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Abstract

This dissertation presents a real-time perceptual rendering framework based on computa-

tional visual attention tracking in a virtual environment (VE). The visual attention track-

ing identifies the most plausibly attended objects using top-down (goal-driven) contexts

inferred from a user’s navigation behaviors as well as a conventional bottom-up (feature-

driven) saliency map. A human experiment was conducted to evaluate the prediction ac-

curacy of the framework by comparing objects regarded as attended to with human gazes

collected with an eye tracker. The experimental results indicate that the accuracy is in the

level well supported by human cognition theories. The attention tracking framework, then,

is applied to depth-of-field (DOF) rendering and level-of-detail (LOD) management, which

are representative techniques to improve perceptual quality and rendering performance, re-

spectively. Prior to applying the attention tracking to DOF rendering, we propose two

GPU-based real-time DOF rendering methods, since there have been few methods plausi-

ble for interactive VEs. One method extends the previous mipmap-based approach, and the

other, the previous layered and scatter approaches. Both DOF rendering methods achieve

real-time performance without major artifacts present in previous methods. With the DOF

rendering methods, we demonstrate attention-guided DOF rendering and LOD manage-

ment, which use the depths and the levels of attention of attended objects as focal depths

and fidelity levels, respectively. The attention-guided DOF rendering can simulate an inter-

active lens blur effect without an eye tracker, and the attention-guided LOD management

can significantly improve rendering performance with little perceptual degradation.
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Chapter 1
Introduction

Perceptual rendering in a 3D virtual environment (VE) can be largely categorized into se-

lective rendering techniques to yield better perceptual effects or lower computational costs.

For instance, the former includes depth-of-field (DOF) rendering [81, 84, 72], peripheral

degradation (or foveation) [95], and stereoscopy with correct convergence. The latter in-

cludes level-of-detail (LOD) management [16, 13], geometry simplification [56], informa-

tion culling in a distributed VE [9], and global illumination [102, 60]. To create a perceptu-

ally effective VE, these two mainstreams commonly require identifying a region of interest

(ROI) and plausible rendering techniques for interactive VEs. However, there have been

few practical methods to identify a ROI in interactive VEs beyond the traditional feature-

driven methodologies for images or movies. Furthermore, in contrast to the attempts for

lower computational costs (by degrading less perceptible objects), perceptual quality im-

provements for identified ROIs have been relatively little explored. In this dissertation, the

author proposes a general rendering framework to bring a perceptual benefit to the user

of an interactive VE. With a computational framework to track a ROI (or visual attended

objects) in a VE and real-time high-quality DOF rendering techniques, the author demon-

strates two representatives of perceptually enhanced and efficient rendering applications:

attention-guided DOF rendering and LOD management.

1



1.1. COMPUTATIONAL VISUAL ATTENTION TRACKING 2

1.1 Computational Visual Attention Tracking

Visual information transfer has been known to be selectively modulated by visual atten-

tion [12, 94]. A straightforward way to locate a visually attended region or objects in an

image is to rely on an eye tracking device. However, such devices are still expensive and

uncomfortable to wear, and require a cumbersome calibration procedure. Moreover, most

tracking devices do not allow the wearer to move and thus are not appropriate for interactive

VR applications. A prominent alternative is to apply principles learned from human visual

perception to computationally estimate a region or objects which the user might be looking

at and focusing upon.

Inspired by the feature integration theory of Treisman and her colleagues [94], a num-

ber of approaches have been proposed to computationally estimate visual attention in the

retinal image [51, 23, 71, 47, 5]. However, the majority of them have only considered pixel-

based regions rather than objects, whereas visual attention changes in association with the

movement of objects rather than location-based movements [28, 75, 89]. Thus, their meth-

ods cannot guarantee temporal coherency during tracking attended objects. Moreover, the

ROI derived from their framework based on the conventional bottom-up (stimulus-driven)

features may incorrectly predict attention, since their framework does not reflect a user’s

volitional factors as reported in the previous literature [58, 99, 44]. In addition, the cost for

computing level of visual attention has been too expensive to be used in real time. Due to

these limitations of the previous approaches, computational attention models adequate for

dynamic VEs have received relatively little attention.

In this dissertation, the author presents a real-time computational framework for predic-

tive tracking of visual attention in dynamic and interactive VEs. Our framework allows

smooth tracking of visually attended objects over period of time, and employs user’s inten-

tion inferred from a user’s spatial and temporal behavior during navigation in a dynamic

VE. Our framework was implemented using the recent graphics processing unit (GPU),

enabling a remarkable real-time performance that is fast enough to be used for interactive

VEs. We also conducted a user experiment using an eye tracker to evaluate the accuracy of



1.2. DEPTH-OF-FIELD RENDERING 3

our attention prediction.

