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Abstract

Haptic Augmented Reality (AR) enables a user to feel a real environment augmented with

synthetic haptic stimuli. For instance, medical students can palpate a virtual tumor in-

side a real mannequin using a haptic AR system to practice cancer detection. To realize

such functionalities, we need to alter the haptic attributes, such as stiffness and friction of

a real object by means of virtual haptic feedback. Despite its potential, attempts to de-

velop systematic and general computational algorithms for such functionalities of haptic

AR have been scanty. This dissertation aims at developing a systematic and sophisticated

methodology for haptic AR, i.e., a “haptic AR toolKit.” Towards this goal, the author be-

gins with establishing a new taxonomy for haptic AR based on a composite visuo-haptic

reality-virtuality continuum extended from the conventional continuum for vision. Previ-

ous studies related to haptic AR are reviewed and classified using the composite continuum,

and associated research issues are discussed. Second, the feasibility of haptically modulat-

ing the feel of a real object with the aid of virtual force feedback is investigated, with the

stiffness as a goal haptic property. A commercial haptic interface is extended with a force

sensor, and all required algorithms for contact detection, stiffness modulation, and force

control are developed for 1D interaction of tapping. Their individual performances are

thoroughly evaluated. The resulting haptic AR system is also assessed in a psychophysical

experiment, demonstrating its competent perceptual performance for stiffness modulation.

Third, the initial system is extended so that a user can interact with a real object in any 3D

exploratory patterns while perceiving its augmented stiffness. A series of new algorithms



for 3D interaction of tapping, stroking, and contour following are developed for contact

detection, deformation estimation, force rendering, and force control. A particular focus

has been on minimizing the amount of preprocessing such as geometry modeling while

preserving reasonable perceptual performance. The physical and perceptual performances

of algorithms are also thoroughly evaluated with real samples. Our haptic AR system can

provide convincing stiffness modulation for real objects of relatively homogeneous defor-

mation properties. Fourth, to demonstrate the potential of haptic AR, a case study is pre-

sented for physical training of breast cancer palpation. A real breast model made of soft

silicone is augmented with a virtual tumor rendered inside. Haptic stimuli for the virtual

tumor are generated based on a contact dynamics model identified via real measurements.

A subjective evaluation confirmed the realism and fidelity of our palpation system. Finally,

the haptic AR system is combined to the state-of-the-art visual AR framework, enabling

the augmentation of both the real visual and haptic environment seamlessly with virtual

information.
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Chapter 1
Introduction

1.1 Augmented Reality for Haptics

Augmented reality (AR) provides the mixed sensations of real and virtual objects to a user,

thereby transforming a real space to a semi-virtual space. The current technology for visual

AR is relatively mature, and has been applied to practical applications including surgical

training, industrial manufacturing, and entertainment [4, 109, 28]. Another emerging area

in AR is haptic AR, where the user can touch a real object, a virtual object, or a real

object augmented with virtual touch. For example, suppose that a user is holding a pen-

shaped “magic” tool in the hand. With the tool, the user can touch and explore a virtual

vase overlaid on a real table. In addition, a user can draws a picture on the table with

an augmented feel of using a paint brush on a smooth piece of paper, or using a marker

on a stiff white board. Besides, medical students can palpate a virtual tumor inside a real

mannequin using a haptic AR system to practice cancer detection. Creating such haptic

illusions belongs to the realm of haptic AR. AR with both sensory modalities, visuo-haptic

AR, can create simulations of great realism, immersion, and presence, which is not easily

realized by a pure virtual environment.

Owing to the enormous potentials of haptic AR, it has received increasing attention in the

haptics and AR community. Most of previous studies on haptic AR have showed interests in

using real props in a visually mixed environment, or creating purely virtual haptic objects

1
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embedded in an real environment (see Chapter 2). In this dissertation, the author moves

on one step further, by demonstrating that the feel of a real object can be modulated by

force feedback of a haptic interface in a systematic manner. Mixing real haptic stimuli with

virtual haptic stimuli adequately allows to make a soft object feel harder, or a rough surface

feel smoother, similarly to changing a yellow real tennis ball to a white augmented base ball

in visual AR. Even though such functionality for haptic AR requires a unique methodology

quite different from that of virtual haptic rendering, relatively a small amount of studies

have been devoted to it (see Chapter 2).

1.2 Research Goal

The author speculates that one of the most necessary capabilities for a haptic AR system is

general and systematic methods for modulating haptic properties of a real object with the

aid of a sensor and haptic interface, similarly to changing the color of a real object in visual

AR. A software package analogous to the ARToolKit for visual AR [60] is essential in order

for haptic AR to fully realize its potential in various applications, and the author believes

that this will enable the haptic illusions introduced in Section 1.1. This dissertation focuses

on how to modulate the haptic properties of a real object with the aid of a force-feedback

haptic interface and what the user perceive from such a haptically augmented object.

1.3 Contributions

The contribution of the work can be summarized as follows:

• Clarification of the research field of haptic AR

– Establishment of a new taxonomy for haptic AR based on a composite visuo-

haptic reality-virtuality continuum.

– Review and classification of previous studies related to haptic AR using the new

taxonomy.

– Discussion of associated research issues.
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• Proof-of-concept of haptic AR - The modulation of real object stiffness in 1D inter-

actions

– Development of all required algorithms for contact detection, stiffness modula-

tion, and force control.

– Evaluation of the physical and perceptual performance of the algorithms.

• Extension of the initial work - Stiffness modulation in 3D interactions

– Development of all required algorithms for contact detection, deformation di-

rection estimation, deformation displacement estimation, and force control.

– Physical and perceptual evaluation of the algorithms.

• Application of haptic AR to medical training.

– Effective physical simulation of a breast with a tumor, and physical and percep-

tual evaluation.

• Integration of haptic AR into a visuo-haptic AR framework.

1.4 Organization

The author’s research for the haptic AR has begun with clarifying the research field and es-

tablishing a new taxonomy for haptic AR using a composite visuo-haptic reality-virtuality

continuum extended from Milgram’s continuum for visual AR [82] (Chapter 2). A number

of studies related to haptic AR are reviewed and classified based on the composite contin-

uum, and associated research issues are elucidated. In particular, the survey showed the lack

of fundamental knowledge on augmenting the haptic attributes of a real object with the aid

of a force-feedback haptic interface, which is analogous to augmenting the color of a real

object using a Head-Mounted Display (HMD) in visual AR. Such functionality is required

to implement the latter example (paint brush and tumor palpation) described in Section 1.1.

Second, the feasibility of modulating the feel of a real object by virtual force feedback is

demonstrated, with the stiffness as a goal haptic property (Chapter 3). Complete algorithms
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for the stiffness modulation including interaction modeling, contact detection between the

real object and the device tool, and stiffness control were proposed for 1D interaction. The

whole haptic AR system was evaluated in a psychophysical experiment, showing compe-

tent performance for stiffness augmentation. To the author’s knowledge, this is among the

first efforts in haptic AR for systematic augmentation of real object attributes with virtual

force. In addition, several important research issues identified during the feasibility study

are presented.

Third, the proof-of-concept system was extended to a 3D stiffness modulation that allows

for arbitrary exploration patterns such as tapping, stroking, and contour following (Chapter

4). With the system for 3D interaction, a user can perceive the shape of a real object with

altered stiffness, which is the most fundamental requirement for practical applications such

as the example of a paint brush. Besides, this extension is a prerequisite for the modulation

of other haptic attributes including friction and texture. Effective algorithms are proposed

and thoroughly evaluated for physical and perceptual performance. A particular focus has

been on minimizing the need of prior knowledge and preprocessing for the haptic properties

and geometric information of real objects, while maintaining convincing perceptual quality.

This aspect is in agreement with the general advantages of AR; unlike a VR system, an AR

system usually does not require the full model of an entire environment.

Fourth, the potential of haptic AR is demonstrated by developing a practical application

in medical training area, i.e., physical training system for breast cancer palpation (Chapter

5). A real silicone breast model is augmented with a virtual tumor rendered inside. Haptic

stimuli for the virtual tumor are generated based on a contact dynamics model identified via

real measurements, without the need of geometric information on the breast. In addition, a

subjective evaluation confirmed the realism and fidelity of our palpation system.

In the final chapter, the haptic AR system is combined to the state-of-the-art visual AR

framework, enabling the augmentation of both the real visual and haptic environment seam-

lessly with virtual information.



Chapter 2
Haptic Augmented Reality

2.1 Concept and Taxonomy

About a decade ago, concepts associated with AR, or more generally, Mixed Reality (MR)

were defined by [82] using the reality-virtuality continuum shown in Fig. 2.1a. The con-

tinuum includes all possible combinations of purely real and virtual environments, with

the intermediate area corresponding to MR. Whether an environment is closer to reality or

virtuality depends on the amount of knowledge that the computer needs to manage for the

environment; the more knowledge required, the closer to virtuality. This criterion allows

MR to be further classified into augmented reality (e.g., the heads-up display in an aircraft

cockpit) and augmented virtuality (e.g., a computer game employing a virtual dancer with

the face image of a famous actress). We, however, note that the current literature does not

strictly discriminate the two terms, and uses AR and MR interchangeably.

Extending the concept, we can define a similar reality-virtuality continuum for the sense

of touch and construct a visuo-haptic reality-virtuality continuum by compositing the two

unimodal continua as in Fig. 2.1b. This continuum can be valuable for building the taxon-

omy of haptic MR. In Fig. 2.1b, the whole visuo-haptic continuum is classified into nine

categories, and each category is named in an abbreviated form. The shaded regions belong

to the realm of mixed reality. In what follows, the author reviews the concepts and instances

associated with each category, with more attention to those of MR. Note that the continuum

5
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(a) Original reality-virtuality continuum adapted from [82].

(b) Extension of (a) to include the sense of touch. Shaded areas correspond
to the realm of mixed reality.

Fig. 2.1 Reality-virtuality continuum for augmented reality.

for touch includes all kinds of haptic feedback and does not depend on the specific types

of haptic sensations (e.g., kinesthetic, tactile, or thermal) or interaction paradigms (e.g.,

tool-mediated or bare-handed).
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2.2 Classification and Review of Related Work

2.2.1 Haptic Reality

In the composite continuum, the left column has the three categories of haptic reality: vR-

hR, vMR-hR, and vV-hR, where the corresponding environments provide only real haptic

sensations. Among them, the simplest category is vR-hR, which represents purely real en-

vironments without any synthetic stimuli. The other end, vV-hR, refers to the conventional

visual virtual environments with real touch, e.g., using a tangible prop to interact with vir-

tual objects. Environments between the two ends belong to vMR-hR wherein a user sees

mixed objects but still touches real objects. A typical example is the so-called tangible AR

that has been actively studied in the visual AR community. In tangible AR, a real prop held

in the hand is usually used as a tangible interface for visually mixed environments (e.g., the

MagicBook in [15]), and its haptic property is regarded unimportant for the applications.

Another example is the projection augmented model. A computer-generated image is pro-

jected on a real physical model to create a realistic-looking object, and the model can be

touched by the bare hand (e.g., see [10]). Since the material property (e.g., texture) of the

real object may not agree with its visually augmented model, haptic properties are usually

incorrectly displayed in this application.

Recently, there have been several attempts to apply vMR-hR into a simulator for medical

training [19]. One example is the ProMIS laparoscopic surgery simulator [18], wherein a

trainee experiences various laparoscopic procedures using real instruments and real physical

anatomic models while annotative visual feedback is overlaid on a real scene. Their system

provides ‘real’ haptic feedback, and the trainee can get a more realistic and valid learning

experience. An experiment with real surgical students confirmed that the ProMIS simulator

could provide better realism than a VR-based simulator in a basic surgery skill task and a

suturing task [17]. On the other hand, [69] developed a medical training system for forceps

delivery. In their system, a user can practice, using real instruments, the forceps placement

and the mechanical effects of it on the fetus, while a virtual fetus is visually overlaid on a

real pelvic mock-up. A similar system [94] visualized a virtual uterus and a virtual fetal
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head on a real physical mock-up of the female torso, and a trainee interacts with the virtual

models with a real forceps. Note that the three systems only provide real force feedback,

but the positions of the instruments were tracked to assess the performance of the training.

2.2.2 Haptic Virtuality

The categories in the right column of the composite continuum, vR-hV, vMR-hV, and vV-

hV, are for haptic virtuality, corresponding to environments with purely virtual haptic sen-

sations only, and have received the most attention from the haptics research community.

Robot-assisted motor rehabilitation can be an example of vR-hV where synthetic haptic

feedback is provided in a real visual environment, and an interactive virtual simulator is

an instance of vV-hV where the sensory information of both modalities is virtual. In the

intermediate category, vMR-hV, purely virtual haptic objects are placed in a visually mixed

environment, and are rendered using a haptic interface based on the conventional haptic

rendering methods for virtual objects. Earlier attempts in this category focused on how

to integrate haptic rendering of virtual objects into the existing visual AR framework, and

identified precise registration between the haptic and visual coordinate frames as a key is-

sue [101, 1]. For this topic, [61] applied an adaptive low-pass filter to reduce the trembling

error of a low-cost vision-based tracker using ARToolkit, and upsampled the tracking data

to be used for 1 kHz haptic rendering. [13] and [12] further improved the registration ac-

curacy via intensive calibration of a haptic interface, and optical and landmark trackers.

They also explored the potential of visuo-haptic AR technology for medical training with

their highly stable and accurate AR system [46]. Their last work improved the fidelity of

visual augmentation by including virtual shadow casted on real scene, occlusion of real-

virtual object, and stereoscopic display [63]. Another example is [85], which applied the

HMD-based visuo-haptic framework to training processes in industry and demonstrated its

potential. [81] used the similar system to teach the hand-writing skill to children by pro-

viding virtual guidance force, and [89] applied similar system to a dental training simulator

incorporated with volumetric tooth models. On the other hand, a half mirror was also pop-

ularly used for the visuo-haptic collocation, e.g., ImmersiveTouch [76], Reachin Display
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[88], PARIS display [56], and SenseGraphics 3D-IW [93]. The framework was applied to

cranial implant design [92] and MR painting application [91]. In medical applications, there

have been several attempts to apply vMR-hV systems to minimally invasive surgery proce-

dure (see [67] for overview). Among them, an ongoing project by the ARIS*ER European

consortium has been trying to construct an AR-based visual guidance methodology and vir-

tual haptic systems incorporated with radiological data of the patient to improve minimally

invasive interventions and surgery [36].

2.2.3 Haptic Mixed Reality

The last categories for haptic mixed reality, vR-hMR, vMR-hMR, and vV-hMR, which the

rest of this article is concerned with, lie in the middle column of the composite continuum.

A common characteristic of haptic MR is that synthetic haptic signals generated from a hap-

tic interface modulate or augment stimuli occurring due to a contact between a real object

and a haptic interface tool. The VisHap system [107] can be an instance of vR-hMR that

provides mixed haptic sensations in a real environment. In this system, some information

about a virtual object (e.g., shape and stiffness) is generated by a haptic device, and other

properties (e.g., texture and friction) are supplied by a real prop attached at the end-effector

of the device. Other examples in this category are the SmartTool [83] and SmartTouch sys-

tems [58]. They utilized various sensors (i.e., optical and electrical conductivity sensors)

to capture real signals that could hardly be perceived by the bare hand, and then translated

the signal into haptic information and delivered it to the user in order to facilitate certain

tasks (e.g., peeling off the white from the yolk in an egg). The MicroTactus system [106]

is another example of vR-hMR, which detects and magnifies acceleration signals caused by

the interaction of a pen-type probe with a real object. The system was shown to improve

the performance of tissue boundary detection in arthroscopic surgical training. A similar

pen-type haptic AR system, Ubi-Pen [66], embedded miniaturized texture and vibrotactile

displays in the pen, adding realistic tactile feedback for interaction with a touch screen in

mobile devices. [65] introduced a simple haptic AR concept for creating realistic visco-

elastic feedback, wherein virtual visco-elastic object rendering was assisted by a real base
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object that has the similar visco-elastic property to desired object. On the other hand, envi-

ronments in vV-hMR use synthetic visual stimuli. For example, [16] investigated the utility

of haptic MR in a visual virtual environment by adding synthetic force to a passive haptic

response for a panel control task. Their results showed that mixed force feedback was better

than synthetic force alone in terms of task performance and user preference. In vMR-hMR,

both modalities rely on mixed stimuli. [43] installed a vibrator in a real tangible prop to

produce virtual vibrotactile sensations in addition to the real haptic information of the prop

in a visually mixed environment. They demonstrated that the virtual vibrotactile feedback

enhances immersion for an AR-based hand-held game. [8] and [7] introduced a teleoper-

ation framework where force measured at the remote site is presented at the master side

with additional virtual force and mixed imagery. In particular, they tried to modulate a cer-

tain real haptic property with virtual force feedback for a hole patching task and a painting

application, in contrast to the most of related studies introduced earlier.

2.3 Remarks

Several remarks need to be made. First, the vast majority of related work, except [83], [16],

[65], and [7], has used the term “haptic augmented reality” without distinguishing vMR-hV

and hMR, although research issues associated with the two categories are fundamentally

different. Second, haptic MR can be further classified as haptic augmented reality and hap-

tic augmented virtuality based on the same criterion used in visual MR. All of the research

instances of hMR introduced earlier correspond to haptic augmented reality, since little

knowledge regarding an environment is managed by the computer for haptic augmentation.

However, despite its potential, attempts to develop systematic and general computational

algorithms for haptic AR have been scanty. An instance of haptic augmented virtuality

can be haptic rendering systems that use haptic signals captured from a real object (e.g.,

see [84, 86, 48]) in addition to virtual object rendering, although such a concept has not

been formalized before. Third, although the taxonomy is defined for composite visuo-hapic

configurations, a unimodal case (e.g., no haptic or visual feedback) can also be mapped to

the corresponding 1D continuum on the axes in Fig. 2.1b. Fourth, [9] also suggested a
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simple taxonomy for haptic AR based on the functional aspect of a system. They termed a

haptic AR application as “enhanced haptic” if haptic data from an information source are

modulated or extrapolated in the application (e.g., providing active haptic guidance to sen-

sorimotor skills; see [8]). In contrast, in applications for “haptic enhancing,” fundamentally

new information obtained from sources different from a haptic data source is added to the

haptic data (e.g., haptizing non-haptic attributes such as weather variables on a geological

map; see [72]). This criterion can be useful for contemplating on the benefits of haptic AR

applications.

We further discuss possible application areas that can maximize the advantage of haptic

AR. Owing to the basic motivation of AR–augmenting a focused area only while adapt-

ing real environment for the surroundings–haptic AR can take advantages of both real and

virtual environment. Utilizing a real environment reduces the effort required to construct

a target environment. This aspect can be advantageous to the application having frequent

environment changes, such as virtual prototyping. Moreover, real environments allows us

to efficiently provide high realism and immersion of environments, which is hard to be

achieved by current haptics technology for virtual reality. Thus, haptic AR is a perfect can-

didate for application areas requiring high realism, such as medical training. On the other

hand, virtuality makes an environment more flexible. Desired sensory signal can be easily

modeled and rendered via software and hardware technology for virtuality. This advantage,

together with the advantages of reality, enables haptic AR to be effectively applied to a skill

transfer system using virtual haptic guidance.

