high as 95%. This means at

those instances the user felt a satisfactory high similarity between the re-created

virtual texture and the corresponding real one. On the contrary, there are some

cases on which a similarity score as low as 10% is achieved, meaning that at those

particular moments, the user felt very poor similarity between two textures.

We have also conducted a preliminary experiment to compare the perfor-

mance of our proposed texture modeling and rendering algorithm with that of

a basic record-and-playback method. In the record-and-playback method, the

collected forces from the surface of each material under the given experimental

condition (normal pressure and scanning velocity), are amplified and directly ap-

plied to the 3M panel. Same as before, we used three masses and five scanning
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Figure 6.12: Average minimum and maximum scores for each material.

Table 6.4: The mean and standard deviation values of minimum and maximum

scores between real and virtual textures.

statistics dot chr flt can pla scr total

mean min 30 10 10 15 40 30 23

std min 0.00 0.00 0.00 7.07 0.00 0.00 12.15

mean max 85 75 80 95 93 90 86

std max 7.07 7.07 14.14 7.07 3.54 0.00 9.32
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velocities during data collection using our tribometer. Then, the same improved

two-step interpolation method is applied for the experimental conditions under

which no force data is collected.

We hired 12 participants and asked them to rank the similarity between a real

texture sample and its virtual counterpart rendered using record-and-playback

method (Fig. 6.13). The mean and standard deviation values of the similarity

score between real and virtual textures are given in Table 6.5. As it can be seen,

there is a considerable difference between the average similarity scores of two

methods with 60% vs. 39% for nn-based and rp-based, respectively. On average,

the virtual textures generated using our proposed method are 21% more similar

to the real ones than those of generated by record-and-playback method.

Figure 6.13: Comparison between neural network-based (nn) and record-and-

playback (rp) methods. Error bars indicate standard errors.
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Table 6.5: The mean and standard deviation values of the similarity score between

real and virtual textures comparing nn-based and rp-based methods.

nn-based dot chr flt can pla scr total

mean 62 43 48 68 70 66 60

std 16.08 22.91 25.17 19.77 13.91 15.99 21.79

rp-based dot chr flt can pla scr total

mean 42 23 34 46 47 39 39

std 22.24 21.43 19.30 18.45 23.13 19.68 22.15

6.5.3 Discussion

Several observations can be made from the results of user study. As ex-

plained earlier, the six pairs of different real materials are categorized into two

groups: highly-different group including dot-flt, can-chr, and chr-flt and

moderately-different group consisting pla-scr, dot-pla, and scr-can. Accord-

ingly, we expected to see lower scores for the former group and higher scores

for the latter one. This expectation is somehow confirmed by the results. The

highly-different group received an average score of 18% while the moderately-

different group received 42%. can-chr from the first group achieved the lowest

score (9%) and scr-can from the second group the highest score (44%). This

means that participants found painting canvas and chair fabric the most different

objects and scrunched paper and painting canvas the most similar objects.

Comparing real and virtual textures, Fig. 6.11 clearly shows that the sim-

ilarity score of all materials are well above both lower limits. Considering only

lower(3), the scores show a significant difference from this lower limit, by which
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we can assume that all materials were similarly rendered. This consideration

is valid since it comes from the highly-different group, indicating the extent to

which two very different objects are ranked to be alike. Moreover, we can also

see that the scores of all materials are fairly close to the upper limit, supporting

the aforementioned assertion.

Another observation can be made regarding the materials with lowest scores,

i.e., chair fabric and felt fabric with 43% and 48%, respectively. Among the six

real objects, these two are the ones made of a soft material. Chair fabric feels

smoother than felt fabric and has some equally spaced woven patterns on its

surface while felt fabric does not have any distinguishable pattern. The remaining

four samples generally feel rougher than these two. It seems the users found the

virtually re-created textures of these two soft materials less similar to their real

counterparts. Apparently, our system performed a poor job producing the degree

of softness required for better matching. Not being able to create a soft sensation

was somehow expected. At the initial stage of this project, when we were testing

various basic actuation signals on the 3M panel, we noticed that, in general,

square waves create rougher sensation than sine waves with the same frequency.

It seems the abrupt changes in the square waves are directly transformed to

friction forces and perceived coarser by the moving finger. We have not observed

the same behavior with smooth-changing sine waves. The estimated PRBS-like

actuation signals behave like square waves which appear to have limited capacity

creating softness sensation. From the opposite standpoint, these two-level signals

are good at producing sharp and crisp sensations. So it is no surprise to see the
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highest performance is achieved for the plastic sheet (70%). The equally spaced

diagonal ridges on the surface of plastic sheet can be seen as visual representation

of a square wave. In addition, its rigid surface feels very similar to the glassy

surface of 3M panel. It seems textures made of solid materials with rigid patterns

have more chance to be realistically re-created using our system.

Lastly, comparing the neural network-based method with record-and-playback,

we achieved a higher degree of similarity, 21% more given 60% vs. 39%, using

our method. This is relatively 30% more than what what we could accomplish

with the record-and-playback. On the one hand, this reveals that the trained

neural networks could generate more appropriate actuation signals and hence

more realistic virtual textures. On the other hand, this shows that when the

rendering device, here the 3M panel, has limited capacity, even a simple record-

and-playback method could result in some mediocre output. Nevertheless, our

method notably performed better in capturing and re-creating surface fine details,

emphasizing the need for incorporating the dynamic behavior of the rendering

device in the modeling and rendering algorithm.