1.2 Depth-of-Field Rendering

DOF represents a distance range around a focal plane, where objects appear to be in the

focus for a camera or human visual system [41, 33, 59]. A finite aperture of a lens maps

a 3D point to a circular region in an image, called the circle of confusion (CoC) whose

size is proportional to its distance to the focal plane. Overlapped CoCs in the image make

defocused objects blurred, while focused objects within the DOF are seen sharply. In gen-

eral, the DOF effect is known to improve photorealism, to mediate the monocular depth

perception [64, 68], and to make a focused object distinctive from the background.

As can be seen the definition of the DOF, the simulation of the DOF effects essentially

requires identifying the depth of a focused object. Although the focus can be found using an

eye tracker, limited movements of a user caused by the eye tracking have restricted its prac-

tical use in VR applications, except for few desktop applications [45]. As already alluded

to, our attention tracking framework is a feasible alternative to the eye tracking, allowing

the interactive DOF rendering without any restrictions on user’s movements. Attention-

directed DOF rendering in interactive VEs can be realized simply using the depth of the

object predicted to be attended to as a focal depth. The combined DOF rendering system

takes the aforementioned benefits.

However, in addition to the identification of a focus, another problem arises from the lack

of feasible rendering methods for simulating DOF effects. Unlike the real-lens system with

a finite aperture, conventional computer graphics systems use a pinhole lens model, which

requires additional costly image processing for DOF effects. A number of rendering algo-

rithms have been developed in the past, forming a spectrum of quality-performance trade-

off, from accurate to fast approaches (see Section 2.2 for a detailed review). Nonetheless,

even the state-of-the-art techniques have been still insufficient to be used for VR applica-

tions in terms of either image quality or rendering performance.

Here, the author proposes two real-time DOF rendering methods sufficient for our pur-

pose, which intensively exploit capabilities of the modern GPU. The first method uses a
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mipmap interpolation for remarkable real-time performance (see Chapter 4 for details), and

also considerably reduces major visual artifacts commonly present in the previous tech-

niques. The other method uses point splatting on per-pixel layers (see also Chapter 5 for

details), which produces the images similar to those of the previous accurate (but very slow)

techniques [22, 43].

1.3 Level-of-Detail Management

Despite the recent strides in computer graphics and VR, the designer of a VR system still

struggles with the trade-off between complexity and performance. The resolution of this

classic issue is usually attempted by managing LOD of objects in a VE. The most important

aspect in the LOD management is the decision logic for switching between different model

resolutions during runtime rendering. Staring from the simple metric based on the distance

of objects from an observer, a number of approaches have been proposed (see Section 2.3

for more details). However, their perceptual degradation is easily noticeable, since they are

weakly related to the human visual attention, in particular, for the user’s volitional shifts.

Except the simplest ones, all of these measures require an accurate identification of an

attended object/area. However, this has not been possible without an eye-tracking device

prior to our attention tracking framework.

In this dissertation, we demonstrate how to apply our framework to LOD management

using “Unpopping LOD” (ULOD) [38] that is a recent image-space blending technique for

coping with the “popping” effect during the discrete LOD switching. By simply using the

attention values of objects as their fidelity levels for LOD, our attention tracking frame-

work can be easily integrated into the existing LOD switching techniques. The combined

rendering system allows greater computational performance with little degradation in the

perceptual quality.

1.4 Contributions

The major contributions of this dissertation is summarized as follows:
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• development and experimental evaluation of a visual attention estimation framework

plausible for real-time VR applications, which allows object-level coherent tracking

and involves user’s intention for more accurate prediction,

• development of the two real-time DOF rendering methods, which are applicable to

VR applications in terms of remarkable rendering performance and image quality,

• proposal of the DOF rendering scheme combined with the visual attention tracking,

and

• demonstration of the LOD management scheme that combines the visual attention

tracking with ULOD.

1.5 Organization

The remainder of this dissertation is laid out as follows. Chapter 2 reviews background

and previous work related to visual attention estimation, DOF rendering, and LOD man-

agement, respectively. Chapter 3 describes how visually attended objects are predicted and

tracked using bottom-up saliency and top-down contextual modulation. We also explain

how the visual attention tracking framework is efficiently implemented using the GPU, and

experimentally evaluate the accuracy of the attention prediction. Chapters 4 and 5 present

the two real-time methods for rendering DOF effects in VR applications. Chapter 6 deals

with how DOF rendering is integrated with visual attention tracking. In Chapter 7, the

LOD management associated with the visual attention tracking is demonstrated and its per-

formance gain is analyzed. Finally, Chapter 8 concludes this dissertation.