In addition, the computational procedures and the associated technical issues necessary

for visual and haptic AR are summarized and compared in Table 2.1. Moreover, in most

AR applications, visual and haptic feedback should be combined, and registration between

visual and haptic coordinate frames is an important technical challenge. Interested readers

may refer to recent methods for visual-haptic registration (e.g., one in [46]) using a vision-

based tracker and careful calibration procedures.

In the rest of this article, we present a haptic AR system that includes all of the compu-

tational procedures in Table 2.1 for stiffness modulation.
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Table 2.1: Computational procedures of visual and haptic AR.
Procedure Visual AR Haptic AR

Sensing a real en-
vironment

Captures real information
needed for visual augmen-
tation (via camera, range
finder, tracker, etc.)

Senses real information needed for
haptic augmentation (via position en-
coder, accelerometer, force sensor,
thermometer, etc.)

Constructing
stimuli for
augmentation

1. Real-virtual registration 1. Contact detection between the tool
(or bare hand) and a real object

2. Overlay of a virtual object
on the real scene

2. Modulation of real haptic stimuli

Displaying aug-
mented stimuli

Uses a visual display (head-
mounted display, projector,
mobile phone, etc.)

Uses a haptic display (force-feedback
interface, tactile display, thermal dis-
play etc.)



Chapter 3
Stiffness Modulation: 1D
Interaction

In this chapter, we present the proof-of-concept study of modulating the haptic attribute of

a real object by virtual force feedback, with the stiffness as a goal haptic property. The

haptic AR system begins with a measurement of reaction force between a haptic interface

tool and a real object in Section 3.1. A contact between the real object and the device

tool is then detected using an effective algorithm based on the reaction force in Section

3.2. If a contact is declared, a stiffness control algorithm adapted from robotics is applied

for stiffness augmentation in Section 3.3. The whole haptic AR system was evaluated in a

psychophysical experiment, showing competent performance for stiffness augmentation in

Section 3.4.

3.1 Interaction Modeling

The research towards a general software framework for haptic AR has begun with devel-

oping computational algorithms for altering the stiffness of a real object with virtual force

generated by a force-feedback haptic interface. Stiffness, the relation between the force

applied to an object and the resulting deformation of the object surface, is one of the fun-

damental properties of any elastic object, and is closely related to the hardness of an object

13
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perceived by a user.

As an initial study, the following three simplifications are made. First, we consider

real objects in an elastic state with moderate stiffness. Objects made from plastic (e.g.,

clay) or brittle materials (e.g., glass) are excluded due to their complicated responses. In

addition, objects made from highly stiff materials such as steel cannot be handled since such

objects are hardly deformed by the force that current haptic devices can generate. Second,

among several sensory cues that affect the hardness perceived by the user, we focus on the

modulation of stiffness, a displacement-force relation. Compared to other haptic cues such

as tactile contact cues and pressure distribution cues [37], stiffness can be an important

sensory cue for objects with moderate stiffness. Third, it is assumed that a haptic interface

used for haptic AR is ideally rigid, which allows using simple and intuitive relationships

for stiffness augmentation.

The approach for stiffness modulation is derived using notations depicted in Fig. 3.1.

The stiffness of a real object being pressed at time t is denoted by k(t). This is the stiffness

of the object to be perceived by the user without additional virtual force feedback. The

goal is to change the user-perceived stiffness from k(t) to a desired stiffness value, k̃(t),

by providing adequate virtual force to the user’s hand. Let forces generated by the haptic

device and the hand be fd(t) and fh(t), respectively. Due to the two force components, the

object surface is deformed by displacement xr(t) with reaction force fr(t). Thus, the forces

at the tool are in an equilibrium state such that:

fr(t) = k(t)xr(t) = fh(t) + fd(t). (3.1)

For the hand to feel the desired stiffness k̃(t),

fh(t) = k̃(t)xr(t). (3.2)

Then the force that the device needs to exert is:

f̃d(t) = fr(t)− k̃(t)xr(t). (3.3)

Therefore, the task of stiffness modulation is reduced to controlling the device force fd(t)

to be a desired force f̃d(t).
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Fig. 3.1 Definitions of forces and displacement for stiffness modulation.

Equation (3.3) indicates that for stiffness modulation, the haptic AR system must be

able to sense the reaction force fr(t) from the surface of a real object (requirement 1) and

control the haptic device to generate the desired force f̃d(t) (requirement 2). In addition,

the system is required to detect the time instant at which the haptic tool touches the ob-

ject to begin stiffness modulation (requirement 3). For requirement 1, we attached a 3D

force/torque sensor (ATI Industrial Automation, Inc.; model Nano 17) at the distal link of a

PHANToM premium model (SensAble Technologies, Inc.) to directly measure the reaction

force at the tool tip (see Fig. 3.2). Force sensor outputs were sampled via a data acquisition

card (National Instruments; model USB 6251) in a PC. A plastic grip was also installed

for the operator’s convenience. A cylindrical rod of 3-mm diameter with a round tip was

fastened to the force sensor, and used as a contact point between the device and objects.

The force sensing range was from -35 to 35 N with the resolution of 1.5625 mN along the

vertical direction. For requirements 2 and 3, we have adapted the traditional stiffness con-

trol algorithm from robotics (see Section 3.3), and developed an efficient contact detection

algorithm (see Section 3.2), respectively.

3.2 Contact Detection

To determine when to begin stiffness modulation, the haptic AR system needs an algorithm

for detecting a contact between the haptic device tool and a real object. A simple and

effective algorithm for contact detection is introduced and its performance is evaluated in

this section.
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Fig. 3.2 PHANToM premium instrumented with a 3D force/torque sensor for haptic AR.

3.2.1 Algorithm

A straightforward way for contact detection is to monitor the acceleration of a haptic inter-

face tool held by the user, a(t), and declare that a contact has occurred if |a(t)| > εa where

εa is a predetermined threshold. This acceleration-based contact detection can be used for

any force-reflecting haptic interface, since all of them have sensors to measure their joint

angles (e.g., the optical encoders) and the acceleration of the tool tip can be estimated from

joint angle measurements in software. This method, however, has a fundamental drawback.

Since acceleration also occurs during free movements of the tool tip, the threshold εa must

be set relatively high in order to avoid false alarms (declaring a contact for the non-contact
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movements). Higher thresholds decrease the sensitivity of contact detection, making the

time that the algorithm identifies a contact lags behind the actual instant of the contact.

An improved approach is to estimate the response force fr(t) and examine whether its

absolute values show an abrupt rise. Let fs(t) be a force sensor reading at time t. To obtain

fr(t), the effect of contactor assembly inertia, fi(t), must be compensated from fs(t), since

a force sensor is usually installed between the last link of a haptic interface and the contactor

assembly. Thus,

fr(t) = fs(t)− fi(t), (3.4)

where given the mass of the tip assembly, mt (= 9.35 g in our configuration),

fi(t) = mta(t). (3.5)

We consider that a contact has occurred if | fr(t)| > ε f , where ε f is a decision threshold

that requires careful selection based on the noise level of the force sensor. In this algorithm,

a dominant term is fs(t) that is the force sensor output responding immediately to a contact.

The effect of the tip assembly inertia on the reaction force during free motions is compen-

sated by subtracting fi(t). This allows us to choose ε f such that ε f is robust to the noise

of the force sensor only, without paying much attention to false alarms during free move-

ments. Thus, this method includes much less estimation delay than the acceleration-based

approach. Note that no prior knowledge of the haptic attributes of real objects and of the

geometric relations between real objects and the haptic interface is required in the contact

detection algorithm.

3.2.2 Performance Evaluation

Two implementation issues, how to estimate force sensor output fs(t) and acceleration a(t)

in (3.4), can critically affect the performance of contact detection. To obtain an estimate of

fs(t), a low-pass filter of force sensor readings sampled at 1 kHz (= force rendering rate

of our haptic AR system) is the usual way in closed-loop force control. This, however,

inevitably introduces a delay in filtered force values which adversely affects the delay of

contact detection. We selected an alternative of reading force sensor outputs at 10 kHz
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and then down-sampling to 1 kHz by averaging ten consecutive samples. This technique

effectively suppresses noise in force sensor output as well as substantially decreasing the

delay in contact detection. Note that such high-rate sampling was possible owing to the use

of the dedicated data acquisition card. To estimate a(t), the double discrete differentiation

of digital position measurements is used. Since this method usually results in very noisy

estimates, we employed filters in two steps, once to obtain velocity from position data

sampled at 1 kHz using the first-order adaptive windowing filter [53], and again to estimate

acceleration from the velocities using a second-order Butterworth low-pass filter with 50-

Hz cutoff frequency.

For performance evaluation, four real objects were used; sponge block, foam ball, rubber

ball, and rubber eraser. They had different stiffness characteristics as shown in Fig. 3.3.

The displacement-force curve of each object was obtained in a computer-controlled tapping

experiment where the PHANToM applied a contact force to the object from 0 N to 4 N and

then to 0 N at a rate of 0.5 N/s and the resulting tip displacements were measured. The figure

shows that the rubber eraser exhibited the most linear response, whereas the sponge block

shows the most nonlinear response with significant hysteresis. Their representative stiffness

values, which were taken at 4 N from the corresponding displacement-force curves, ranged

from 0.38 to 2.26 N/mm.

Two measures, the detection accuracy and the time delay of contact detection, were

used for performance assessment. If the threshold, ε f , is increased, the probability of false

alarms for contact detection is decreased, but the time delay is increased. An optimal ε f

was selected as follows. The initial value of ε f was set to the jitter level of the force sensor

measured to be 0.01 N. Then, ε f was increased under computer-simulated fast free move-

ments of the PHANToM generated by sinusoidal force commands with 5 Hz frequency and

1 N amplitude and the false alarm rates were recorded. The time delay for contact detection

was also measured for each ε f value when a user tapped the foam ball that showed a mild

stiffness curve in Fig. 3.3. To pinpoint the exact instant of contact, a very thin copper wire

was laid on the surface of the foam ball, and voltage was applied between the tool tip and

the wire so that current began to flow on contact. The contact time was precisely measured
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Fig. 3.3 Response characteristics of the four real objects.

by finding a rapid change in the measured current. The results are shown in Fig. 3.4 that

clearly illustrates the trade-off between the false alarm rate and the detection delay. Based

on these data, we selected ε f = 0.015 N which is the smallest threshold with zero false

alarm rate.

Fig. 3.5a shows the examples of x(t), fs(t), fi(t), and fr(t) measured around a contact.

When the tool tip was freely moved in space by the user (0 ms ≤ t ≤ 316 ms in the figure),

the measurements of fs(t) and fi(t) were in agreement, making fr(t) near zero within the

jitter level of the force sensor in the loaded condition (= 0.01 N). In the figure, we can

compare the position of the tool measured with the PHANToM joint encoders, x(t), to the

position of the surface of a real object placed at x = 0, and find the exact point of a contact

at t = 316 ms. As expected, fs(t) and fr(t) showed rapid increases around the time as

magnified in Fig. 3.5b. In the figure, we can confirm that the delay of contact detection was

as low as 1 ms.

The criterion for selecting ε f that minimizes the false-alarm rate inevitably lengthens the

detection delays. Thus, we further investigated whether the delays were small enough to

be insignificant for the perception of modulated stiffness. To collect data, a user tapped on

each real object with different contact velocities, and the delay of each tap was calculated
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Fig. 3.4 False alarm rate and time delay of contact detection measured for various thresh-
olds.

with ε f = 0.015 N. The results are summarized in Fig. 3.6 that shows functions fitted to

the measured delays under each condition in the form of f (v) = a− bcv where v is contact

velocity. Raw data are shown only for the foam ball for visibility (red points in the figure).

Overall, the delay decreases as contact velocity increases or object stiffness increases.

Since the detection delay was shown to be a function of contact velocity, we needed

to find a range of contact velocities of the human’s general tapping motion. For stiffness

perception, the human tends to keep the contact velocity relatively high in order to obtain

sufficient tactile and kinesthetic sensory information from a contact. We collected tapping

profiles with three human subjects, and computed tapping velocities at a contact. The results

are shown in Fig. 3.7 as a histogram of the contact velocities. The tapping velocities varied

from 100 to 1000 mm/s with the average of 416 mm/s. In Fig. 3.6, the detection delays

were less than 3 ms when contact velocity was over 100 mm/s, even for the softest object.

With such small delays, the time that a user touches a real object with the haptic device

tool and the subsequent time that the haptic interface begins stiffness modulation are per-

ceived to be simultaneous. Although situations are not identical, the contact detection delay
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(a) Measured variables.

(b) Magnified graph of (a) around the contact for a detailed view.

Fig. 3.5 Measured variables for contact detection.

of our AR system is much smaller than previously published thresholds for tactile simul-

taneity. For instance, research showed that for two tactile pulses applied on the index and
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Fig. 3.6 Contact detection delays measured with ε f = 0.015 N. The sampling rate for
contact detection was 1 kHz.

middle fingers to be perceived as different events, onset time difference between them needs

to be larger than 30 ms [38], 75 ms [102], and 53 ms for old adults and 21 ms for young

adults [20]. The insignificance of the contact detection delay was also confirmed from the

comments of the subjects who participated in the experiment. As a result, the author can

conclude that such small detection delays do not incur any perceptible abnormalities.

In addition, the author acknowledges that using other sensors such as an accelerometer

and a contact switch in addition to the force sensor may further improve contact detection.

Further improvements, however, would probably be perceptually insignificant or marginal,

given the sufficiently small time delay of contact detection in our current system, despite

increases in the system cost and complexity.

3.3 Force Control

After a contact between the haptic device tool and a real object is detected, we need to

control the device-generated force for stiffness modulation. This section is devoted to a
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Fig. 3.7 Histogram of contact velocities (mean=416.2 mm/s and median=372.3 mm/s).

force control algorithm for this purpose, along with its performance evaluation.

3.3.1 Algorithm

Real objects often have complex dynamic responses that are generally nonlinear (even with

hysteresis and inhomogeneity), which makes their precise identification time-consuming

and impractical. Thus, our force control algorithm only uses the force sensor output to

estimate the reaction force fr(t) without considering the object dynamics.

After a contact between an object and the haptic tool is detected, the desired device force

f̃d(t) is determined using (3.3). To control the force produced by a haptic interface, fd(t),

to be f̃d(t), the traditional closed-loop stiffness controller based on the PD control was used

[74], such that:

fc(t) = fc(t− 1) + Kp fe(t) + Kd
dfe(t)

dt
, (3.6)

where fc(t) is a force command to be sent to the haptic interface, fe(t) = f̃d(t)− fd(t) is

a force error term, and Kp and Kd are proportional and derivative gains, respectively.

A delicate issue in the above rule is that to measure fd(t), an additional force sensor

needs to be added to the haptic interface, e.g. between the third joint of the PHANToM
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and the ball grip in Fig. 3.2. To avoid it, it was estimate by fd(t) = fc(t− 1), which is a

heuristic observer that regards the force generated by the haptic interface as the command

sent one sampling period before. The estimation rule works quite well due to the fast haptic

update rate when the user motion is stabilized (e.g., see [23]). However, fd(t) can be

delayed from fc(t − 1) by a few milliseconds when the PHANToM moves quickly, e.g.,

for tapping. Using an additional force sensor can remove the error, but the consequent

performance improvement is likely to be insignificant in terms of perception. Indeed, our

psychophysical experiment to be presented in Section 3.4 showed that the lag does affect

the perceived magnitude of object stiffness, but the perceptual difference can be ignored

negligible compared to the discriminability of human stiffness perception.

The range of stiffness that can be obtained via the stiffness control is contingent upon

haptic interface performance, especially maximum output force, and force applied by the

user. Consider the limited force output of a haptic interface, such that fd,min ≤ fd(t) ≤
fd,max where fd,min < 0 and fd,max > 0 in the setup shown in Fig. 3.1. Given the force

applied by the user’s hand, fh(t), (3.1) can be rewritten as

fh(t) + fd,min

k(t)
≤ xr(t) ≤ fh(t) + fd,max

k(t)
. (3.7)

Then, using (3.2) results in

k(t)
fh(t)

fh(t) + fd,max
≤ k̃(t) ≤ k(t)

fh(t)
fh(t) + fd,min

. (3.8)

Using this equation, the ranges of feasible stiffness for four kinds of commercial haptic

interfaces are illustrated in Fig. 3.8 as a function of fh(t) when k(t) = 1.0 N/mm. fd,min

and fd,max are taken from the maximum forces along the vertical directions of the device

listed in the product data sheets. Note that increasing fh(t) diminishes the effect of stiffness

modulation by the haptic interface.

In practice, the feasible stiffness range is further limited by the stability requirement of

haptic interaction. The stability of a haptic AR system depends on several factors, such as

an algorithm used to control fd(t) to f̃d(t), the response characteristics of real objects, and

the dynamics of a haptic interface.
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Fig. 3.8 Feasible stiffness ranges obtained using (3.8) with k(t) = 1.0 N/mm. Note that
the range of Omega includes those of PHANToM 1.0 and 1.5, and the range of PHANToM
1.5 high-force model also includes those of PHANToM 1.0 and 1.5, and Omega. Regions
above 15 N/mm are not shown for space.

3.3.2 Performance Evaluation

The force control ability of our AR system was tested with the four real objects used in

Section 3.2.2. The user tapped each object with the PHANToM, and the resulting tip dis-

placement and reaction force were measured. The whole system was controlled at 1 kHz.

Force sensor readings were processed in the same way for contact detection. The force

sensor read values at 10 kHz, and each 10 readings were averaged for feedback control of

one period. The PD control gains were carefully tuned taking into account both force track-

ing error and contact stability using the Ziegler-Nichols method [108] followed by manual

tuning. In the Zeigler-Nichols method, Kd is initially set to zero, and then Kp is increased

until it reaches the critical gain, Kc, where the output of the control loop begins to oscillate.

The final Kp is set to 0.6Kc and Kd to KpTc/8, where Tc is the oscillation period. The gains

were further tuned manually. Actual stiffness values were computed from the displacement
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(a)Sponge block. (b)Foam ball.

(c)Rubber ball. (d)Rubber eraser.

Fig. 3.9 Displacement-force curves of stiffness modulation. The original stiffness of real
objects (the slope of the grey dashed curves) was modulated to have desired stiffness (the
slope of the colored solid curves). Note that the non-linear visco-elastic responses of real
samples were changed to follow linear elastic models used in our algorithm.

and force data and compared to the desired stiffness. For all of the real objects, the stiff-

ness modulation was shown to be very effective with almost negligible stiffness errors, as

demonstrated in Fig. 3.9.

The range of achievable stiffness was also examined using the four real objects and two

haptic interfaces, PHANToM Premium 1.0 and PHANToM Premium 1.5 high-force model.

A weight (408 g for 4 N gravity) was firmly attached on the hand grip of the PHANToM

to simulate a stable and passive hand force. This weight was chosen based on the average
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Fig. 3.10 Ranges of stiffness values stably modulated in our haptic AR system.

pressing forces of several participants in pilot studies. Note that whereas the user’s hand

holding the PHANToM stylus improves stability due to its physical damping in haptic AR,

its absence in this simulated hand impedance would make a more challenging situation for

the PHANToM to maintain stability. The PD control gains were tuned separately for each

object and haptic interface. The desired stiffness, k̃(t), was systematically changed within

the feasible stiffness range; it was increased until unstable oscillations began, and decreased

until the lower bound was met. The results are represented in the box plots in Fig 3.10. The

circled crosses in the figure mark the representative stiffness of the corresponding real ob-

jects. As expected, the achievable stiffness ranges of the PHANToM high-force model are

much larger than those of the PHANToM 1.0. The greater exertable force, higher damp-

ing, and higher apparent mass at the tool tip of the PHANToM high-force model seem to

contribute to the more stable results.