6.6 Conclusion

We proposed an effective solution to fix the problem of basic interpolation

scheme introduced in the previous chapter. The main issue occurred in estimating

an actuation signal from the two adjacent signals obtained under two different

scanning velocities. When the interpolated signal is applied to the 3M panel,

in the resulting forces we could see both components of the lower and higher
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velocities at two distinct frequencies instead of a single component at a frequency

in between. This problem did not occur when interpolating signals under the same

scanning velocity but different masses. We improved the interpolation scheme by

proposing an additional process before taking weighted average. In the frequency

domain, if we shift the lower component to the right to an intended frequency

and the higher component to the left to the same intended frequency, then we

end up with a single component at the desired frequency. Shifting in frequency

domain can be done by re-sampling in the time domain, either down-sampling or

up-sampling.

We proposed a two-step interpolation scheme to estimate an actuation signal

based on the adjacent nodes in the pressure-velocity grid. We first take weighted

average between the two signals with the same velocity but different masses.

Then, we re-sample the estimated lower signal to shift its frequency component

to the right and the estimated higher signal to the left. Finally, taking weighted

average between them yields to an actuation signal maintaining the right fre-

quency and power density. The key point here is to know the lower and higher

frequencies and also the intended frequency. We showed a linear relation between

the frequency of the main component and the scanning velocity for the examined

real texture samples. This important finding, eliminates the need to know the

frequencies and instead they can be replaced by the lower and higher velocities

and the user applied velocity.

We put the improved interpolation scheme to the test by conducting a human

user study with 20 participants. They were asked to rate the similarity between
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real and virtual textures on a scale of 0 to 100, with 0 being completely different

and 100 being perfectly matching. As a whole, considering all six materials, an

average score of 60% was achieved. Among the materials, plastic sheet received a

score of 69% being the highest rated texture and chair fabric received 54% being

the lowest rated texture. These results reveals the potentials of the proposed

modeling and rendering method in re-creating virtual textures similar to the real

ones using an electrovibration display.

We still believe there is room for improvement. For example, in this study,

we focused on PRBS (pseudo-random binary sequence) to train neural networks

and use them to generate a PRBS-like actuation signal for a given material under

known experimental conditions. As a PRBS has only two levels, this may limit

the extent to fully identify the dynamic behavior of the electrovibration display.

A PRMS (pseudo-random multilevel sequence) might increase the quality of the

modeling and rendering because we are no longer limited to have only two levels.

This may create a finer model with higher resolution yielding to more realistic

virtual textures. In addition, while the improved interpolation scheme works

fine estimating signals for untested conditions, we might want to investigate a

possibility for model-based interpolation. In this scenario, the parameters of a

neural network is adjusted (or interpolated) based on the adjacent networks. At

this moment, this is just an initial idea which we intend to address in close future.
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Chapter VII.

Conclusions

In this work, we presented algorithms to render surface curvature and fine

texture using a variable friction touchscreen. The motivation behind this study

comes from the ever-growing interest in using touchscreen devices such as mobile

phones and tablets. While technology advances improve the quality of such de-

vices, but their functionality is still limited to simple user interactions. At best,

they can generate some simple monotonic vibrations in response to user actions.

A natural interaction with such touchscreen devices requires better and more

intuitive (haptic) feedback, tailored based on the application. For example, an

online clothing store can significantly benefit if it can provide a way to the users

to touch and feel the fabric using their phones. This may look somehow futuris-

tic but with the recent technology advances it is becoming real. Variable friction

displays enable a new tactile feedback on touchscreens. Currently there are two

technologies based two different phenomena: 1) based on ultrasonic vibration,
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and 2) based on electrovibration. They both alter the surface friction in response

to user’s touch. Using the former one, the surface friction decreases while with

the latter one it increases. As touchscreen displays are made of a glass material

with minimum friction, increasing its friction makes more sense than decreasing

it. In addition, requiring less complicated hardware, makes the electrovibration

technology more attractive and suitable for daily consumer electronics.

This effort is one of the first to address the possibility of realistic rendering

surface features on an electrovibration display. We particularly focused on ren-

dering surface 3D curvature and fine texture. We proposed efficient algorithms

tackling each problem separately. In the first part, we introduced a gradient-

based method to render 3D objects. It includes a generalized real-time algorithm

to estimate surface gradient from the surface of any 3D mesh. In addition, a sep-

arate edge detection method is included to emphasis sharp edges while scanning

the surface of a mesh. Conducting a human user study, we showed that in the

presence of haptic feedback generated using our algorithm, the users can better

recognize 3D bumps and holes when the visual feedback is limited and puzzling.

In the second part, we proposed a neural network based data-driven texture

modeling and rendering method. We first created an inverse neural network dy-

namic model for the electrovibratin display to estimate an actuation signal from

the forces collected from the surface of real texture samples. For the force mea-

surement, we developed a linear motorized tribometer enabling adjusting applied

normal pressure and scanning velocity. We trained neural networks to learn from

the forces resulted from applying a full-band PRBS (pseudo-random binary sig-
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nal) to the electrovibration display and generate similar actuation signals. While

the networks are trained under known normal pressure and scanning velocity, for

the untested conditions, we proposed a two-part interpolation scheme to produce

actuation signal from the neighborhood conditions. The first part generates an

estimate by taking weighted average between the signals with the same scanning

velocity but different masses. The second part, performs a re-sampling process,

either down-sampling or up-sampling, on the newly estimated signals to produce

a final signal according to the user applied normal pressure and scanning veloc-

ity. We conducted a user study to put the proposed algorithm to test. We asked

users to rate the similarity between a real texture and its virtual counterpart.

The experimental setup included a load-cell to measure user applied pressure

and an IR-frame to track his/her finger position and eventually calculate user’s

scanning velocity. Testing six different real texture samples, we achieved an aver-

age similarity score of 60%. This revealed the potentials of the proposed texture

modeling and rendering algorithm accompanied by a linear interpolation scheme

in creating virtual textures similar to the real ones.
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