Chapter 2
Background and Previous Work

2.1 Previous Approaches for Visual Attention Estimation

It is well known that human visual attention is affected by both automatic capture of bottom-

up (stimulus-driven) salient stimuli and volitional shifts guided by top-down (goal-directed)

factors [44, 20]. Color and intensity in images are common examples of bottom-up stimuli

[94]. Prior knowledge, memories, and goals can be top-down factors [58, 99]. Among the

numerous bottom-up attention models that have been conceived in the visual perception

literature, the feature integration theory of Treisman and her colleagues [94] is most widely

recognized and accepted. In this theory, an area in an image is called visually salient when

it stands out relative to its surrounding neighborhood. A 2D map that represents salient

regions or objects in the image is called the saliency map.

Inspired by the feature integration theory, several computational models have been pro-

posed to estimate visual saliency in an image [51, 23, 71, 47, 5]. In particular, the model of

Itti et al. [47] is relatively simple and has been used frequently in practice. It computes in-

dividual contrast maps for bottom-up features using the center-surround difference and then

integrates them into a final saliency map using the Winner-Take-All network [51]. Given an

image, a center-surround difference refers to a difference between coarser and finer images,

both generated from the original image using image pyramids [47] or the difference-of-

Gaussian filter [48]. This framework has been applied and extended to various applications

6
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including object recognition [85], video compression [77], and video summarization [63].

The bottom-up component of our framework extends the model of Itti et al. using two im-

age features (luminance and hue) and three 3D dynamic features (depth, object size, and

object motion).

Once salient regions are determined based on the preattentive bottom-up features, top-

down factors may further guide a user to select one region to focus on. Unlike the bottom-up

features, this top-down guidance is task-dependent [101, 35, 99, 44]. For example, if red

and green apples are in sight under no other specific conditions, a user is likely to look

at either one (since red and green are opponent channels in the visual cortex [30], they

have comparable bottom-up saliency levels). However, a particular task (e.g., look for a

red object) given to the user would direct the user’s attention to the red apple. Such task

dependence has been a limiting factor for incorporating the effect of top-down factors into

visual attention estimation.

Since images or movies used in the previous studies do not allow user’s interaction, un-

like interactive VR applications, the effects of the user’s intention for predicting attention

have been considered using user-defined importance, image features, or eye tracking. Cater

et al. introduced the importance factor of objects relative to a task in computing saliency

[16], but the factor values had to be set manually. Features such as object distance from a

viewer, image coverage [42], and novelty [102, 60] have also been treated as top-down fac-

tors. However, since these factors generally do not reflect the user’s intention, they are more

appropriate to be classified as bottom-up features. Recently, Peters et al. [80] demonstrated

the effect of task-dependent influences in video games, using a learning methodology based

on the bottom-up features. However, their consideration of top-down influence is related to

the specific task or environment, and thus, prediction of the individual intention of a user

does not seem straightforward. In our framework, to effectively infer intention of individu-

als in a VE, we use spatial configuration of objects from the observer (we call this value the

spatial context), which are obtained from atomic interaction data during spatial navigation

in a VE. The temporal trends of this spatial context is further tracked via linear filtering.

The spatial and temporal contexts are used to select the most plausibly attended objects
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among the bottom-up salient candidates.

Confirming whether a computational model for visual attention agrees to actual human

attention is crucial to the usability of the model in applications. Ouerhani et al. [78] com-

pared the saliency model of Itti et al. [47] to actual human attention using an eye tracker

and confirmed the existence of correlated regions in images. Santella et al. applied the

bottom-up saliency model to non-photorealistic scenes and compared its prediction perfor-

mance with that of an eye tracker [86]. However, compared to the abundant theories and

applications of the saliency map, efforts toward their formal validation have been somewhat

insufficient. In our work, we conducted a human experiment using an eye tracker to eval-

uate the accuracy of our attention prediction and to assess the relative contributions of the

bottom-up and top-down factors.

2.2 Depth-of-Field Rendering

DOF rendering was pioneered by Potmesil et al. [81] and since then, has been followed by

a number of algorithms. We categorize them into three groups and provide brief reviews

for each. We also describe the previous approach for rendering “bokeh” effects. Our first

DOF rendering method (Chapter 4) extends the previous post-filtering method based on the

gather, and the other method (Chapter 5) efficiently combines the previous post-filtering

method based on the scatter and layer composition.