It is interesting that the upper bounds of achievable stiffness tended to be higher than the

sum of the stiffness of a real object and the maximum stiffness of the usual open-loop virtual

wall rendering (about 1.0 N/mm for the PHANToM 1.0 and 8.0 N/mm for the PHANToM
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1.5 high force). We speculate that two factors positively affected the rendering stability of

our haptic AR system. Real objects usually contain damping in their dynamics, as indicated

by the displacement-force curves that are convex downward in Fig. 3.9. It is a well known

fact that such physical damping enhances haptic rendering stability [27]. The carefully

tuned closed-loop force controller in our system also improved the rendering stability. We

empirically confirmed that the maximum stiffness for stable virtual wall rendering increased

to 1.3 N/mm for the PHANToM 1.0 if the closed-loop control was used.

In the experiment, the PD gains were tuned for each combination of haptic interface and

real object to find the maximum stiffness range for stable rendering. Note that the gains

differ significantly for the haptic interface, but not for the real object (Kp = 0.4 – 0.5 and

Kd = 0.01 – 0.02 for the PHANToM 1.0, and Kp = 1.0 – 1.1 and Kd = 0.02 – 0.03 for the

PHANToM 1.5 high force). This allows us to use fixed gains regardless of real objects to

be tapped, maintaining our assumption of no prior knowledge on an environment.

The system was also tested using a wood plate, but the response was unstable over the

entire range of k̃. This result indicates the need of a fundamentally different technique for

highly stiff objects, such as playing tactile transients at a contact [90, 68, 64].

3.4 Psychophysical Experiment

We perceptually evaluated the approach, algorithms, and implementations presented in the

previous sections for haptic AR in a psychophysical experiment. The experiment measured

the Points of Subjective Equality (PSEs) of perceived stiffness altered by our system under

various conditions, and compared them to desired stiffness values.

3.4.1 Methods

Apparatus

For a haptic interface, the experiment used a PHANToM model 1.0 instrumented with the

force sensor and the contactor assembly as in Fig. 3.2. A real object to touch was placed on

a custom-built rigid turn-table (see inside the semi-transparent white box in Fig. 3.11), and
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Fig. 3.11 Experimental environment. The blurred scene inside the white paper box is for
illustration, and was not seen by the subjects in the experiment.

was rotated appropriately by the computer during the experiment.

Subjects

Eight subjects (S1 – S8; 18 – 29 years old with the average of 23.9) participated in the

experiment, and were compensated for their help. All subjects were right-handed by self-

report, and only S1 was a female. S1, S3, and S5 had participated in haptic perception

experiments prior to the present experiment but were not experienced users of a force-

feedback device. The other subjects had not been exposed to any haptic interfaces prior to

the present experiment. No subject was informed of the goals of the experiment.
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Stimuli

In each trial, the subject was presented with reference and comparison stimuli in pairs.

For the reference stimulus, a real object on the turn table was rotated to the predetermined

position under the PHANToM interaction tool, and its stiffness was modulated to be a

desired value by our haptic AR system. For the comparison stimulus, the real object was

moved away, and the usual elastic virtual wall was rendered by the PHANToM only. The

task given to the subject was to feel both stimuli and select a harder one.

Since the current haptic AR framework only uses the displacement-force relationship for

stiffness alteration, the effect of contact transient cues had to be minimized in the experi-

ment. For this, our experiment program automatically guided the interaction tool held by

the subject to the contact position very slowly (velocity limit = 15 mm/s). The subject was

instructed to just follow the tool during the guidance. After the tool reached the contact

position, the guidance force was withdrawn, and the tool stopped moving. The subject was

then allowed to begin pressing the tool along the vertical direction of the tool (downward in

Fig. 3.11) for stiffness perception. To prevent the subject from repeatedly tapping the real

object, which may produce tactile contact cues, tool movements above the contact point

were constrained during pressing via active position control applied to the PHANToM.

Tool movements in the lateral directions were also subject to the same position control.

In order for the subjects to use only the haptic cue, no visual or auditory information was

provided, but text was displayed on the monitor indicating the progress of the experiment.

A white paper box, shown semi-transparently in Fig. 3.11, enclosed the PHANToM and a

real object, eliminating any visual cues. Auditory cues were also precluded by white noise

played through headphones worn by the subjects.

Experimental Conditions

The experiment had two independent variables. One variable was the kind of real objects

used for a reference stimulus. The sponge block (representative stiffness = 0.37 N/mm)

and the rubber ball (representative stiffness = 0.59 N/mm) were selected, representing real

objects with low and medium stiffness values, respectively. The other variable was the target
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stiffness of a reference stimulus, i.e., the desired stiffness of a real object to be modulated

by the haptic AR system. It was either 0.3 N/mm (lower than the representative stiffness of

both real objects) or 0.7 N/mm (higher). The factorial combinations of the two independent

variables led to four experimental conditions.

Procedures

As a psychophysical method, we used the method of limits that has balanced accuracy and

efficiency for threshold estimation [40]. Under each experimental condition, four descend-

ing and four ascending series were repeated in a randomized order. Each series consisted

of a number of trials. Since the two series were exactly symmetric, detailed procedures are

provided only for the descending series in the following.

In a descending series, the initial stiffness of a comparison stimulus (virtual wall) was

much higher (' 0.9 N/mm for target stiffness 0.7 N/mm; note that the PHANToM 1.0 can

render a stable virtual wall for stiffness less than 1.0 N/mm [24]) than the desired stiffness

of a reference stimulus for stiffness modulation. The initial stiffness was varied by some

degree in each series to minimize the habituation and expectation errors that could otherwise

bias threshold estimation in the method of limits [40]. As the series progressed, the stiffness

of the comparison stimulus was decreased by a predetermined step size (= 0.02 N/mm) until

the series was terminated.

In each trial of the series, the subject was presented with a pair of reference and com-

parison stimuli in a random order. To initiate a trial, the subject pressed a space bar in

the keyboard. Then the interaction tool was automatically guided to the contact position,

and the subject pressed the tool vertically to perceive the stiffness of the first stimulus, as

described earlier in Section 3.4.1. To perceive the second stimulus, the subject pushed the

space bar again and followed the same procedure. The maximum velocity and the trajectory

of the tool were recorded during the pressing. In order to keep the consistency of pressing,

the subject was instructed to maintain the pressing velocity at a moderate speed, and a trial

that contained tool movements with abnormally large vertical velocity (150 mm/s) or in

lateral directions (15 mm) was discarded and repeated again. After perceiving both stim-
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uli, the subject was asked to enter one of three answers: “the first stimulus felt harder” by

pressing the ‘1’ key, “the two stimuli had the same stiffness” by pressing the ‘2’ key, and

“the second stimulus felt harder” by pressing the ‘3’ key. This completed one trial, and a

next trial followed immediately with the stiffness of comparison stimuli decremented by a

predetermined step size.

In the descending series, the subject’s responses were initially that the comparison stimu-

lus felt harder than the reference stimulus. As trials continued, the responses were changed

to that they had the same stiffness, and then to that the comparison stimulus felt softer. The

series was terminated if the last answer was encountered in three consecutive trials. Ten to

fifteen trials were usually required to finish each series.

Prior to the experiment, each subject went through a training session to become familiar

with the experimental procedures. The subject also learned to maintain appropriate pressing

velocity (40 – 150 mm/s) and moderate pressing force in order to prevent any device errors.

One experimental condition took 30 – 40 minutes to complete, and the whole experiment

about 3 hours. The subjects were required to take a rest after finishing one experimental

condition, and could take a break whenever needed.

Data Analysis

Under each experimental condition, eight series (four ascending and four descending) were

repeated per subject. The following procedure was applied to the recorded data of each

subject. In the data of each series, upper and lower thresholds were computed first. For

a descending series, the upper and lower thresholds were the means of the stiffness values

of the comparison stimuli in two consecutive trials where the subject’s responses changed

from “the comparison stimulus was harder” to “they had the same stiffness” and from “they

had the same stiffness” to “the comparison stimulus was softer,” respectively. The PSE in

the stiffness of the comparison stimuli of the series was the mean of the upper and lower

thresholds. Similar procedures were used to find the PSEs of ascending series. The PSE of

the experimental condition was then determined by averaging the PSEs of all of the eight

series. The PSE computed in this way represents the stiffness of a comparison stimulus (vir-
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tual wall) perceived to be equally stiff to the reference stimulus (real object with modulated

stiffness).

3.4.2 Results

The PSEs and the differences between the PSEs and the desired stiffness values of the

reference stimuli, both averaged across the subjects, are shown in Fig. 3.12 for the four

experimental conditions. The standard errors represented by the error bars indicate little in-

dividual variations in the results. In Fig. 3.12a, it is evident that the PSEs were very different

from the stiffness values of the real objects (0.37 N/mm for the sponge and 0.59 N/mm for

the rubber ball) and close to the desired stiffness values of stiffness modulation, demon-

strating the effectiveness of our haptic AR system. However, the PSEs were slightly larger

than the desired values in all experimental conditions, as magnified in Fig. 3.12b. This sug-

gests that the real objects augmented by our haptic AR system felt stiffer than the desired

stiffness to some degree.

Whether the errors in stiffness modulation are significant in terms of perception can be

tested by comparing the errors to the difference thresholds (or difference limens; DLs) of

stiffness perception under the corresponding conditions. The haptics literature showed that

the Weber fractions of stiffness perception were 0.23 for contra-limb motion [57], 0.22

for actively pinching finger motion [100], 0.2 for rotation at the metacarpophalangeal joint

with open-loop force control [59], and 0.036 for the same motion with closed-loop force

control [42]. In particular, [39] measured Weber fractions for stiffness discrimination using

a desktop force feedback interface (PHANToM Premium 1.5) in a very similar posture to

our experiment. The only difference is that whereas they used the precision grip to hold

the PHANToM stylus, the subject in our experiment grabbed a ball-shaped tool with the

thumb and index finger. The Weber fractions ranged from 0.08 – 0.12 for reference stiffness

values in 0.3 – 1.2 N/mm. For our reference stiffness values (0.3 and 0.7 N/mm), we took

the corresponding Weber fractions (= 0.09 both), computed DLs, and specified them in

Fig. 3.12b. The PSE errors were smaller than or comparable to the corresponding DLs,

except for the rubber ball with desired stiffness 0.7 N/mm which showed PSE error larger
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(a) (b)

Fig. 3.12 Results of the psychophysical experiment averaged across the subjects. (a) PSEs.
(b) Differences between the PSEs and the desired stiffness values of the reference stimuli
computed from the data in (a) for better visibility. The difference thresholds taken from
[39] are also shown in (b). Each experimental condition is denoted by combining the kind
of a real object and the desired stiffness value for stiffness modulation used in the condition.

than DL by about 0.04 N/mm. Such small stiffness differences are negligible in practice

considering that the DLs were measured in a laboratory with extremely attentive subjects.

Therefore, we can state that the stiffness modulation errors in our haptic AR system were

marginally perceptible if not imperceptible.

3.4.3 Discussion

The results of the psychophysical experiment showed that our haptic AR system can ad-

equately alter the stiffness of a real object with perceptually negligible modulation errors.

Nonetheless, it is beneficial to identify the sources that bias the stiffness modulation since

the modulation errors appear to be systematic in Fig. 3.12b. Note that the earlier interpre-

tations of the experimental results were based on the assumption that the force-feedback

device used in the experiment was a perfect force transducer. In reality, however, there
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(a)Time-force plot. (b)Displacement-force plot.

Fig. 3.13 The force command and the actual force generated by the PHANToM 1.0. A user
pressed a virtual wall for the measurement.

always exists a difference between a force command and the force output of the device, es-

pecially due to the electromechanical dynamics of the device. In particular, in the pressing

movement used in the experiment, the force generated by the device generally lags behind

commanding force. An example is given in Fig. 3.13a where the actually measured force

exerted to the hand holding the tool is shown for a virtual wall rendered using the PHAN-

ToM 1.0 with 0.7 N/mm stiffness. Over the entire period, the force command (blue dashed

line) leads the actual force (red solid line). The difference between them usually grows with

the changing rate of force command (see the grey dotted line). In particular, the lags are

pronounced in the initial settling period (the thick part of the red solid line from 0 to 60 ms),

making the actual force substantially smaller than the command. This phenomenon intro-

duces an undesired counter-clockwise hysteresis in the displacement-force curve shown in

Fig. 3.13b. It can be seen that the slope in the beginning of the curve (the yellow dashed

part of the thick line) is less than the desired stiffness. Since the human relies more on the

initial force change rate for stiffness perception [70], the lag may make the virtual wall feel

softer than it should.

In the psychophysical experiment, the force lag existed in both of the comparison and

reference stimuli. Since the comparison stimulus only used a virtual wall, its perceived
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stiffness was likely to be less than the commanded stiffness. The reference stimulus had two

different cases. If the haptic AR system attempts to make a real object stiffer, the haptic

interface renders resistive force to the user’s hand and adds it to that of the real object

(acting upward in Fig. 3.2). Thus, it is suspected that the counter-clockwise hysteresis

similar to one in Fig. 3.13b also affected the reference stimuli. However, its effect on the

stiffness decrease must have been less significant than for the comparison stimulus, since the

PHANToM rendered much larger and faster-changing force for the comparison stimuli. It

follows that given a desired stiffness value, the reference stimulus was apt to render a stiffer

object than the comparison stimulus, which biased the PSEs measured in the experiment to

be higher than their true values.

To make a real object feel softer, the haptic interface adds force to the direction of the

user-applied force (downward in Fig. 3.2). Thus, the force command for the reference

stimulus points to the opposite direction of the reaction force of the real object. In this case,

unlike Fig. 3.13b, the actuation lag creates a clockwise hysteresis in a displacement-force

curve. This may increase the perceived stiffness of the reference stimulus, whereas the

comparison stimulus was still perceived softer for the same desired stiffness value.

The above discussion strongly suggests that the actuation delay present in the haptic

interface biased the PSEs measured in the psychophysical experiment to be higher than

their true values. This was also supported by statistical analysis conducted for the two

independent variables, the kind of a real object and the desired reference stiffness. Two-

way within-subject ANOVA showed that both factors had statistically significant influences

on the PSE errors (F1,7 = 44.53, p = 0.0003 for the kind of a real object and F1,7 =

16.16, p = 0.005 for the desired reference stiffness). For the reference and comparison

stimuli to reach a desired stiffness value, the comparison stimulus needs to make more effort

commensurate to the stiffness of a real object used in the reference stimulus. Thus, using a

stiffer real object exacerbates the actuation lag in the comparison stimulus, which led to the

larger PSE errors of the rubber ball than the sponge block in Fig. 3.12b. On the other hand,

increasing the desired reference stiffness for the same real object also induces a larger force

delay in the comparison stimulus, resulting in larger PSE errors, as confirmed in Fig. 3.12b.
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As a consequence, we can conclude that the imperfect performance of the haptic interface

caused the structural bias that increased the PSE errors in the psychophysical experiment.

This further reduces the perceptual significance of the PSE errors discussed earlier based

on the DLs of stiffness perception.

3.5 General Discussion

The psychophysical experiment confirmed that our haptic AR system can adequately mod-

ulate the stiffness real objects. Nevertheless, this work is our initial proof-of-concept study,

and many remaining issues should be investigated.

For a practical application, a haptic AR system must be able to provide 3D interaction

that enables a user to interact with real objects using any exploratory movements such

as contour following and lateral motion. Since our goal is not to manage the geometric

information of real environment, the 3D interaction will need to estimate (local) geometry of

a real object such as surface normal and tangent plane at a contact point for force rendering.

In addition, interface tool should be improved to support natural 3D interaction. Our efforts

for these issues will be addressed in the next chapter.

Second issue is related to the structural stiffness of a haptic interface. Recall that one of

our simplifying assumptions made in Sec. 3.1 was that a haptic interface is ideally rigid.

In practice, the haptic interface deforms, and the amount of deformation is expressed by

the structural stiffness of the device. The structural deformation cannot be seen by joint

encoders in the haptic interface, causing errors in the displacement measurement. This

problem becomes more apparent as more force is applied at the tool tip. For instance, the

PHANToM 1.5 high force model has the structural stiffness of 3.5 N/mm, but with its maxi-

mum force (= 37.5 N), the displacement error can be as high as 10.7 mm. This significantly

lowers actually rendered stiffness, and the amount of decrease grows with commanding

stiffness. Thus, relatively high stiffness may not be rendered properly in our current haptic

AR system. Note that this is an inherent problem of haptic rendering also present for virtual

environments. Using parallel-linkage haptic interfaces (e.g., Omega and Delta from Force

Dimension, Inc.) that have much higher structural stiffness can mitigate the problem, but
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their much smaller workspace imposes a practical limitation on the usability of haptic AR

applications. Developing a force-feedback haptic interface with large structural stiffness

and large workspace can be a very challenging task. In the next chapter, we introduce a

simpler and software-based approach for this issue.



Chapter 4
Stiffness Modulation: 3D
Interaction

In this chapter, the author reports new haptic AR system of stiffness modulation for 3D in-

teractions.The new system allows for arbitrary exploration patterns such as tapping, stroking,

and contour following [71]. With this system, a user can perceive the shape of a real object

with altered stiffness, which is the most fundamental requirement for practical applications

such as the example of a virtual tumor inside of a real mannequin in Section 1.1. Be-

sides, this work is a prerequisite for augmenting other haptic attributes including friction

and texture. A particular focus has been on maximizing the usability of the system, while

maintaining convincing perceptual quality. To balance the trade-off between the render-

ing quality and usability, we establish performance requirements that ensure the perceptual

quality for each computational module and find a reasonable amount of preprocessing that

satisfies the requirements.

The rest of this chapter begins with modeling of 3D interaction between the tool of a hap-

tic interface held by the user and a real object being explored via the tool (Section 4.1). This

model leads to the desired force that the haptic interface should exert to provide a desired

stiffness to the user as well as required computational modules to make the desired force.

We then establish physical performance requirements for each module that are needed to

maintain an acceptable perceptual quality of the system (Section 4.2). Considering these re-

39
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quirements, an efficient and accurate algorithm is developed for detecting a contact between

the device tool and the real object (Section 4.3). What follows are effective algorithms for

estimating the direction of the desired device force (Section 4.4) and its magnitude (Sec-

tion 4.5). To ensure that a force produced by the haptic interface faithfully tracks the desired

force, we also use a stiffness control algorithm adapted from robotics with explicit consid-

eration of the device structural stiffness (Section 4.6). The performances of each algorithm

are thoroughly evaluated with real samples. In addition, perceptual performance of the

whole system is evaluated through a psychophysical experiment (Section 4.7).

4.1 Interaction Modeling

Our 3D haptic AR system is fully operational with real objects that satisfy the following two

assumptions. First, analogous to the 1D haptic AR system, we only consider real objects

in the elastic state with moderate stiffness. Objects made of plastic (e.g., clay) or brittle

materials (e.g., glass) are excluded due to their highly complex responses. Objects made

of highly stiff materials (e.g., steel) cannot be handled due to the limited position sensing

resolution and force output of the current haptic device. In addition, we prefer to use a

commercial haptic interface to maximize the applicability of our work. Second, our system

assumes real objects of homogeneous dynamic responses. This simplification was required

for a model-based estimation of real object deformations. Even though no real objects are

strictly homogenous, our system shows acceptable performance for a large class of objects.

We denote the stiffness of a real object being pressed by a user at time t by k(t). This

is the stiffness perceived by the user if no virtual force is rendered. The goal is to alter

the user-perceived stiffness from k(t) to a desired stiffness value, k̃(t), by providing an

adequate virtual force to the user’s hand. Variables necessary to model the interaction are

defined in Fig. 4.1. Let the forces acting at the tool tip by the haptic interface and the user’s

hand be fd(t) and fh(t), respectively. The two force components deform the object surface

and result in the reaction force fr(t) in a steady state such that

fr(t) = −{fh(t) + fd(t)}. (4.1)
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(a)For force computation.

(b)For displacement estimation.

Fig. 4.1 Definitions of variables for 3D stiffness modulation.

On the other hand, fr(t) during a contact can be decomposed into two perpendicular

force components:

fr(t) = fn
r (t) + ft

r(t), (4.2)

where as illustrated in Figure 4.1b, fn
r (t) and ft

r(t) are force components resulted from the

object elasticity and the friction between the tool tip and the object surface, respectively. Let

the position of the haptic interface tool tip be p(t), which is also the position of a particle

contacting the tool tip on the object boundary. Then, the elastic force component fn
r (t)

makes a deformation of displacement x(t), which is the distance between p(t) and the

original non-deformed position of the contacted particle, pc(t) (Personal communication

with Sangyul Ha, an expert on continuum mechanics). Let a unit vector representing the

direction of fn
r (t) be un(t). Then, for the hand to feel k̃(t),
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f̃h(t) = k̃(t)x(t)un(t). (4.3)

Using (4.1), the force that the haptic device needs to exert is

f̃d(t) = −fr(t)− k̃(t)x(t)un(t). (4.4)

Equation (4.4) indicates that in order to modulate the object stiffness, we need to mea-

sure the reaction force fr(t) and estimate the direction, un(t), and magnitude, x(t), of the

resulting deformation. Furthermore, to initiate stiffness modulation, the time instance at

which the haptic tool touches the real object must be accurately detected. After the contact

detection, the device force fd(t) should be controlled to exert a desired force f̃d(t). The fol-

lowing section describes the physical performance requirements for these issues to ensure

the acceptable perceptual qualities.

4.2 Performance Requirements

For the aforementioned issues, we can adapt conventional haptic rendering algorithms for

virtual objects to haptic AR if the entire geometries of real objects are available. However,

such geometry modeling of real objects requires a large amount of preprocessing using ded-

icated hardware such as a 3D laser scanner and a robotic 3D digitizer. This aspect seriously

reduces the usability of a system and is not in agreement with the general advantages of

AR. Thus, our algorithm aims at minimizing such impracticality with minimal perceptual

performance degrade.

Nevertheless, partial information on real objects greatly facilitates the computational

procedure in our haptic AR system. For example, local geometry information around the

contacting position is very helpful for estimation of deformation direction and magnitude.

This information can be estimated either in an on-line process or in an off-line prepro-

cess. The on-line process is preferable to the usability of the system, whereas some of

the information needs a dedicated off-line preprocess. Establishing minimum performance

requirements for each module is beneficial for balancing this trade-off relation. Although
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the performance requirements are certainly dependent on applications, they can be used as

a guideline for developers. We first build the requirements for the static performance and

discuss the requirements for the dynamic performance.

The reaction force measurement, fr(t), directly affects the desired force calculation ac-

cording to (4.4). Thus, the static error of the force measurement should be lower than the

human detection threshold for the force magnitude. The literature reported that the JND

(just noticeable difference) of force magnitude perception is around 8 % [87].

For the contact detection algorithm, the detection accuracy and the time delay between

the detected contact time using the algorithm and the actual contact time can be performance

measures. The false alarm (declaring a contact for the non-contact movements) would

critically deteriorate the quality of the rendering, and thus it must be avoided. The detection

delay also should be no more than the threshold for the tactile simultaneity of human in

order to ensure that the time that a user touches a real object with the haptic device tool

and the subsequent time that the haptic interface begins stiffness modulation are perceived

to be simultaneous. Literatures has shown that for two tactile pulses applied on the index

and middle fingers to be perceived as different events, the onset time difference between

them must be larger than 30 ms [38], 75 ms [102], and 53 ms for older adults and 21 ms

for young adults [20]. Although the situations are not the same, we can guess that the delay

should be bounded by around 20–30 ms.

The deformation direction, un(t), directly determines the direction of the stiffness ren-

dering based on our stiffness rendering model in (4.3). If static errors (the angle difference

between true and estimated direction) are present in the estimate, a user is delivered mis-

directed force as the result of the modulation. Whether the static errors are perceivable to

the user or not can be determined by comparing it with the human discriminability of the

force direction. In the literature, it was reported that the JND of force direction perception

is 18.4◦ regardless of a reference force direction when haptic and visual information is con-

gruent [6]. We can take this threshold as an upper limit of the absolute angle error incurred

by the inaccurate estimation of un(t).

For the deformation magnitude estimation, there exist no directly applicable perceptual
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data to predict the perceptual effects of the errors. Instead, we can indirectly induce its effect

on the stiffness rendering. Equation (4.3) indicates that errors in the displacement estimate,

x(t), make errors in the finally rendered force at a user’s hand, consequently resulting in

errors in rendered stiffness. The rendered stiffness is linearly related to the displacement

error. This linear relation allows to compare the Weber fraction of the stiffness perception

with the ratio of the displacement errors to the true displacement for testing whether the

errors are perceptually significant. As aforementioned in Section 3.4.2 the reported Weber

fraction ranged from 0.08 – 0.12. In the deformation magnitude estimation, the error ratio

should be lower than this value for perceptually sound stiffness rendering.

In addition to the static errors in the above three issues, presumably more important

factor for perception is dynamic abnormalities such as high frequency oscillation of the

rendered force. Human is quite sensitive to such vibration [25]. They result from various

sources; jitter in force sensor reading, inaccurate and unstable estimation of the deformation

direction and magnitude, self-exciting oscillation in the closed-loop force controller, and

instability of the hardware. However, isolating and identifying the error sources are quite

hard task without extensive analysis of the hardware dynamics, algorithms, and system

stability. Thus, we focus on the perceptual soundness of the finally rendered force to assess

the dynamic performance of the system. Using various techniques such as low-pass filtering

and fine tuning of closed-loop controller, the dynamic abnormalities should be reduced to

the degree that they are not perceivable to a user in a reasonable range of desired stiffness.

In the following sections, our approaches for the issues are described and evaluated with

the consideration of the requirements and usability.

4.3 Contact Detection

4.3.1 Algorithm

The first step of rendering is to detect a contact between the tool tip and a real object. If

a contact is declared, we begin stiffness modulation using the algorithms described in the

next sections. Otherwise, the haptic interface renders no forces.
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Fig. 4.2 PHANToM augmented for 3D stiffness modulation.

Our approach for contact detection is to estimate the response force fr(t) from a force

sensor reading fs(t) and catch the time instant when its absolute values show an abrupt rise.

For this, we attached a 6D force/torque sensor (ATI Industrial Automation, Inc.; model

Nano 17) at the tip of the stylus of a PHANToM (model 1.5 High Force; see Fig. 4.2). In

addition to fr(t), fs(t) responds to the inertia and gravity forces of the contactor assembly,

fi(t) and fg(t), respectively. It follows that

fr(t) = fs(t)− fg(0)− fi(t) + fg(t). (4.5)

At the beginning of rendering at t = 0, the joint encoders and the force sensor are

initialized at a predetermined configuration (fi(0) = 0) without a contact (fr(0) = 0). Let

fg(0) be an initial gravity force of the contact assembly such that

fg(0) = Gmtug(0), (4.6)
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where G is the gravity acceleration (9.807 m/s2), mt is the mass of the tip assembly (12.59

g in our system), and ug(0) is the direction of gravity at the initialization. Since fs(t)

includes the initial gravity component thereafter, it must be compensated to find fr(t).

The inertia force fi(t) can be derived by

fi(t) = mta(t), (4.7)

where a(t) is the acceleration of the tool tip. To estimate a(t), we use the double dis-

crete differentiation of p(t). Filters are used twice to obtain velocity v(t) from p(t) using

the first-order adaptive windowing filter [53] and then to estimate a(t) from v(t) using

a second-order Butterworth low-pass filter with a 50-Hz cutoff frequency. This results in

quite accurate and smooth estimates [55].

Lastly, the gravity force fg(t) is computed by

fg(t) = GmtTs(t)ug(0), (4.8)

where Ts(t) is a 3× 3 rotation matrix of the contactor tip obtained from the joint angles

and the kinematics of the haptic device. Using (4.6), (4.7), (4.8), fr(t) in (4.5) can be

determined.

We declare a contact if |fr(t)| > ε f , where ε f is a decision threshold that depends on

the accuracy of fr(t) estimation.To find ε f , we increase it until no false alarms (declaring

a contact for non-contact movements) are observed for many real objects. In order to take

into account the gravity of the rotating tip assembly, this contact detection algorithm for 3D

interaction is extended from a simpler algorithm for 1D interaction in Chapter 3 where the

tip assembly had a fixed orientation for 1D interaction. Note that the algorithm requires no

prior knowledge on the geometric relations between real objects and the haptic interface.

4.3.2 Performance Evaluation

For all experimental evaluations in this chapter, we used four real objects with different

geometries and stiffness characteristics shown in Fig. 4.3. The representative stiffness of

each object was measured at a loading force of 4 N and specified in the figure. In particular,
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Fig. 4.3 Four real objects used in the experiment.

the sponge cut had a rugged surface, and this surface was used for all experiments. The

experimental results are compared to the performance requirements defined in Section 4.2.

The decision threshold for contact detection, ε f , determined by the procedure described

in the previous section, was 0.06 N. This value was used for all experiments reported in this

section.

We experimentally measured time differences between the true and detected instances of

a contact while repeatedly tapping on the four real objects with various velocities in several

movement directions. To pinpoint the exact time of contact, the coordinates of points on an

object surface were gathered using the PHANToM, and the time instance when the tool tip

passed through these points was taken as the true contact time. The results are summarized

Fig. 4.4 Distributions of contact detection delays. The small squares represent the averages.
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in Fig. 4.4. The means of the contact delays were less than 4 ms. Even for the softest

object (sponge cut), the largest time delay was 7 ms, which is quite smaller value than the

thresholds for the tactile simultaneity mentioned in Section 4.2. Such small contact delays

do not incur any perceptual abnormality in stiffness modulation.

4.4 Estimation of Deformation Direction

Once a contact between a real object and the haptic tool has been detected, the force f̃d(t)

in (4.4) needs to be rendered for stiffness augmentation. In addition to fr(t) determined in

(4.5), we further need to find un(t) and x(t). For this, one may adapt conventional haptic

rendering algorithms for virtual objects if the entire geometry of the real object is available.

Suppose that the tool tip makes an initial contact at particle p(0) on the surface of the real

object. If a contacting particle remains the same as p(0) thereafter, then pc(t) = p(0),

and un(t) and x(t) can be easily found from pc(t) − p(t) (see Fig. 4.1b). However, as

soon as the tool tip begins to move on the surface, pc(t) ceases to be the same as p(0).

In this case, pc(t) cannot be clearly identified without the object geometry information.

Geometry modeling, however, greatly reduces the usability of AR system where real objects

can be frequently changed. This section explains our algorithm that aims at minimizing

such impracticality in our framework, and reports their physical evaluation results.

We first estimate the deformation direction un(t) as follows. fr(t) during a contact

consists of two force components:

fr(t) = fn
r (t) + ft

r(t), (4.9)

where as illustrated in Fig. 4.1b, fn
r (t) and ft

r(t) are force components resulted from the

object elasticity and the friction between the tool tip and the object surface, respectively.

Given ft
r(t), the direction of fr(t), un(t), can be determined by

un(t) =
fr(t)− ft

r(t)
|fr(t)− ft

r(t)| . (4.10)

Equation (4.10) indicates that to determine the response force direction, estimating the fric-

tion force is sufficient instead of the geometric information of a real object. Thus, the
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problem reduces to how to estimate ft
r(t).

In general, a frictional response between a deformable object and a rigid tip cannot be

easily formulated and identified due to large nonlinearity of the friction and difficulties in

measuring the related physical signals [3]. Although large numbers of different friction

models and identification methods have been introduced since 1960s, discovering a gen-

eral and effective model that can be used for any two arbitrary objects is still an on-going

research issue in tribology, physics, and robotics [104]. Building a new friction model is

out of scope of this research, and it is desired to seek an optimal model among the existing

friction models and their identification methods in terms of the accuracy, usability, and the

perceptual goal for our haptic AR. Our effort for this is reported in the author’s technical

report [54]. As the result of this effort, we introduce two efficient and effective approaches

for the friction estimation. Our approaches first identify the frictional response in an off-line

process (Section 4.4.1), and use it to estimate ft
r(t) in rendering (Section 4.4.2).

4.4.1 Friction Model Acquisition

We explain the model identification for a relatively simple yet effective approach using a

ball bearing as a tool tip, and move on to more complicate but general approach using a

rigid tool tip.

First Approach Using Ball Bearing Tool Tip

One way to greatly facilitate the friction identification is to use a tool tip with a very low

friction, such as a ball bearing shown in Fig. 4.5. The ball bearing has negligible static fric-

tion and small kinetic friction with very low viscosity. This allows us to use a simple linear

friction model for the identification. More importantly, changes in the friction response

between the ball bearing and a real object surface remain fairly small for different objects.

Once we obtain a friction model in an off-line process, we can use the model for stiff-

ness modulation regardless of real objects with acceptable performance, as demonstrated

in Section 4.4.3. Note that using a ball bearing also can be a reasonable validation of the

assumption of the negligible friction between the tool tip and the surface defined for (4.3).
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Fig. 4.5 Ball bearing tool tip.

As a friction model, we use the traditional Coulomb viscous model. Due to the extremely

small static friction of the ball bearing, we can ignore the stick part, such that

f t
r (t) = µk f n

r (t) + µbvt(t), (4.11)

where f n
r (t) is the magnitude of the normal force component of fr(t), vt(t) is the velocity

of the haptic tool along the tangential direction, and µk and µb are the kinetic and viscous

friction coefficients, respectively. The two model parameters cannot be identified in an

on-line process since the true values of f t
r (t) are not available. The two coefficients are

identified in an off-line process using the ARX model [75] with reliable data gathered in

well-controlled strokes.

To determine the coefficients of the slip friction model in (4.11), we prepared ten flat

real objects with various surface textures and stiffness values. For accurate friction mea-

surement, the force sensor was firmly fixed to the last link of the PHANToM without the

gimbal encoder, and exactly aligned to be perpendicular to an object surface. Data for nor-

mal force, lateral force, and lateral tip velocity were collected while stroking each object

with different velocities and normal forces. The lateral force was taken as the friction force.

The coefficients of the friction model were identified for each object using the measured

data.

The identified coefficients are shown in Fig. 4.6a. For validation, we also compared the

measured friction with the model output for all objects. An example is provided for rubber
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mat 1 in Fig. 4.6b. The estimation errors were quite small with an average of 7%. This

indicates that the simple friction model well explained the friction responses, in spite of the

various sources of measurement noises such as the textures of real objects and the slightly

irregular rotations of the ball bearing (see the noisy friction measurements in Fig. 4.6b).

We averaged the friction coefficients of the five softer objects in Fig. 4.6a, and used them

for friction estimation in the subsequent experiments (µk = 0.0643 and µb = 0.000244

Ns/mm).

When this algorithm is applied, a dominant error source is the friction model in (4.11),

since one pair of friction coefficients are commonly used regardless of real objects. Despite

this, the evaluation in Section 4.4.3 demonstrated that the errors in force direction during

stiffness modulation remain unnoticeable, particularly due to the poor human discriminabil-

ity of force direction [6].

Second Approach Using Solid Rod Tool Tip

The ball bearing significantly deteriorates the friction perception by removing the response

of the real friction. It would be problematic when stiffness modulation is combined to

friction modulation in the future. Only haptic virtuality would be possible since all feedback

should be synthetically constructed instead of mixing the real and virtual friction.

Instead, in the second approach we use an aluminum rod with a round tip as shown in

Fig. 4.7, which is more general form of the interaction tool tip. However, all the benefits

of ball bearing are lost. In particular, a linear model such as used in (4.11) is not applicable

due to relatively large nonlinear static friction. Also, we can no longer apply constant

parameters for every object due to the large differences in friction characteristics of different

real objects. In addition, large friction of a solid tool tip breaks our assumption defined for

(4.3), e.g., negligible friction between the tool tip and the surface. But this does not make

serious errors on the direction estimation, which is confirmed through our performance

evaluation in Sec. 4.4.3.

We use the Dahl model for our friction identification [29]. The Dahl model shows reason-

able performance with relatively low complexity for the identification (see [54] for review
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(a)

(b)

Fig. 4.6 Identification results of the ball bearing friction. (a) Identified friction parame-
ters for ten real objects. The objects are sorted in the decreasing order of stiffness. (b)
Comparison of the measured and estimated frictions for rubber mat 1.

of friction models). More complex models such as the LuGre model [30], Leuven model

[97], Elasto-plastic model [32], and Generalized Maxwell-slip model [2] may show better
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Fig. 4.7 Aluminum rod tool tip.

performance. Their focuses, however, were on the friction of mechanical systems that usu-

ally consist of hard materials. For deformable objects, their performances have not been

verified and may not be quite different from that of the Dahl model. We confirmed by em-

pirical identification test that more complex models significantly increased the complexity

of the identification process without much performance increment.

The Dahl model is expressed by the differential equation:

df t
rd

dxt = σ

(
1−

f t
rd
fc

sgn(vt)
)α

, (4.12)

where f t
rd is friction magnitude derived by the Dahl model, xt is the displacement of the tip

along the tangential direction, σ is the stiffness coefficient for tangential displacement, α

defines the shape of the tangential displacement-force curve, and fc is a Coulomb friction

force level that can be expressed by

fc = µk f n
r , (4.13)

where µk is the Coulomb friction coefficient. We take α = 1 in this article, which is widely

used value for α in the literatures [79]. Then, the model has the time domain representation

such that (adapted from [79])

f t
rd(t + 1) = fc(t)sgn(vt(t)) + ( f t

rd(t)− fc(t)sgn(vt(t)))e−
σ

fc(t) |x
t
i−xt(t)|, (4.14)
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where xt
i is an initial relative displacement between the two contacting objects, which is

reset to xt(t) when the velocity is zero. Since the original Dahl model does not consider

the viscous friction, we add the viscous friction term in our implementation:

f t
r (t) = f t

rd(t) + µbvt(t), (4.15)

where µb is a viscous friction coefficient.

The three parameters, {µk,σ , µb}, are identified in an off-line process as follows. The

first step is dedicated to measuring true data for {xt(t), vt(t), f n
r (t)}, and corresponding

true friction f t
r (t). Note that we use the same hardware setup to the rendering for the data

acquisition, which increases the usability. To measure the true data, the geometry infor-

mation, especially the data of true surface normal vector, un, is necessary. We manually

construct a geometric model along small path on the real object. The positions of the points

on an object surface are densely sampled by lightly tapping on the object with the PHAN-

ToM. Contacts are detected using our collision detection algorithm. During this procedure,

the up-down movements of the tool tip in the height direction are actively controlled to

remain constant. Thus, only horizontal movements (left-right and front-back) are allowed,

resulting in a 2D scanning line. Gaps between the sampled points are interpolated using the

clamped cubic splines. To find the true normals, we search the nearest point on an object

surface represented by the spline model from the position of the tool tip. The vector from

the tool tip to the closest point are regarded as a true normal.