2.2.1 Multipass Approach

The most accurate approach to render DOF effects is simulating multiple rays within the

lens with a finite aperture. The distributed ray tracing [22] and the accumulation buffer

method [43] are such examples. They can handle shading from various rays and partial

occlusion (visibility of an object varies with different sampling positions on a lens), but

they usually require a large number of view samples (i.e., the number of model rendering)

proportional to the size of the CoC for producing a convincing DOF effects. Due to the

heavy computational cost, the multipass methods are generally considered inappropriate

for real-time applications. A notable recent advance in this approach is a technique called
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the “time-continuous triangles” [2] that is extended from the accumulation buffer method

using a reduced number of samples for improved rendering speed. However, the work is

still conceptual and requires considerable modifications of the existing graphics hardware

to be implemented.

2.2.2 Post-Filtering Approach Using Single Layer

Another main stream to DOF rendering has been the post-filtering approach. This approach

computes the blurring degree (i.e., the CoC diameter) for each pixel depth using the thin-

lens model proposed by Potmesil et al. [81], except the pre-blurring methods which use a

crude linear approximation. The post-filtering approach using a single layer can be classi-

fied into the scatter and gather methods depending on how an image is blurred. Those using

multiple layers are discussed in Section 2.2.3. Our two DOF rendering methods were in-

spired by the gather and scatter approach, respectively. Each of them improves the previous

approaches in terms of rendering performance and image quality.

The scatter method [81, 90] distributes the intensities of source pixels in a pinhole image

onto circular sprites (i.e., CoCs) for blurring. Then, the sprites are blended from farther

to nearer, and normalized such that the accumulated intensity for each pixel equals to one.

Since sharp pixels are not scattered to the neighborhood, intensity leakage is absent inher-

ently. This method, however, requires heavy sorting of entire depths, and thus, it has been

used in offline software. Our second method extends this scatter method with per-pixel

layer composition to improve rendering performance.

The gather method, on the other hand, simulates blurring of pixels by spatially convolv-

ing (filtering) neighbor pixels within the CoC of a pixel. Starting from iterative filtering

with a small kernel [84], algorithms have evolved to a number of techniques including the

pre-blurring [26, 83, 87, 39, 29], the anisotropic diffusion [10], the ring-shaped kernel [72],

and the separable Gaussian filtering [83, 103]. Most of them intensively utilize the texture

lookup capability of recent GPUs, and hence, they can achieve real-time performance.

However, most gather techniques involve two severe visual artifacts: intensity leakage

and blurring discontinuity. The intensity leakage results from the spatial filtering that does
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not account for the CoC variations around a pixel. Among them, Bertalmı́o et al. has

successfully alleviated the leakage using the anisotropic diffusion [10]. However, their

computational complexity significantly increases with a CoC size, which is undesirable for

interactive applications. In contrast, the pre-blurring techniques achieve superior real-time

performance due to their simplicity. However, a naively downsampled image contains the

leakage inevitably, and the lack of intermediate blurring information—because only one

down-sampled image is used—severely deteriorates the image quality. In order to remove

intensity leakage, our first DOF rendering method combines the anisotropic diffusion and

the pre-blurring methods.

As for the blurring discontinuity, most of post-filtering methods (using a single layer)

have not addressed the issue due to the lack of directional information from different lens

spots. A notable remedy is the work of Bertalmı́o et al. [10] that uses a blurred depth buffer.

However, their method sets the blurring degree (corresponding to a CoC size) to be zero

around regions where the foreground and background meet. Furthermore, the depths around

a non-occluded focused region are blurred. In contrast, our first method using mipmap

framework reduces the artifacts by smoothing the degrees of blurring instead of depths.

2.2.3 Post-Filtering Approach Using Multiple Layers

The post-filtering approach using multiple layers has been developed to cope with the two

problems of the intensity leakage and the lack of partial occlusion. Inspired by an earlier

object-space grouping method [88], several layer composition methods have been proposed

[8, 7, 49, 52, 53]. They decompose a pin-hole image into several sub-images according to

the depth of pixels. The sub-images are separately blurred using the Fast Fourier Transform

[8, 7], a customized pyramidal processing [53], or anisotropic heat diffusion [49, 52], and

then blended from farther to nearer depths (similarly to the scatter method).