After the geometry is measured, we gather 4-tuples of true data, {xt(t), vt(t), f n
r (t), f t

r (t)},
using a manual stroking on the modeled path. We do not apply an automatic controlled data

collection procedure. In our haptic AR system we use a PHANToM model with a gimbal

encoder to allow for natural user interaction. The PHANToM, however, has no actuators

for orientation control, which makes automatic data collection infeasible. While stroking,

the measures true data is pass to a parameter identification module.

In the parameter identification module, we apply “divide and conquer” approach to deal

with the nonlinearity of the model and facilitate the procedure. In general, the friction

response of the presliding regime (when the velocity is near to zero) is quite different from
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that of the sliding regime (when the velocity is large), and thus two regimes should be

described differently in a friction model. The Dahl model deals with this difference by

observing the tangential displacement of the tip, |xt
i − xt(t)| in (4.14). For example, as

|xt
i − xt(t)| becomes larger, the second term of (4.14) converges to zero, and the estimated

friction force converges to the simple Coulomb friction depicted in (4.13). On the other

hand, the response is dominated by the second term in (4.14) when the displacement is near

to zero, and σ determines the slop of the tangential force vs. tangential displacement curve

at the origin. This characteristic of the model enables to divide the nonlinear form of the

model into two linear forms in terms of the operating regime.

In our implementation, each 4-tuple true data is classified into two bins; data with large

tangential displacement and data with near-zero tangential displacement. We use data in

|xt
i − xt(t)| > 3 mm for the former, and 0.5 mm > |xt

i − xt(t)| > 0 mm for the latter. The

parameters, µk and µb are identified using the first bin via a linear identification technique,

i.e., linear recursive least-square algorithm [47]. Using the second data bin, the slop of

the tangential force vs. tangential displacement curve at the origin, σ , is identified via

the same linear identification technique. While the direct nonlinear identification generally

needs more input data and is less stable than linear identification, this “divide and conquer”

approach for the friction model identification can be more suitable for our haptic AR system.

The data gathering procedure lasted until the model parameters are converged. We de-

cide that the parameter estimates have converged if the gradients of all parameter estimates

become smaller than predefined thresholds. This identification procedure takes 10–20 sec-

onds in our haptic AR system.

If the solid rod tip is used, the parameter identification procedure is an off-line processing

necessary for each real object in our framework. This may reduce the usability of the sys-

tem, but 10–20 seconds of preprocessing can be compared to using markers on real objects

for the registration in visual AR. The friction parameters of each object in an environment

are identified prior to the main interaction using the haptic interface. The parameters are

used during the user’s interaction in the environment using the same hardware. We guess

this preprocess is acceptable in most applications.
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In order to validate our model acquisition algorithm, we compared the measured true

friction with the estimated one from the identified model for the four objects shown in Fig.

4.3. Fig. 4.8 shows the results on the foam ball as an example. Note that the absolute

magnitude of friction in Fig. 4.8 is much higher than that with the ball bearing in Fig.

4.6b (compare the y-axis scale of the two graphs). Since higher absolute magnitude on

the friction produces larger error on the direction estimation under the same error rate, the

friction should be more accurately estimated in the second approach in order to fulfill the

performance requirement.

We gathered the true and estimated friction forces by manually stroking the four ob-

jects with various velocities and normal forces. The true values were derived by the same

procedure used in the model identification procedure. Then, we calculated the ratio of the

estimation error over the true value for each data and averaged them. The averaged ratios of

the error were 8%, 7%, 10%, and 15% for the sponge cut, foam ball, rubber ball, and sili-

cone rest, respectively, which indicate that the Dahl friction model moderately explained the

friction responses, but with some errors. The silicone rest showed the worst performance.

Small stick-slip behavior was frequently observed on the silicone rest, which was not prop-

erly captured by the Dahl model. In the performance evaluation section (Sec. 4.4.3), the

effect of these errors on the estimation of the direction is investigated through an experi-

ment with real samples.

4.4.2 Rendering

During rendering, ft
r(t) is computed by decomposing it to

ft
r(t) = − f t

r (t)ut(t), (4.16)

where f t
r (t) is the friction magnitude estimated by the above two approaches and ut(t) is

a tangent vector at p(t) for the friction direction (see Fig. 4.1b). We first estimate ut(t) as

follows. Projecting ∆p(t) = p(t)− p(t− 1) onto un gives

∆pn(t) = {∆p(t) · un(t)}un(t). (4.17)
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Fig. 4.8 Identification results of the friction between solid rod tool tip and the foam ball.

Then, the tangential component of ∆p(t) is derived by

∆pt(t) = ∆p(t)− ∆pn(t). (4.18)

We approximate ut as the direction of ∆pt(t) such that

ut(t) =
∆pt(t)
|∆pt(t)| . (4.19)

Here, to compute (4.19), the current normal vector un(t) must be used in (4.17). Since

un(t) is unknown at this step, we replace it as un(t) = un(t− 1). This simple prediction

leads to quite good performance since the change rate of true un(t) is much slow compared

to the very short rendering period (1 ms in our system). Then, f t
r (t) can be calculated by

(4.11) or (4.15), where

f n
r (t) = fr(t) · un(t), vt(t) = v(t) · ut(t). (4.20)

In this equation, un(t) is replaced with un(t− 1) again, and the velocity v(t) of the tool tip

is derived by the first-order adaptive windowing filter [53]. As a result, we can determine

ft
r(t) in (4.16), and thus un(t) in (4.10). In our implementation, a second-order Butter-
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Fig. 4.9 Distributions of the deformation direction estimation errors for each object using
the ball bearing tool tip. Small squares represent the mean values.

worth low-pass filter with a 70-Hz cutoff frequency was applied to the normal estimates to

suppress the effect of force sensor noises.

4.4.3 Performance Evaluation

We performed experiments to assess the accuracy of deformation direction estimation,

un(t) in (4.10), with the four real objects shown in Fig. 4.3. The accuracy was then

compared with the performance requirement defined in Section 4.2.

Approach Using Ball Bearing Tool Tip

To obtain the accuracy of estimates, the geometric models of the real objects were necessary.

We used the same procedure for the real geometry modeling described in Section 4.4.1.

Then, the experimenter scanned object surfaces 80 times per object from right to left. The

lateral scanning velocity varied in 50–200 mm/s, and the normal force varied in 2–6 N. The

scanning length ranged in 50–100 mm depending on the object. To find the true normals,

we searched the nearest point on an object surface represented by the spline model from

the position of the tool tip. The vector from the tool tip to the closest point was regarded as
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Fig. 4.10 Estimated and true deformation directions collected from the foam ball using the
ball bearing tool tip.

a true normal. An angle difference between this true normal and an estimated normal was

used as an error metric.

The error distributions of deformation direction estimation are shown in Fig. 4.9 for each

object. To see the perceptual significance of the errors, we compared them with the human

discriminability of force direction reported in Section 4.2. The JND is 18.4◦, which is

indicated by blue dashed lines in Fig. 4.9. It can be seen that most estimation errors were

well below the JND, demonstrating that our algorithm for deformation direction estimation

has appropriate performance in terms of perception.

As an example, Fig. 4.10 shows the true and estimated deformation directions for the

foam ball. The estimated normals of the foam ball were biased from the true normals in

one direction. This resulted from the use of constant friction parameters regardless of real

objects. If a friction value used for normal estimation is smaller than the true friction, the

estimated normal lags behind the true normal. To see this, one can reduce the magnitude

of ft
r in Fig. 4.1b, find fr − ft

r, and then plug this in (4.10). The sponge cut, foam ball,

and rubber ball corresponded to this case. Otherwise, the estimated normal leads the true

normal, on the contrary to Fig. 4.10. An example is the silicone rest that had a negative
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mean in Fig. 4.9. Despite these biased estimates, the error ranges were bounded within the

JND of force direction discrimination.

Approach Using Solid Rod Tool Tip

The process and method of the experiment were similar to the process described in the

previous section, except for the separate parameter identification for each object. The error

distributions of deformation direction estimation for the four objects are shown in Fig. 4.11.

The overall amount of the estimation errors was not much different from the result of the

approach using the ball bearing (compare the results of Fig. 4.11 with Fig. 4.9). This is

remarkable since the second approach suffers from higher absolute magnitude of friction

and larger averaged error on friction estimation (7% for the first approach and 10 % for the

second approach). It is due to the separate identification of the model parameters for each

object. The advantage of the separate identification can be clearly seen in Fig. 4.11, where

no bias in the estimated normal is observed for the all objects. We also compared the error

with the JND of force direction that is indicated by blue dashed lines in the figure. Most

estimation errors were well below the JND even for the silicone rest, demonstrating that the

second approach also fulfills the performance requirement.

We also tested our algorithm on very sticky object that shows large stick-slip behavior in

their friction response. Large error was observed in the direction estimation, and the abrupt

changes in the normal direction due to the error results in unstable response of the haptic

interface. More sophisticated friction algorithm or another new approach is needed to deal

with such imperfection.

4.5 Estimation of Deformation Displacement

The next step is to estimate the displacement of a tool tip, x(t), to account for the amount

of deformation. A straightforward way to determine pc(t) without the geometry model of

a real object is a recursive estimation using ut(t) obtained in (4.19), such that

pc(t) = pc(t− 1) + {∆p(t) · ut(t)}ut(t) (4.21)
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Fig. 4.11 Distributions of the deformation direction estimation errors using the solid rod
tool tip.

where pc(0) = p(0) (also see Fig. 4.1b). An advantage of this method is no need of pre-

processing for the geometry or elasticity of the real object. However, an estimate of un(t)

needed to compute ut(t) contains errors, which is accumulated in the recursive estimation.

Thus, pc(t) tends to diverge over time. The accumulated error cannot be canceled off in

our framework due to the absence of true data on the surface normal.

Instead, we identify and simulate a dynamics response of a real object and use it to find

the deformation displacement. In general, large-scale contact simulation techniques for

deformable objects e.g., those described in [78, 52, 77] are necessary to explain the defor-

mation behaviors of a broader class of real objects with high fidelity. However, they require

an exhaustive identification procedure with a special hardware setup and a large amount of

preprocessing, and real-time haptic simulation of such models is a quite challenging issue.

An alternative is to use a constant dynamics model for different contact locations. The as-

sumption of homogeneity made in Section 4.1 allows this simpler approach. We adapted a

model frequently used for impedance control in robotics [33].
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4.5.1 Contact Dynamics Model Acquisition

The most common model is the Kelvin-Voigt model that uses the dynamics of a linear

spring-damper system [35]. The model, however, exhibits physical and energetic inconsis-

tencies in its behavior such as force discontinuity at a contact and negative force prediction

at a load removal [41]. We confirmed by implementation that these inconsistencies lead to

large incorrect estimations of x(t) at the instants of impact and load removal. Moreover,

this linear model is not suitable for describing large deformations in rubber-like real objects

that exhibit apparently nonlinear impedances.

In our current haptic AR system, we use the nonlinear Hunt-Crossley model [50]. This

model can adequately account for the nonlinear viscoelastic contact dynamics of a de-

formable object without the problems present in the Kelvin-Voigt model [41, 11]. It has

been adopted in several recent studies in robotics [80, 31, 44]. In particular, [105] con-

firmed by an experimental evaluation of seven dynamics models that the Hunt-Crossley

model was the best to describe the properties of soft deformable object such as a phantom

tissue made of silicone. The Hunt-Crossley model has a form of

f n
r (t) = Ke{x(t)}m + Be{x(t)}m ẋ(t), (4.22)

where Ke and Be are the stiffness and damping parameters of an object, respectively, and m

is a constant exponent (usually between 1 and 2) that depends on the material and geomet-

ric properties of the object and a contactor. There exist more complex nonlinear dynamics

models with higher modeling power such as the Hammerstein model [51] and the quasi-

linear model [34], but identification of their parameters requires exhaustive data collection

and fitting procedures. In contrast, the Hunt-Crossley model has reasonably high accu-

racy, and its parameter identification can be fairly quick, as demonstrated in Section 4.5.3.

Therefore, it can be an adequate choice for haptic AR.

To identify the parameters of the Hunt-Crossley model, we use an algorithm proposed by

Haddadi and Hashtrudi-Zaad [44]. In their method, the Hunt-Crossley model is linearized

under a reasonable assumption, and then the parameters are found by the recursive least

square estimation. To obtain reliable parameter estimates using the method, a large amount
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of true data for {x(t), ẋ(t), f n
r (t)} is still necessary. For this, a user repeatedly pushes

the haptic tool to a real object and pulls it back until the model parameters are converged.

Lateral movements are prohibited during this process to obtain accurate displacement data.

We decide that the parameter estimates have converged if the gradients of all parameter

estimates become smaller than predefined thresholds. This identification procedure takes

10–20 seconds in our system.

A critical factor affecting the performance of deformation displacement estimation is

how well the Hunt-Crossley model used in our framework predicts the dynamic responses

of real objects. Even though the literature has agreed that the Hunt-Crossley model has

quite acceptable performance [105, 80, 31], we needed to reconfirm it in our implementa-

tion for haptic AR. Thus, we performed model validation tests with the four real samples.

The results presented in Fig. 4.12 demonstrate that the model well describes the nonlinear

responses of the four real objects, with slight errors in viscosity estimation (see differences

in the amounts of hysteresis). The average prediction error was approximately 12% of the

measured force value. Most evident discrepancies between the measured and simulated

curves were observed during contact relaxations. With real objects, since no force data can

be collected after a contact is released, such data could not be included for model fitting.

This appears to a major reason for the modeling errors. We will discuss the effect of the

errors on displacement estimation in the performance evaluation section (Section 4.5.3).

4.5.2 Rendering

During haptic rendering, the estimated parameters are used to find the deformation dis-

placement by

x(t) =
{

f n
r (t)

Ke + Be ẋ(t)

} 1
m

, (4.23)

where f n
r (t) and ẋ(t) are already found in (4.20). In implementation, a Butterworth low-

pass filter with a 60 Hz cut-off frequency was applied on f n
r (t) to suppress the effect of

sensor noises.

The parameter identification of the Hunt-Crossley model is an off-line processing nec-

essary for each real object in our framework. To remove this off-line procedure, we tested
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Fig. 4.12 Measured and estimated displacement-force curves of the four real objects. Insets
are magnified graphs around zero displacement for a detailed view.

various on-line parameter estimation techniques both for the parametric and non-parametric

models. However, they commonly require a large number of samples well distributed in

{x(t), ẋ(t), f n
r (t)} to obtain reliable parameter estimates, but it turned out that collecting

such data is impossible when a user freely interacts with a real object. As a result, all real-

time estimation techniques we tried showed poor performance for estimating x(t), thus

resulted in rather erratic force rendering. The current identification procedure is the least to

be included for convincing displacement estimation.

4.5.3 Performance Evaluation

We experimentally estimated the deformation displacements using the four real objects and

the two deformation direction estimation methods. The procedures to obtain the geometric

models of the real objects and the way of stroking the object surfaces were the same as

those described in Section 4.4.1. The strokes were repeated 20 times for each object and for
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each direction estimation method. The true displacement was regarded as the distance from

the tool tip to the nearest point on the object surface. The displacement error was defined

as the difference between the true and estimated displacements.

The overall distributions of the displacement estimation errors are shown in Fig. 4.13.

In addition, Fig. 4.14 depicts reconstructed surfaces using the estimated displacements in

comparison to the non-deformed object surfaces. In Fig. 4.13, 50% of the estimation errors

were within 1 mm and the most errors were less than 2 mm both for the two direction

estimation method, except for the sponge cut. Even for the sponge cut, nearly 70% of

the errors stayed below 2 mm. We also computed the ratio of the displacement estimation

errors to the true displacements. When the ball-bearing-tip direction estimation method

was used, the averages for the sponge cut, foam ball, rubber ball, and silicone arm rest

were 16.31%, 20.86%, 15.05%, and 32.84%, respectively, and when the off-line friction

identification method was used, they were 27.34%, 17.94%, 14.93%, and 16.62%. Their

medians were 14.31%, 13.09%, 10.25%, and 12.68% for the ball-bearing-tip method, and

17.73%, 14.45%, 11.03%, and 10.5 % for the off-line friction identification method. To test

the significance of the error, the error ratios were compared to the Weber fraction of stiffness

perception as mentioned in Section 4.2. The Weber fraction ranged from 0.08 to 0.12 in the

literatures, which is slightly smaller than the measured error ratios. This indicates that the

stiffness error due to the displacement error can slightly perceivable to a user.

But we speculate that this error is perceptually acceptable due to the following two rea-

sons. First, such small difference between the error ratio and the Weber fraction is neg-

ligible in practice considering that the Weber fraction was measured in a laboratory with

extremely attentive subjects. Second, Figures 4.14a–4.14d suggest that most large errors

occurred when contacts were released (see inside the red circles in the figures). This can be

explained based on the complex relaxation characteristics of the real objects. In Fig. 4.12,

the sponge cut exhibited very slow relaxation at the contact release (note zero force point

at a positive displacement). The other objects also showed such patterns (see the insets in

Fig. 4.12). These plastic-like responses cannot be properly caught by the Hunt-Crossley

model. In contrast, the displacement estimation errors during contact initiation and stroking
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(a) Using the ball-bearing-tip direction estimation method.

(b) Using the solid-rod-tip direction estimation method.

Fig. 4.13 Distribution of the deformation displacement estimation errors for each object and
for each deformation direction estimation method.

were significantly smaller. This is also reflected in the medians of the estimation errors all

smaller than the averages. It is well known that the human relies more on the rate of initial

force changes for hardness perception [70], and stimuli during contact releases have less

implications. Thus, we conjecture that the displacement estimation errors are perceptually

insignificant, which is also confirmed in our psychophysical experiment in Section 4.7.



4.6. FORCE CONTROL 67

(a)Sponge cut (b)Foam ball

(c)Rubber ball (d)Silicone arm rest

Fig. 4.14 Tool tip positions and object surfaces reconstructed using the estimated displace-
ments. Object surfaces without deformation obtained in preprocessing are also shown in
the dashed lines.

4.6 Force Control

Using the algorithms presented so far, the desired device force f̃d(t) can be determined

by (4.4). The last step is to control the force produced by the haptic interface, fd(t), to

faithfully follow f̃d(t).

4.6.1 Algorithm

We use a closed-loop force control slightly modified from method described in Chapter 3.3

to deal with the 3D interaction, such that

fc(t) = fc(t− 1) + Kpfe(t) + Kd
dfe(t)

dt
, (4.24)
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where fc(t) is a force command to be sent to the haptic interface, fe(t) = f̃d(t)− fd(t) is a

force rendering error, and Kp and Kd are proportional and derivative gains, respectively. To

measure fd(t), an additional force sensor needs to be installed to the haptic interface, e.g.

between the gimbal encoder of the PHANToM and the grip of the stylus in Fig. 4.2. Instead

of adding another expensive instrument, we use a heuristic observer: fd(t) = fc(t − 1).

Due to the fast sampling rate, the observer is enough for stiffness modulation, as demon-

strated in the previous chapter.

We also consider the structural stiffness of a haptic interface for force control. The haptic

interface is usually assumed to be ideally rigid for virtual object rendering. In reality, the

joints and links of the haptic interface deform, and the amount of deformation is expressed

by the structural stiffness [95]. The device deformation cannot be seen by the encoders

at the joints, and this causes errors in the measurement of the tool position. The position

sensing error increases with device-exerting force, and this can be an important error source

for stiffness rendering. Specifically, the true position of the tool p(t) in a steady state is

p(t) = ps(t) +
fd(t)

ks
, (4.25)

where ps(t) is the tool tip position computed from the joint encoders and ks is the structural

stiffness of the haptic interface. pe(t) = fd(t)/ks corresponds to the position sensing error

due to the structural stiffness. We use this p(t) for all equations presented in the previous

sections.

The significance of pe(t) is often neglected in usual haptic rendering. However, the

error can be quite large and problematic in cases where exact displacement information is

necessary. For example, the nominal structural stiffness of the PHANToM 1.5 High Force

model is 3.5 N/mm, and its maximum force output is 37.5 N. Thus, this PHANToM may

produce nearly 1 cm errors in position measurements, which can be quite significant for

stiffness rendering.

We estimated the structural stiffness as follows. When a user taps on a virtual wall with

desired stiffness k̃, the actual displacement is

x(t) = xs(t) +
k̃xs(t)

ks
. (4.26)



4.6. FORCE CONTROL 69

This model was used to estimate ks. While tapping on virtual walls placed at various po-

sitions and orientations, we collected data of x(t) and xs(t). The true displacement x(t)

can be measured using an external displacement sensor. We used a LVDT (linear variable

differential transformer) with an accuracy of 30 µm. ks was then estimated by fitting the

model to the collected data (2.537 N/mm for the PHANToM 1.5 High Force).

For simplicity, our current algorithm uses a constant value for the structural stiffness. In

general, the structural stiffness depends on the position and orientation of the device tip,

and it should be expressed by a stiffness field in the 6D configuration space. Building such

a stiffness field corresponds to an extensive calibration of a haptic interface, and we leave

it as a future work. We nonetheless note that using the constant structural stiffness still

provides convincing stiffness modulation in our current haptic AR system.

4.6.2 Performance Evaluation

The physical performance of the force control algorithm was tested with the four real ob-

jects. We measured the forces rendered to the user’s hand while stroking the four real

objects with five desired stiffness values (0.2, 0.7, 1.2, 1.7, and 2.2 N/mm). Recall that

the structural stiffness of the PHANToM 1.5 High Force was measured to be 2.537 N/mm.

The object stiffness (see Fig. 4.3 for representative values) added by the structural stiffness

is the maximum desired stiffness for each object. Due to the absence of additional force

sensor at the grip, we used (4.1) with fd(t) = fc(t− 1) to estimate fh(t). The gains of the

PD controller were tuned using the Ziegler-Nichols method [108] followed by fine tuning.

The measured hand forces with respect to the displacements are presented in Fig. 4.15.

The figure shows scatter plots, thus the stability of rendering can be assessed from the vari-

ance of the points. In the graph, a softer object showed worse stability, which is to be

expected. In general, a softer object shows smaller response forces, which inevitably de-

creases the signal-to-noise ratio in the estimates of deformation direction and displacement.

As the estimates become noisier, rendering stability is adversely affected.

In order to clearly measure the range of achievable stiffness, we examined the range by

a real stroking experiment on the four real objects and two haptic interfaces, PHANToM
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(a)Sponge cut (b)Foam ball

(c)Rubber ball (d)Silicone arm rest

Fig. 4.15 Displacement-force curves. Displacements for plotting are derived from the dis-
placement estimation algorithm.

Premium 1.0 and PHANToM Premium 1.5 high force model. A subject repeatedly stroked

the surface of the object. The maximum pressing force was controlled to be lower than 4 N

by visually displaying a warning signal if the pressing force exceeded 4 N. The PD control

gains were tuned separately for each object and haptic interface. The desired stiffness,

k̃(t), was systematically changed; it was increased until unstable oscillations began, and

decreased until the lower bound was met. The results are represented in the box plots in

Fig. 4.16.

The circled crosses in the figure mark the representative stiffness of the corresponding

real objects. Overall, the measured range of stably renderable desired stiffness allows the

haptic AR system to modulate the stiffness of a real object to feel very softer or quite
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Fig. 4.16 Ranges of stiffness values stably modulated in our 3D stiffness modulation system.

harder. We note that the ranges in our previous system for 1D interaction were much wider

in Fig. 3.10 than the range for 3D interaction in Fig. 4.16. An important difference is

that the algorithm for 3D interaction takes into account the position measurement errors

due to the structural stiffness of a haptic interface, while the algorithm for 1D interaction

did not (see Section 3.3 for the 1D case). The actually rendered stiffness values in Section

3.3 can be much lower than the reported numbers. For example, in Fig. 3.10, the upper

bounds of stably rendered stiffness using the PHANToM 1.5 high force model for the four

real objects were about 10 N/mm with 4 N of pressing force. If we take into account the

structural stiffness of the PHANToM 1.5 high force model (= 2.537 N/mm), the position

sensing error would be as large as 1.576 mm (= 4/2.537) according to (4.25). Then, the true

displacement becomes 1.976 mm (= 4/10+1.576). Thus, the actually rendered stiffness is

2.024 N/mm (= 4/1.976), which is not very different from the results reported in Fig. 4.16.

Nevertheless, the upper bounds of the ranges are still lower than the 1D case even if the

structural stiffness is considered. It is beneficial to examine the reason of this performance

degrade for further improvement. In the 3D stiffness modulation, most unstable responses
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were observed when the displacement and the reaction force were quite small (see large

variances of the points around the origins of each graph in Fig. 4.15), which often deter-

mined the upper bound of the range. This is partially due to our displacement estimation

method. Our method utilizes the inverse of the Hunt-Crossley model to estimate the dis-

placement as depicted in Sec. 4.5. Due to the exponential part of the model (the exponent

ranges from 1 to 2 in general), small changes in the reaction force, f n
r (t), make relatively

large changes in the displacement estimate when the displacement is small. Refer to Fig.

4.12 for example. For the curve of the sponge cut in the figure, the force increment from

0 to 0.5 N increases the displacement estimate from 0 to 5 mm when pushing. This results

in noise in the force measurements to be amplified in the displacement estimates when the

magnitude of the force measurements are relatively small.

From this fact, we can infer that the exponent parameter of the Hunt-Crossley model is

one of the main factors, which determines the range. The larger exponent value usually

decreases the stability at the small displacement. For example, the exponent parameter of

the model for the sponge cut is the highest (= 2.1) among the four objects (the exponent

parameters for other objects ranged from 1.3 to 1.7). The results in Fig. 4.16 confirm that

the stably rendered range for the sponge cut was the narrowest among the four objects.

In addition, little difference between the results of the two haptic interfaces is also the

consequence of this characteristic of our algorithm. The noise amplification dominated

the difference of the performances of the haptic interfaces. Note that we already apply a

low-pass filter to the force measurement to suppress the noise (see Sec. 4.5.3). But further

improvement would be possible by applying an adaptive low-pass filter that changes the

cut-off frequency according to the magnitude of the force measurement and the value of the

exponent.

We also tested our AR system on largely inhomogeneous real objects, e.g., the human

arm. As expected, large errors were observed in the displacement estimation. The Hunt-

Crossly model is unsuitable to accommodate complex dynamics such as the bone under

the skin and the stiffness changes depending on contact locations. In addition, real objects

with very complex geometry can lead to unstable force rendering. For an object surface
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with high curvature variations, significant instability was observed when the tool tip passed

through ridges and valleys on the surface. It is due to the PHANToM that exhibits severe

instability for force commands containing abrupt directional changes [25].

4.7 Psychophysical Experiment

In this section, we perceptually evaluate our 3D stiffness modulation system through a

psychophysical experiment. Analogous to the psychophysical experiment for 1D haptic

AR (Section 3.4), the experiment measured the Points of Subjective Equality (PSEs) of

perceived stiffness altered by our system under various conditions, and compared them to

desired stiffness values.

4.7.1 Methods

Apparatus

For a haptic interface, the experiment used a PHANToM 1.5 high force model instrumented

with a NANO17 force sensor and a contactor assembly as depicted in Fig. 4.2. We used the

ball bearing for the interaction tool tip and corresponding deformation direction estimation

algorithm (see Section 4.4). As depicted in Section 4.4.3 and Section 4.4.3, deformation

estimation performance using ball bearing tool tip is not quite different from, or a little bit

inferior to that using solid tool tip, which would make a more challenging situation for our

system to be assessed. A real object was placed in front of the PHANToM (see Fig. 4.17).

Subjects

Twelve subjects (S1 – S12; 19 – 30 years old with the average of 23.5) participated in the

experiment, and were compensated for their help. All subjects were right-handed by self-

report, and four of them were females. Six of them had participated in haptic perception

experiments prior to the present experiment but were not experienced users of a force-

feedback device. The other subjects had not been exposed to any haptic interfaces prior to

the present experiment. No subject was informed of the goals of the experiment.
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Fig. 4.17 Experimental environment. The blurred scene inside the paper box is for illus-
tration, and was not seen by the subjects in the experiment. The haptic interface point and
the wire-frame models for the two objects were visualized in 3D on the monitor in order to
guide the subject’s interaction. They were disappeared when the tool is in contact with one
of the two objects.

Stimuli

In each trial, the subject was presented with reference and comparison stimuli in a pair. For

the reference stimulus, a real object is placed on the 70 mm left of the origin position of the

PHANToM, and its stiffness was modulated to be a desired value by our haptic AR system.

For the comparison stimulus, a usual elastic virtual object that has the same shape to the

reference object was placed on the 70 mm right from the origin position of the PHANToM

and rendered by the PHANToM only. The subject was allowed to freely change the object

to be felt in a trial. The task given to the subject was to feel both stimuli by poking, pressing,
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and stroking and answer whether the comparison is harder than the reference.

In order for the subjects to use only the haptic cue, visual or auditory cues were tried to

be precluded. A paper box, shown semi-transparently in Fig. 4.17, enclosed the PHANToM

and a real object, eliminating any visual cues. Since the two comparing objects were also

invisible, visual information of the location of the two objects and the tool tip was shown

in the monitor for guiding the subject’s interaction during the object change. A point repre-

senting the tool tip and two 3D objects having the same shape to the reference object were

visually rendered as shown in Fig. 4.17. Wire-frame was chosen for the 3D objects render-

ing in order to prohibit the subject from being influenced by the visual surface texture of the

3D model. In addition, the visual information was disappeared when the contact is occurred

in order to prevent the subject from judging the displacement by visual cue. Auditory cues

were also precluded by an earplug worn by the subject.

Experimental Conditions

Two independent variables were defined. One was the kind of real objects used for a ref-

erence stimulus. The sponge cut (representative stiffness = 0.18 N/mm) and the foam ball

(representative stiffness = 0.33 N/mm) were selected, representing real objects with low

and medium stiffness values, respectively. The other variable was the target stiffness of a

reference stimulus, i.e., the desired stiffness of a real object to be modulated by the haptic

AR system. It was either 0.3 N/mm or 0.8 N/mm. The factorial combinations of the two

independent variables led to four experimental conditions.

Procedures

For each experimental condition, the PSE of the reference stimuli against the comparison

stimuli was estimated using the two-interval, forced-choice adaptive method [40]. In this

method, each trial consisted of two intervals. One interval presented a reference stimulus,

and the other a comparison stimulus. The two intervals were spatially ordered by placing

the comparison stimulus on the right of the reference stimulus.

In each experimental condition, the initial stiffness of a comparison stimulus (virtual
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object) was much higher (= 1.4 N/mm and 0.7 N/mm for the target stiffness 0.8 N/mm

and 0.3 N/mm, respectively) than the desired stiffness of a reference stimulus for stiffness

modulation. This stiffness was large enough to make the comparison stimulus obviously

be felt harder than the reference stimulus. After each trial, the stiffness was decreased for

every response of “The object on the right (comparison stimulus) felt harder” or increased

for “The object on the right (the comparison stimulus) felt softer” with a predefined step

size. The step size was initially set to 0.1 N/mm for fast convergence, and it was reduced to

0.02 N/mm after the first four reversals (a case where a decreasing stiffness sequence was

changed to an increasing one, and vice versa) for accurate estimation. This procedure allows

efficient estimation of a discrimination threshold corresponding to the 50% percentile point

on a psychometric function. A session was terminated after 15 reversals. Most sessions

consisted of 30–60 trials.

In each trial, the subject was presented with a pair of spatially ordered reference and

comparison stimuli. The subject freely changed the stimulus one object to another in a trial.

Since the current haptic AR framework only uses the displacement-force relationship for

stiffness alteration, the effect of contact transient cues had to be minimized in the experi-

ment. For this, the repeated tapping of the objects, which may produce tactile contact cues,

was minimized by discarding and repeating a trial that has an object change with more than

3 new contacts. For the same reason, a trial that has a contact with high contact velocity (=

50 mm/sec) was also discarded and repeated. In order to include enough amount of lateral

movement during stroking, a trial with less than 60 mm of lateral movement for each object

was also discarded and repeated. After perceiving both stimuli, the subject was asked to

enter one of two answers: “The object on the right felt harder” by pressing the ‘1’ key and

“The object on the right felt softer” by pressing the ‘2’ key. This completed one trial, and

a next trial followed immediately with the stiffness of comparison stimuli adjusted by a

predetermined step size.

Prior to the experiment, each subject went through a training session to become familiar

with the experimental procedures. In the training session, the aforementioned restrictions

on the number of new contact, contact velocity, and lateral movement were strictly taught
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through instructions and practice with warning signals showing the information regarding

them on the monitor. The number of repeated trials due to the violation of the restrictions

was about 5 per a condition for each subject in the main experiment. One experimental

condition took 10 – 15 minutes to complete, and the whole experiment about 1 hour. The

subjects were required to take a rest after finishing one experimental condition, and could

take a break whenever needed.

Data Analysis

We explain the method used to compute the PSE in the stiffness of the comparison stim-

uli using Fig. 4.18. In the figure, the comparison stiffness changes of a subject in each

trial is shown for the foam ball – 0.3 N/mm experimental condition. In each experimental

condition, we recorded the stiffness values at which 15 response reversals occurred (e.g.,

the grey squares and circles in the figure). The stiffness values at the first three reversals

(e.g., the grey square in the figure) were discarded due to the large step sizes. The mean of

the stiffness values of the last 12 reversals was considered as the PSE of the experimental

condition. The PSE computed in this way represents the stiffness of a comparison stimu-

lus (virtual object) perceived to be equally stiff to the reference stimulus (real object with

modulated stiffness).

4.7.2 Results

Fig. 4.19 shows the PSEs and the differences between the PSEs and the desired stiffness

values of the reference stimuli, both averaged across the subjects for the four experimental

conditions. The error bar represents the standard error. The results clearly show that the

PSEs were very different from the stiffness values of the real objects (0.18 N/mm for the

sponge and 0.33 N/mm for the rubber ball) and close to the desired stiffness values of

stiffness modulation, demonstrating the effectiveness of our haptic AR system. However,

the PSEs were slightly larger for ‘Sponge03’, and smaller for ‘Ball08’ and ‘Sponge08’ than

the desired values, as magnified in Fig. 4.19b. This suggests that the real objects augmented

by our haptic AR system felt differently from the desired stiffness to some degree.
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Fig. 4.18 Sample results of the foam ball - 0.3 N/mm condition.

Here again, to examine the significance of the PSE errors in terms of stiffness percep-

tion, the errors were compared to the difference thresholds (or difference limens; DLs) of

stiffness perception. As aforementioned in Section 3.4.2, the difference thresholds were

taken from [39], where the Weber fractions ranged from 0.08 – 0.12 for reference stiffness

values in 0.3 – 1.2 N/mm. The corresponding Weber fractions for our reference stiffness

values (0.3 and 0.8 N/mm) were both 0.09. Using the Weber fraction, we computed DLs

and specified them in Fig. 4.19b. The PSE errors were smaller than or comparable to the

corresponding DLs, except for ‘Sponge08.’ PSE error of ‘Sponge08’ was smaller than DL

by 0.013 N/mm. We speculate that such small stiffness differences are negligible in practice

considering that the DLs were measured in a laboratory with extremely attentive subjects.

Thus, the stiffness modulation errors in our haptic AR system were marginally perceptible.
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(a) (b)

Fig. 4.19 Experimental results averaged across the subjects. (a) PSEs for the four condi-
tions. (b) Differences between the PSEs in (a) and the stiffness values of the reference
stimuli. The dotted-lines in (b) represents difference thresholds taken from [39]. Each
experimental condition is denoted by combining the kind of a real object and the desired
stiffness value for stiffness modulation used in the condition.

4.7.3 Discussion

The results in the previous section confirmed that our haptic AR system can adequately

modulate the stiffness of a real object with perceptually negligible errors. But the stiffness

modulation is still biased to some degree, and it is beneficial to identify the sources of the

bias.

The main cue for the stiffness perception in this experiment was the displacement-force

relation. Note that in our system the most significantly affecting computational module

to this relation is the displacement estimation algorithm. In the displacement estimation

algorithm, there is a systematic tendency on the actually rendered stiffness related to the

model identification accuracy. We use Fig. 4.20 to explain this tendency. The figure shows

three simulated displacement-force curves. Let the curve at the center be the measured

true curve representing the exact response of the real object. Due to some reasons, our
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algorithm incorrectly identifies the Hunt-Crossley model as depicted by “Underestimated

curve” and “Overestimated curve” in the figure. Suppose that the reaction force at a certain

time instance is 2 N. Our algorithm determines the displacement by finding a point in x-

axis that corresponds to the measured reaction force in the identified curve. In the figure, if

the curve is underestimated compared to the real curve (see “Underestimated curve” in the

figure), the estimated displacement would be (c), which is larger than the true displacement,

(b). If the desired stiffness to be rendered is set to the line named “Desired stiffness,”

then our desired force calculation in (4.4) gives an additional force same as (e) for the

desired force. Finally, actually rendered stiffness at the user’s hand would be the line named

“Rendered stiffness (underestimate case)” at that time instance. If the identified model is

overestimated (see “Overestimated curve”), similar induction gives us the actually rendered

stiffness same as the line “Rendered stiffness (overestimate case).” In summary, the actually

rendered stiffness would increase if the identified model is underestimated, or vice versa.

This interpretation gives us a clue that explains the cause of the PSE error.

The PSE error is more significant on the sponge cut than the foam ball. Usually, the

response of a soft sponge begins with a very gentle slope in displacement-force curve, but

it exhibits a very sudden steep curve after a certain displacement. This characteristic is well

shown in the dotted-curve in Fig. 4.21. Note that this graph includes much higher force

range than the graph of the sponge cut in Fig. 4.12. When the sponge is compressed enough

to have little air inside the body, the hard support plays a significant role on the response,

and thus the stiffness increases rapidly. These two distinctive responses are not properly

captured in one model. When identifying the Hunt-Crossley model, the system tries to fit

both responses to one model, and the result exhibits errors in both response regions. The es-

timated force curve in Fig. 4.21 shows these errors. Note that in the performance evaluation

for the displacement estimation in Sec. 4.5.3, the sponge cut showed the worst estimation

performance among the four objects (see Fig. 4.13, and also compare the medians of the

ratio of the errors).

Since the stimuli during contact release have less implications on the human hardness

perception [70], we focus on the pushing phase. In Fig. 4.21, the curve is overestimated
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Fig. 4.20 An example showing the effect of underestimated or overestimated dynamics
model on the rendered stiffness.

if the displacement is less than 25 mm, and it is underestimated if the displacement is

higher than 25 mm. Considering the average peak pressing force to be 14 N (measured in

pilot studies), the displacement usually does not exceed 25 mm for the 0.8 N/mm reference

stiffness (0.8 × 25 = 20), and thus the force is usually overestimated. We speculate that

this is the reason of the negative PSE error on the ’Sponge08’ condition. For the 0.3 N/mm

reference stiffness, in contrast, the pressing displacement often exceeds 25 mm (0.3 × 25 =

7.5). Thus, the force is underestimated at the force peak on which human often relies when

perceiving stiffness, and the PSE error was positive in ‘Sponge03’ condition. To confirm

this, we derive the actually rendered stiffness at the user’s hand using Fig. 4.21. Consider

that the reference stiffness is 0.8 N/mm, and the true displacement is 20 mm. Due to the

identification error, our algorithm estimates displacement as 18.2 mm. To render 0.8 N/mm

stiffness, the system exerts force to makes the user perceiving force 14.56 N (= 0.8× 18.2).

Then, the actual stiffness rendered at the user’s hand becomes 0.728 N/mm (= 14.56/20),
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Fig. 4.21 The displacement-force curves for measured values and estimated values.

which is quite comparable to the PSE of ‘Sponge08’ condition.

It is also important that the palpation for the data gathering during the model identifica-

tion must cover appropriate displacement ranges and velocity ranges that are expected in

the interaction of intended usage. The model identified by inappropriately gathered data

may exhibits more estimation errors in the displacement estimation. We speculate that the

errors even in the foam ball cases were due to this inappropriate data gathering. According

to our induction using Fig. 4.20 and the experimental results, the model for foam ball was

overestimated for small displacement (see ‘Ball08’), while it was well estimated for the

large displacement (see ‘Ball03’). We can expect that during the model identification, the

palpation covered large displacement more than small displacement.

4.8 General Discussion

The psychophysical experiment showed that the haptic AR system was quite effective for

the stiffness modulation of real objects despite the errors in deformation estimation. In this

section, we address several important research issues encountered during the investigation.
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First of all, we must admit that the design of our interaction tool may produce undesired

torque at the user’s hand. We assumed in our algorithms that the points of application of

all the forces in the system lie on the same position. In reality, the force application point

that the real object applies to (the tool tip) differs from the point that the haptic interface

applies to (the point where the three axes of the gimbal encoder meet). This discrepancy

makes undesired torque to the tool if the two force vectors do not lie on a same line. With

our current tool setup, it was nearly impossible to make the two force application points

identical since a force sensor must be installed between the gimbal joint and the tip. Instead,

we tried to minimize the distance between the two points as short as possible. Adapting a

haptic interface having 6 DOF force feedback capability can be a solution, but complex

torque control would be a challenging issue.

Second, the haptic interfaces used in the experiments (PHANToM 1.0 and 1.5 high

force), which were originally designed for interaction with virtual objects, are not the best

choices for haptic AR that deals with real objects as well. It was observed that the posi-

tion sensing resolution of the interfaces (= 0.03 mm nominal) is too coarse to adequately

quantize the tiny deformation of stiff real objects such as the wood plate, and makes the

augmented haptic rendering very unstable. Haptic interfaces with much higher position

resolution, e.g., the ministick with 1 µm resolution [99], can be more appropriate to haptic

AR. In addition, haptic interfaces with large force outputs are desired in order to handle

real objects of high stiffness. The current desktop interfaces, such as the PHANToM 1.5

high force model with the maximum force of 37.5 N, may suffice, but this could not be con-

firmed due to the position sensing resolution problem. Haptic AR dealing with real objects

requires a haptic interface with very fine position sensing resolution, large force output, and,

preferably, large workspace. Apparently, developing such a force-feedback haptic interface

can be a very challenging task.

Even with the “dream” haptic interface, relying on a displacement-force relationship for

stiffness modulation may not be the most effective strategy. In general, the human relies on

both kinesthetic and tactile sensory cues for hardness perception [96]. The displacement-

force relation described in this paper is the key sensory information for the kinesthetic chan-
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nel. The literature also reported several important tactile cues, including vibratory tactile

transients that occur at contact and last a short period of time (typically less than 100 ms)

[70, 64], static pressure distribution on the contacted skin [96], and contact area spread rate

[14]. In the tool-mediated exploration employed in current haptic interfaces, modulating

the contact transients can be another promising approach to control the perceived hardness

of a real object [68], especially for stiff objects. Algorithms for the approach may require a

substantially higher haptic rendering rate than 1 kHz (e.g., 5 kHz was used in [64]), which is

another cost-increasing factor. Simpler but effective algorithms such as “stiffness shifting”

introduced in [45] can be an alternative.

In addition to the stiffness modulation, a number of research issues need to be consid-

ered in order for haptic AR to be widely applied in various fields. First, other salient haptic

properties, friction and texture, should also be considered for haptic AR. Modulating fric-

tion can be relatively easy if the 3D geometry can be reliably augmented. Changing the

perceived quality of textures, however, appears to be a formidable task, due to the difficulty

of sensing the micro-scale features of a real object surface as well as the multi-dimensional

and non-orthogonal structure of a perceptual space in haptic texture perception [49]. Sec-

ond, to maximize the usability of haptic AR, haptic augmentation needs to be combined

with other sensory modalities, especially with visual feedback. This requires procedures

to register visual and haptic coordinate frames and algorithms to match visually and hapti-

cally augmented contents. The former topic has been intensively studied in the haptics and

AR communities as introduced earlier in Section 2, but the latter topic needs considerable

attention. We focus on this issue in Chapter 6. Third, for medical applications, our linear

stiffness model for force rendering should be extended so as to describe human soft tissues.

This requires more complex model such as a nonlinear visco-elastic model and a general

impedance model for force rendering. Our initial trial for the medical application in Chap-

ter 5 clearly shows the advantage of using a nonlinear visco-elastic model for rendering

of virtual tumor. Another important issue for medical applications is to provide bare-hand

interaction with real objects. The form factor of the sensing and actuation system would

be the main hurdle to overcome. Even the simplest step, augmenting a kinesthetic feed-
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back only while preserving real tactile feedback, requires a force sensor small enough to be

attached at the fingertip while not hindering real tactile feedback. Moreover, the augmenta-

tion (or modulation) of the tactile feedback on a bare-hand skin will need completely new

sensors and actuators. It will be very hard but ambitious task.



Chapter 5
A Case Study: Haptic Simulation
of Breast Cancer Palpation

This chapter presents our effort to demonstrate the potential of haptic AR. We apply the

haptic AR system to one of the most prospective application area of AR, medical training

with breast cancer screening as a representative example.

For a medical simulator, AR technology has been utilized mainly for visualization; vir-

tual organs constructed from preprocessed radiological data are overlaid on the real oper-

ating scene for surgical navigation [67]. On the other hand, supporting for haptic modality

in medical simulator is still in an infant stage. One of the common obstacles for the hap-

tic feedback is the lack of easy and practical rendering methods for realistic simulation of

human soft tissues [22, 21, 5, 62]. Haptic rendering of a deformable object based on VR,

in general, requires a huge amount of precomputation for geometric elements, as well as a

high-performance system to fulfill real-time constraints. This led us to simplify the simula-

tion of a real response to some extent. As an alternative, we focus on the unique advantages

of AR; ease of constructing a highly realistic and flexible environment without an extensive

preprocessing of real environment modeling.

This chapter introduces AR-based simulation methods for the haptic response of a tu-

mor surrounded by soft tissues as a case study for breast cancer palpation training. In the

training of breast cancer palpation, haptic realism of the environment, in particular for a re-

86
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alistic tumor inside a breast, is known to be highly correlated to the performance a training

[21]. To achieve high-fidelity touch feedback, a real breast model made of soft silicone is

augmented with a harder virtual tumor rendered inside. The real silicone model produces

natural haptic feedback of the breast tissue deformation, while our AR system is responsi-

ble for the tumor simulation. For the reproduction of the tumor response, we use a contact

dynamics model identified using position and force data measured from a real breast model

containing an actual tumor lump. In particular, our framework requires no preprocessing

for the geometric model of the breast, preserving a crucial advantage of AR. A subjec-

tive evaluation confirmed that our system can provide realistic behavior close to the real

counterparts.

5.1 Interaction Model

The goal of the presented system is to modulate the stiffness of a real breast model as if

a stiffer tumor were placed inside. The behavior of the breast model silicone is highly

homogeneous, thus facilitating the model-based estimation of the dynamic response of the

tumor.

Our system is configured as shown in Fig. 5.1. The response force from the real breast

model at time t, fr(t), is what the user perceives if no virtual tumor is rendered. The goal

is to alter the force delivered to the user’s hand, fh(t), from fr(t) to

fh(t) = fr(t) + ft(t), (5.1)

where ft(t) is the force that the haptic interface produces to represent the virtual tumor. The

realism of the tumor simulation relies on the recreation accuracy of ft(t) according to the

user’s interaction.

A key idea of our approach is to derive ft(t) based on a nonlinear dynamics model

identified using data measured from a breast mock-up containing a real tumor. This allows

us to minimize the preprocessing for the breast geometric model and the tumor response

while preserving plausible simulation realism. We use the Hunt-Crossley model again,

which can account for the nonlinear viscoelastic contact dynamics of a deformable object
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Fig. 5.1 System configuration.

such as human tissues [50, 105], to describe the responses of the tumor and silicone models.

It has the form of

f (t) = Ke{x(t)}m + Be{x(t)}m ẋ(t), (5.2)

where x(t) and ẋ(t) are the displacement and velocity of the haptic device tip, respectively,

Ke is object stiffness, and m is a constant exponent (usually between 1 and 2).

Variables necessary to derive ft(t) are defined in Fig. 5.2. In our current model we

assume that the tumor has a spherical shape. pt is the position of the tumor sphere, and pts

is the closest point on the original non-deformed breast surface from pt. Both values are

known at the start, and our algorithm assumes that they are constant over time. The effect

of tumor movements on ft(t) is, however, still captured in the response model obtained in

the preprocessing step and is thus included in ft(t). Let the line segment ptspt be l0. We

first identify the Hunt-Crossley model that describes the force response of the tumor along

l0 in the preprocessing (see Section 5.2). This is the only information that our algorithm

needs in advance. Then, using this identified information we approximate ft(t) at positions

not on l0 and render the virtual tumor based on this approximation (see Section 5.3).
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Fig. 5.2 Definition of variables.

5.2 Preprocessing Tumor Response

To identify the Hunt-Crossley model describing the tumor’s response along l0, we use data

collected from two real breast models; one with a real tumor model of higher stiffness

included and one without. The two breast models were made by casting a mixture of Ecoflex

0030 (SmoothOn Inc.) and silicone thinner into a breast-shaped mold (half sphere of 55 mm

radius). The no-tumor model had uniform elasticity, and its linear stiffness measured at 10

mm displacement was 0.13 N/mm. The tumor-embedded model had the same stiffness

except for a 12.5 mm-radius, harder tumor (stiffness of 0.54 N/mm) at 25 mm below the

surface.

The hardware configuration is shown in Fig. 5.3. We use a PHANToM 1.5 high force

model for the haptic interface, which is capable of 3DOF force feedback and 6DOF pose

sensing. A 6D NANO17 force sensor is attached at the end of the interaction tool to measure

the reaction force from a real object.

Using this setup, we palpated the two models and collected a set of data triples (reac-

tion force, deformation displacement, and velocity) for each model. We denote the data

triple for the no-tumor model as (x1, ẋ1, f1) and that for the tumor-embedded model as

(x2, ẋ2, f2). When palpating the tumor-embedded model, special care was taken to press

along l0 by carefully selecting the contact point and the pressing direction. Then, we es-

timated the Hunt-Crossley model parameters for the no-tumor model using (x1, ẋ1, f1),
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Fig. 5.3 Hardware configuration.

which is denoted by H1(x, ẋ). This represents the magnitude of fr(t) in (5.1). Since f2 val-

ues measured from the tumor-embedded model include both fr(t) and ft(t), the magnitude

of ft(t) can be extracted by subtracting f1 from f2. To this end, we passed all data pairs of

(x2, ẋ2) to H1(x, ẋ) and computed the differences by

ft(x2, ẋ2) = f2 − H1(x2, ẋ2). (5.3)

By identifying the Hunt-Crossley model again using the data of (x2, ẋ2, ft), the response

of only the tumor along l0 was derived. This model is denoted by Ht(x, ẋ). The parame-

ters of the Hunt-Crossley model were identified using the recursive least-square estimation

proposed in [44].

5.3 Rendering

The palpation begins with touching the breast model using the haptic tool. The time instance

when the tool collides with the breast surface is detected by our algorithm in Chapter 4.

After the contact, the haptic interface exerts forces for virtual tumor rendering.
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Suppose that a user makes a deformation of d(t) at time t in Fig. 5.2. d(t) is directed

from phs(t) to ph(t), where ph(t) is the haptic tool position, and phs(t) is the closest point

from ph(t) on the non-deformed breast surface. To determine phs(t), we use an estimation

method described in Chapter 4, instead of a geometric model of the breast.

Then, the tumor response force ft(t) is determined by

ft(t) = ft(t)
ph(t)− pt

|ph(t)− pt|
. (5.4)

ft(t) is directed from pt (tumor position) to ph(t) (tool tip position) with magnitude ft(t).

To estimate ft(t), we use the following algorithm. Let lt(t) be a line segment phs(t)pt.

Then, we can project the tool position ph(t) to lt(t) as

xlt(t) = d(t) · ut(t), (5.5)

where ut(t) is a unit vector from phs(t) to pt. xlt(t) represents the deformation caused by

the virtual tumor reflected in d(t).

From xlt(t), we determine ft(t) using the Hunt-Crossley model of the tumor obtained by

the preprocessing, Ht(x, ẋ). Ht(x, ẋ) represents the exact response dynamics of the tumor

when a user presses along l0. Under the homogeneity assumption, the tumor response along

lt(t) can be described by Ht(x, ẋ) if the length of l0 is identical to the length of lt(t). But

in general, |l0| ≤ |lt(t)|, thus we use the following approximation:

x(t) = xlt(t)
|l0|
|lt(t)| , (5.6)

where x(t) is a linearly-normalized deformation magnitude in relation to the reference de-

formation along l0. Then, the force magnitude due to the virtual tumor is estimated as

ft(t) = Ht(x(t), ẋ(t)). (5.7)

This algorithm is a plausible approximation to the real physical responses, designed for

real-time rendering while avoiding the need of geometric models of real objects. We con-

firmed in a subjective evaluation reported in Section 5.5 that virtual tumors rendered using

this algorithm are perceptually similar to real cases. We note that the algorithm may not be

applicable to the cases where body parts surrounding a tumor are highly inhomogeneous.



5.4. PHYSICAL PERFORMANCE EVALUATION 92

5.4 Physical Performance Evaluation

In this section, the physical performance of our approach is evaluated. We measured the

forces at the user’s hand when palpating an augmented breast using our algorithm, and

compared them with the force data measured using tumor-embedded breast model.

We used two tumor-embedded breast models and one no-tumor model. The surroundings

of the three models were identical in shape and stiffness (= 0.13 N/mm at 10 mm displace-

ment). The first tumor-embedded model had a harder real tumor model inside, and its

stiffness measured at 10 mm displacement was 0.54 N/mm. The second tumor-embedded

model had a little bit softer tumor model inside (= 0.21 N/mm) but it is still harder than

the surrounding breast silicone. The radius of the two tumors was 12.5 mm. We identified

the responses of the two tumors using the procedure depicted in 5.2, and used them for

rendering the virtual tumor in the no-tumor breast model.

Three locations on the breast model were chosen for measuring data to be compared.

They were the closest point from the tumor (pts in Fig. 5.2), 10 mm left from pts, and 20

mm left from pts. The three locations on the two tumor-embedded models were manually

pressed on without any virtual force, and the displacement-force data was measured. Only

vertical movements were allowed and the lateral movements were constrained via active

position control using the haptic interface. The same locations on the no-tumor model were

pressed on with the virtual force of the identified tumor. Note that the force at the user’s

hand for the augmented breast was the sum of reaction force from the force sensor and the

force exerted by the haptic interface. The maximum pressing force (= 8 N) and the pressing

velocity (0 – 100 mm/sec) were tried to be controlled via manual adjustment of palpation

using the pressing force and velocity information displayed on the monitor.

Fig. 5.4 shows the displacement-force curves along the vertical direction (y-axis direc-

tion) for each location and tumor. The curves for the augmented breast are coincided with

that for the tumor-embedded breast quite well. Especially, rendering errors when palpating

pts (left column in the figure) are quite small, which confirms that the Hunt-Crossley model

and our identification method properly capture the response of tumor. On the other hand,
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Fig. 5.4 Displacement-force curves at the user’s hand. Curves were measured by vertically
pressing the hard-tumor-embedded breast model (upper row) and the soft-tumor-embedded
breast model (lower row). The pressing locations also varied by the closest surface point
from the tumor (left column), 10 mm left from the tumor (middle column), and 20 mm left
from the tumor (right column). In each graph, red solid-curve represents data measured
from the breast model augmented with a virtual tumor, and the black dotted-curves from
the breast with real tumor model.

errors become larger when palpating a little bit away from the tumor (middle column in the

figure) but become smaller again when palpating further away from the tumor (left column

in the figure). This tendency is due to the approximation on the tumor response applied

in our rendering algorithm. As the palpation point moves away from pts, the effect of the

approximation (and the error due to it), becomes larger (e.g., curves in the middle column).

But the point moves further away, eventually, the force from the tumor becomes very weak,

and the surrounding silicone dominates the response (e.g., curves in the right column). To

reveal the effect of the error on perception, we evaluated the realism of our algorithm in the

next section.
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5.5 Assessing Realism

Haptic realism of our breast cancer palpation system is assessed via a perception experi-

ment. In the experiment, we measured the perceptual similarity between a breast model

with a real tumor model inside and a breast model augmented with a virtual tumor.

5.5.1 Methods

Apparatus In the experiment, we used the same hardware depicted in Fig. 5.3 for aug-

menting the real silicone breast model.

Subjects Twelve subjects (22–31 years old with average of 25.5) participated in the ex-

periment and were compensated for their help. Two of them were females, and all of them

were not experienced users of a force feedback device.

Stimuli There were four tumor presenting methods in the experiment. In all of them, the

breast model with the same shape (half sphere of 55 mm radius) and same stiffness (=

0.13 N/mm at 10 mm displacement) surrounded a real or a virtual tumor. The first method

presented a harder real tumor model inside the breast model (denoted by Rh). The tumor’s

stiffness measured at 10 mm displacement was 0.54 N/mm. The second method also had a

real tumor model inside the breast silicone, but its stiffness was softer (= 0.21 N/mm) than

Rh case (denoted by Rs). In the third method, a virtual tumor rendered by our algorithm

was presented with the surrounding breast silicone. Its response was identified using Rh

(denoted by Vh). The last one presented a virtual tumor identified using Rs (denoted by

Vs).

In each session, the subject was presented with the two breast models in a pair. Both of

the models have a tumor inside, but the presenting methods of each tumor were changed

according to the experimental condition. The position of the tumor is randomly changed

around the center of the breast model. In order for the subjects to use only the haptic

cue, visual or auditory cues were tried to be precluded. A white paper box, shown semi-

transparently in Fig. 5.5, enclosed the PHANToM and a real object, eliminating any visual
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Fig. 5.5 Experimental environment. The blurred paper box is for illustration, and the subject
could not see the scene inside during the experiment. To guide the subject’s interaction, the
haptic interface point and the 2D circles locating the two breast models were shown in the
monitor.

cues. Since the location of the two breast models is also invisible during the palpation, two

2D circles representing the two breast models and a point representing the tool tip were

visually rendered on the monitor to guide the subject’s interaction as depicted in Fig. 5.5.

Auditory cues were also precluded by an earplug worn by the subjects.

Experimental Conditions The experiment had four conditions in terms of the combination

of the four tumor presenting methods. The first condition presented Rh and Rh in a pair

(RhRh). This condition played a role of an upper baseline of the similarity point. The

second condition was the Rh and Rs pair (RhRs), which is for the reference of the lower

similarity point. The third condition presented Rh and Vh in a pair (RhVh), and the last

one for Rs and Vs (RsVs). The last two conditions were the main conditions that the

performance of the tumor rendering can be assessed.
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With the four conditions, the experiment used a within-subject design. To avoid any

order effects, the order of experimental conditions was balanced across the subjects using

the Latin Square method [103].

Procedures Prior to the experiment, each subject went through a training session to be-

come familiar with the tumor finding task. In particular, the subject experienced the two

reference conditions (RhRh and RhRs) in the training session in order to decide his/her per-

ceptual basis and scale for the similarity score. One experimental condition lasted for 5–7

minutes and the whole experiment took 40 minutes.

Four main sessions for the four experimental conditions followed the training session.

For each condition, the subject was asked to repeatedly palpate the two breast models using

the haptic tool and to locate the position of the tumors in each model. To ensure that the

subject did find the tumor and to measure the time taken to find, the subject was asked to

place the tool tip on the tumor position and press a space bar as soon as possible if he/she

found a tumor in one stimulus. The subject pressed a space bar again when the tumor in

the other stimulus was found. Also, the subject asked to rate, on a scale from 0 to 100,

the haptic similarity of the two stimuli, especially for the haptic attributes of the tumors,

e.g., size, stiffness, and shape. Point 0 represented that the two stimuli were completely

different, and point 100 that the two were exactly the same. The subject was allowed to

spend additional time after finding the two tumors if he/she needed time for speculating the

similarity score. After each main session, the subject was asked to fill the questionnaire

with the similarity score and the comment regarding the reason of the score.

Data Analysis The similarity scores written on the questionnaire were used for the statis-

tical analysis.

To find the time taken to find the tumor, we summed up the time for the tool tip in

contact with the breast model until the subject pressed a space bar. Each condition gives

two time measurements for the two stimuli, and one subject gives four measurements for

Rh, two for Rs, and one for Vh and Vs, respectively (see experimental condition). The
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Fig. 5.6 Similarity scores averaged across the subjects. The error bars represent the standard
errors. The shades of the bars indicate the result of the Student-Newman-Keuls grouping
test. Bars with the same shade were grouped together.

measurements for Rh and Rs were averaged separately, and the time measurements for

each tumor presenting method can be derived for each subject.

5.5.2 Results

The means of the original similarity scores over each condition is shown in Fig. 5.6. The

scores for RhVh and RsVs conditions are 71.25 for both cases, which are quite close to

to the score of RhRh condition (= 81.66). To see the statistical meaning of the results,

the one-way within-subject ANOVA test was conducted. The results revealed statistically

significant differences among the four conditions (F3,33 = 49.73, p < 0.0001). For post hoc

comparison, the Student-Newman-Keuls grouping test was performed (α = 0.05). RhRh,

RhVh, and RsVs were grouped together, while RhRs made another group. This confirms

that the perceptual feeling of the augmented tumor rendered by our algorithm is not quite

different from the real counterparts.

This results are further assisted by the measurements of the time taken to find a tumor for

each tumor presenting method. Fig. 5.7 reports the means of the time averaged over each
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Fig. 5.7 The time taken to find tumor for each tumor presenting method. The error bars
represent the standard errors.

tumor presenting method. The averaged time for Vh is very close to that for Rh, and that for

Vs is also close to that for Rs. The paired t-test between Vh and Rh revealed that there is no

significant difference between them (p = 0.59), and the same test between Vs and Rs also

reported the same result (p = 0.35). These similarities on the tumor locating time represent

that the perceptual characteristics of haptic attributes used to find the augmented tumor is

quite similar to those used to find the real tumor model.

5.5.3 Discussion

The experimental results confirm that our algorithm successfully recreates the haptic feel-

ing of the tumor, which is very close to the real counterparts. Nevertheless, the scores for

the augmented tumor were slightly lower than that for the upper baseline. According to the

subject’s comments, the most frequent reason for the lower scores of RhVh and RsVs con-

ditions was the dissimilarity of the internal friction between the tumor and the surrounding

silicone when rubbing the tumor; the augmented tumor was more slippery than the real one.

This was expected since the frictional responses were not dealt in our algorithm. The diffi-

culty of measuring that kind of lateral force and the complex characteristics of the friction
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prevents us from introducing appropriate method of dealing with this. Nevertheless, this

subjective comment is beneficial to improve our algorithm.

The second frequent reason was the difference of the sizes of the two tumors; augmented

tumor was felt smaller. The subject usually perceived the size of the tumor by poking and

laterally rubbing the tumor. Here again, the frictional force affected size perception of the

tumor. The literature reported that a surface with lower friction is perceived as if it has

higher curvature than a true value [26]. In general, a sphere-like object having higher cur-

vature is smaller than that having lower curvature. This fact well agrees with the subject’s

comment.

To our knowledge, most VR-based tumor palpation simulators lack proper evaluation

of the realism of their systems. In most cases, the evaluation focused on the computa-

tional efficiency of their soft tissue simulation algorithm [22] and the human performance

of detecting and locating the tumor [21, 5, 62]. One work that assessed the realism of the

AR-based laparoscopic simulator exists [17], but the system was compared with a virtual

counterpart. There is no literature that directly compared the realism of the palpation sim-

ulation with real counterparts. In that sense, our assessment of simulator realism compared

with a real mock-up amply shows the advantage of AR-based simulator over VR-based one.

5.6 General Discussion

The system achieves excellent realism with minimal complexity of system, which well

demonstrates the potential of haptic AR. In particular, no need of real object geometry

model is a tangible advantage of our system for practical applications.

Nevertheless, this system is an initial try, and several issues should be investigated prior

to the application of the system to real situation. First, the internal friction issue should

be investigated for a better realism. Parametric model-based friction identification and ren-

dering can be one solution. Second, a multi-touch interaction should be provided for the

better training performance of cancer palpation. More natural way of perceiving the size

and shape of the tumor is to seize or grab the tumor with two fingers. The simplest solution

will be the connection of two haptic interfaces. For more than two fingers, dedicated ex-
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oskeleton haptic interface (e.g., CyberGrasp [98]) or finger tip haptic display (e.g., [73]) can

be used. Presumably more important issue is bare-hand interaction. Palpation usually done

with a bare hand, and tactile cues such as pressure distribution, degree of sheer in finger tip

play great role for the tumor perception [62]. As aforementioned in Section 4.8, bare-hand

interaction with augmented object will be very challenging task in terms of hardware and

rendering algorithms.



Chapter 6
Visuo-Haptic Augmented Reality

The last chapter is devoted to developing a visuo-haptic AR system covering the whole

reality-virtuality continuum of AR for vision and touch. For the efficiency of the devel-

opment, we adapted a current state-of-the-art visual AR framework instead of developing

our own one, and integrated our haptic AR algorithms into the system. We have chosen

the visuo-haptic AR system at ETH for the integration, which provides the highly stable

and accurate registration [46]. The final result of this chapter enables the augmentation

of both the real visual and haptic environment seamlessly with virtual information, while

maintaining full functionality. The functionality is demonstrated by applying the system to

the example of tumor palpation developed in Chapter 5.

6.1 Visuo-Haptic AR System at ETH

Most previous attempts to construct a visuo-haptic AR system is categorized in ’visual

mixed reality-haptic virtuality’ (see Chapter 2 for review). Although the early pioneering

studies in this category have shown the potential of the visuo-haptic AR system [1, 107,

101, 81], they lacks the appropriate concerns on tracking lag reduction, exact alignment of

real and virtual coordinate frame both for visual and haptic stimuli, and registration error

minimization. Registration errors and latencies in haptic and visual feedback can lead to the

loss of spatial and temporal synchronization making the interaction disturbingly unnatural.
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Among the recent studies in this category, ETH’s visuo-haptic system shows remark-

able performance [46]. It has an efficient calibration procedure for visuo-haptic integration,

a hybrid tracking technique for stable registration of the augmentation, and a distributed

framework ensuring low latency and component synchronization. Their system shows an

accuracy of about 1 mm for the haptic feedback, 1-2 pixels for visual feedback for a mov-

ing camera, a visual end to end delay of 66 ms, and a temporal accuracy of 1 ms for the

synchronized data streams. In particular, they made much effort for the calibration of haptic

device integrated in the system, which is the most attracting factor for the integration of our

haptic AR algorithms.

The ETH’s system is configured as shown in Fig. 6.1. In order to provide enough com-

putational resources, the system is constructed in a distributed framework. The vision part

is responsible for the visual augmentation with stereoscopic visual display, real-virtual ob-

Fig. 6.1 System configuration of ETH’s visuo-haptic framework.
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ject occlusion, and synthetic shadow (see [63] for more details). The haptic part controls

the PHANToM haptic interface to render haptic feedback of virtual objects overlaid on the

visual scene. The haptic device is collocated with the visual augmentations by using a two

staged calibration procedure and an external optical tracker. Physical simulation of virtual

objects is processed in a dedicated simulation machine, and the simulation results are shared

with both the haptic and visual part. Data among the system parts is synchronized using a

hardware trigger.

6.2 System Integration

The ETH’s system only provided virtual haptic feedback for the haptic rendering, which

was one of limiting factors of the system for practical application, such as medical training

system shown in Chapter 5. Reasonably accurate virtual haptic simulation of deformable

soft tissues required a dedicated machine for simulation, which increased the overall com-

plexity of the system as shown in Fig. 6.1. By integrating our haptic AR, we can bypasses

this problem by simulating the virtual object only partially, while the real surrounding is in-

corporated if a virtual representation is not possible or its fidelity is insufficient. This aspect

also reduces efforts for precise geometric modeling and visual rendering of the interacting

Fig. 6.2 Haptic system for the haptic augmentation.
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objects. By employing ‘self-visible’ and ‘self-touchable’ real objects, the system does not

have to care about computationally expensive visual rendering such as shading for lighting

effects, simulation for deformation rendering.

We supply algorithms for augmenting the haptic response of real objects with virtual

force feedback, while ETH provides its collocated visuo-haptic AR environment. Our hap-

tic AR algorithm is directly integrated into the haptic machine in Fig. 6.1. Since their haptic

machine is operated by the real-time OS (RTOS), our algorithms are modified to incorpo-

rate with it. Also, the original system does not have a force sensor, and the haptic tool is

modified to instrument a NANO17 force sensor. The final haptic system is shown in Fig.

6.2.

6.3 Example of Breast Cancer Palpation

We apply the integrated system to breast cancer palpation introduced in Chapter 5 as an ex-

ample. We visualize the virtual tumor using the vision system to help trainees to understand

the tumor movement according to the interaction.

We use the same algorithm described in Chapter 5 to simulate the force feedback of a

virtual tumor. Since the tumor position is assumed constant in the algorithm, the tumor

movement is simulated, only for visualization, using simple linear spring-damper model.

Although this simple simulation does not agree with the real physical responses, we guess

it can still demonstrate the potential of the system and give some insight to understand the

basic response of the tumor in accordance with trainee’s interaction.

Our algorithm simplifies the tumor dynamics such that the tumor is a massless point

connected to its initial position (tumor position without any external force) by an extension

spring with a damper and connected again to the interaction tool tip by a compression

spring with a damper as shown in Fig. 6.3. Our homogeneity assumption enables us to

use the same linear stiffness and damping parameters for the two connections. The tumor

movement vector, dt(t), can be derived as follows. The movement can be decomposed to
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Fig. 6.3 Terms for tumor visualization.

its magnitude and a unit vector directing the movement by

dt(t) = dt(t)ut(t). (6.1)

ut(t) can be directed from the tool tip position to the tumor initial position.

The magnitude of the movement, dt(t), can be derived as follows. Let the displacement

of the tool tip be d(t) in the figure, which can be estimated using our algorithm introduced

in Chapter 4. Due to the forces from the two spring-damper systems, the forces at the tumor

are in an equilibrium state at time t such that:

K{d(t)− dt(t)}+ B{ḋ(t)− ḋt(t)} = Kdt(t) + Bḋt(t), (6.2)

where K and B are the stiffness and damping parameters of the two springs, respectively.

Rearranging the equation to get dt(t) gives

dt(t) =
d(t)

2
+

Bḋ(t)
2K

− Bḋt(t)
K

. (6.3)

Since ḋt(t) is unknown at this step, we replace it as ḋt(t) = ḋt(t − 1), which does not

seriously affect the simulation due to short rendering period (1 ms).
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Fig. 6.4 Visualizing tumor movement. The image sequence is directly displayed through
the head-mounted display. Two images in a row are for stereoscopic vision.

In rendering, we used 0.45 N/mm for K and 0.004 Ns/mm for B, which were found by

empirical tuning to show realistic movement. The example image sequence of this simu-

lation is shown in Fig. 6.4. Note that ETH’s previous open surgery training system [46]

needed a dedicated machine for haptic and visual simulation of soft tissues (the virtual sim-

ulation part in Fig. 6.1). On the other hand, our AR-based algorithm in Chapter 5 is simple

enough to be directly embedded into the haptic machine without the need of additional

hardware.
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6.4 Discussion

In this chapter, our stiffness modulation algorithms are smoothly integrated into a visual AR

framework, showing the competence of haptic AR for practical applications. In particular,

it is shown that our algorithms are developed so as to be easily incorporated with any other

visual-haptic AR framework. This aspect agrees with our goal of this research; building a

toolkit for a general haptic AR. The work in this dissertation will be the first building block

towards this goal.



Chapter 7
Conclusions

Haptic AR is an emerging research area that holds great promise to turn real environments

that we live in to augmented environments where “impossible-in-real” things are doable.

This dissertation establishes and proves the concept of this exciting technology of haptic

AR, opening a new possibility for this field. Beginning with proposing the taxonomy of

haptic AR, we construct two haptic AR systems that can change the stiffness of a real

object to a desired value. All required modules for the stiffness modulation are devel-

oped, while keeping minimal complexity in both hardware and software. The performance

of each module was empirically evaluated, followed by a psychophysical experiment that

proved the competency of our system in terms of the human perception. In addition, several

research issues critical for further improvements are discussed. The rest of the dissertation

is devoted to prove the potential of the haptic AR by a case study of breast cancer palpa-

tion. Realistic rendering of a virtual tumor surrounded by real breast phantom confirms the

applicability of the haptic AR technology. The whole haptic AR system is integrated into a

state-of-the-art visuo-haptic framework, completing the whole reality-virtuality continuum

for both vision and touch.

The author’s effort in dissertation is the first step along the long way towards our broad

goal; building a toolkit for a general haptic AR. The author will continue to explore the

remaining issues towards this goal. Modulating contact transient vibration will be the last
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target for the hardness modulation of a real object. Next step will be the modulation of

the friction, which will raise new challenging research issues. Another important issue for

the practical application is to provide multi-touch and bare-hand interaction. It is our hope

that this dissertation would prompt more interest in the promising field of haptic AR from

the research community, and our effort would be applied to various practical fields such as

rehabilitation, surgical training, sensorimotor skill transfer, and entertainment.
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요약문

햅틱증강현실:

실제물체의강도변경

햅틱증강현실이란 가상과 실제의 촉각정보를 혼합하여 사용자에게 제공함으로써

증강된실제환경을만들어내는기술이다. 예를들어, 햅틱증강현실은의학도들의

암진단훈련을위해실제마네킹내부에가상의종기를만들어낼수있고,학생들이

시간적공간적제약없이이를촉진하면서훈련을수행할수있게한다. 그러나햅틱

증강현실의큰가능성에도불구하고지금까지이러한기능을수행하기위한일반적

이고체계적인방법론은거의제시되지않았다. 본연구는햅틱증강현실을위한일

반적이고 체계적인 방법론, 즉 “햅틱 AR Toolkit”, 을 개발하는 것을 최종 목표로 삼

는다. 본연구에서는우선아직개념조차정립되지않은햅틱증강현실연구분야를

명확히하고햅틱증강현실시스템의분류를위한분류법을제안하였다. Milgram이

제안한 시각을 위한 실제-가상 수직선 (Reality-Virtuality Continuum)을 촉각으로 확

장하여시-촉각수직선을만들고,이를이용해기존의햅틱증강현실관련문헌및시

스템을 분류, 분석하고 관련 연구 이슈들을 도출하였다. 분석 결과, 햅틱증강현실

을 현실화하기 가장 필요한 기능은 가상의 햅틱 피드백을이용해 실제 물체의 햅틱

속성(강도, 마찰력 등)을 변경해 주는 기능이라는 것을 알 수 있었다. 이 개념의 실

현가능성을 보기 위해 우선 본 연구에서는 가장 중요한 촉감속성중의 하나인 강도

(Stiffness)를선택하고실제물체의강도를변경시키는방법을개발하였다. 이를위해

상용햅틱장치에힘측정장치를달고,실제물체와햅틱장치끝단과의충돌검사,실

체물체의기하학적인정보없이물체변형정도추정,원하는강도를렌더링하기위
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해햅틱장치가내야하는힘계산및햅틱장치의제어등을위한알고리즘들을개발

하였다. 각각은난이도에따라단계적으로개발되었는데,우선간단한 1차원두드리

기 동작을 위한 알고리즘을 개발하고 이를 긁기, 윤곽 따라가기 등의 3차원 동작을

지원하는 시스템으로 확장하였다. 특히, 모든 알고리즘들은 증강현실 시스템의 적

용가능성을높이기위해실제환경모델링을위한전처리과정을최소화하는방향

으로 설계되었다. 다양한 실제 물체에 대해서 각각의 알고리즘들의 물리적인 성능

평가가 수행되었고, 전체 시스템의 인지적인 평가를 위해 사용자를 대상으로 한 정

신물리학 실험이 수행되었다. 성능평가 결과 본 시스템은 인지적으로 충분히 만족

할만한 성능이라는 것이 검증되었다. 다음으로, 햅틱증강현실의 적용 가능성을 알

아보기 위해 전술한 의학도를 위한 유방암 검사 훈련에 강도변경 시스템을 적용하

였다. 실제실리콘으로만들어진유방모형안에실제종기모형의촉감데이터를기

반으로렌더링된가상의딱딱한종기를제공함으로써훈련시스템의사실성을높였

다. 훈련시스템의사용성평가결과본시스템은실제연습용모형을사용하는훈련

시스템과 성능 적으로 차이가 없으면서 좀 더 유연한 환경을 사용자에게 제공할 수

있었다. 최종적으로본햅틱증강현실기술은기존의시각증강현실시스템과통합되

어시-촉각증강현실시스템을구성하고,이를위의가상의종기모형을가시화하는

데응용되었다.
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