This approach produces better results compared to the single-layer methods in terms of

intensity leakage and foreground blurring quality. However, they usually require sufficient

layers for generating natural blurring transitions between layers, and are inappropriate for

real-time VR applications (e.g., 156 seconds with 11 depth slices for [8], 14.2 ms with 12
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sub-images for [53], and 6–7 frames/sec for [49]). Furthermore, the discretization problem

(an object being separated across more than one layers) [6] can still degrade the image

quality in areas where layers are overlapped, in spite of their remedies for the problem [8,

6, 53]. In comparison, our second method adaptively decomposes layers using local depth

variation, and the discretization artifact rarely occurs unless different objects are located too

close to each other.

In the previous multi-layer approach, partial occlusion is commonly addressed by extrap-

olating the exterior boundaries of invisible areas. However, the area filled by their methods

behind foreground layers represents the blurred color of boundaries rather than the accurate

(possibly sharp) colors of the occluded area. This artifact becomes more apparent with a

large CoC that cannot be covered by mere extrapolation. In particular, Kraus et al. [53]

used pyramidal processing similar to our mipmap approach (the first method). Their image

quality for the foreground blurring can be better than ours for a static image, but may ex-

hibit some flickering in an animated scene due to the use of significantly blurred images for

filling occluded areas. In contrast to the all previous methods including our first method,

our second method effectively takes care of this artifact with an additional rendering of the

occluded area.

2.2.4 Bokeh Rendering

“Bokeh” refers to the blurred appearance distorted by the aperture shape and intensity distri-

bution function (IDF) of a lens. For bokeh rendering, previous studies proposed a stochastic

sampling scheme for the multi-pass rendering [14] and a gather method [83]. However, im-

plementing the correct bokeh with the gather is rather difficult (e.g., [49]), since bokeh

patterns are determined from the scattered pixels of a source rather than the neighbor pixels

to be gathered. Our second method follows the scatter and can simulate the accurate bokeh

effects, while our first method cannot simulate point spread functions other than Gaussian

IDF.
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2.3 LOD Management

From an early multi-resolution representation for a single object (later called the discrete

LOD or DLOD) [19], techniques for LOD management have evolved into numerous con-

tinuous and view-dependent methods (e.g., see [46, 62, 100]). As already mentioned, the

most important aspect in LOD management is the decision logic for switching between

different model resolutions. In principle, the more faithful LOD selection criteria to the

user’s attention, the less degradation in the perceptual quality will appear. For example,

even though using simple metrics such as distance, size, or priority result in reasonable

performance improvement [61], the perceptual degradation is easily noticeable since they

are weakly related to the human visual attention. More elaborate metrics have been tried to

maximize the performance gain based on an assumption that the user’s gaze is fixed at the

screen center [36] or by using relatively simple information such as user-defined importance

and a bottom-up saliency model [102]. Nonetheless, they do not take the user’s volitional

information into account, often making the use of low resolution models perceptible. Other

perceptually accurate approaches, e.g., that based on the peripheral vision, assume that a fo-

cused object/area by the user is known a priori [61]. Since all of these measures are closely

related to the visual attention, our attention tracking framework allows the effective LOD

management framework, which are highly correlated with the previous heuristics. This has

not been possible without an eye-tracking device prior to our attention tracking framework.



Chapter 3
Real-Time Tracking of Visually
Attended Objects

The overall procedural flow of our framework for visual attention tracking is summarized

in Fig. 3.1. The framework consists of two components, one for building a bottom-up

saliency map (upper block in the figure) and the other for modulating the saliency map

using top-down contexts (lower block in the figure). In essence, our bottom-up saliency

map extends that of Itti et al. [47] using two image features (luminance and hue) and

three 3D dynamic features (depth, object size, and object motion). With 3D geometric

models, simulation models, and an RGB image rendered from the models, feature maps for

luminance, hue, depth, size, and motion are generated as image pyramids (step 1 in Fig.

3.1). Then, the image pyramids are converted by the center-surround difference to build

contrast maps (alternatively called the conspicuity maps in [47]) for each feature (step 2 in

Fig. 3.1), which indicate regions with abrupt changes of pixel values in the corresponding

feature map. This procedure is computed in real-time using a GPU program. Finally, the

contrast maps are linearly combined into a single map that represents the saliency of each

pixel obtained from the bottom-up features (step 3 in Fig. 3.1).

The first step for top-down contextual modulation is to convert the pixel saliency map to

an object saliency map, such that pixels corresponding to an object have the same saliency

value (step 4 in Fig. 3.1). The relevance of an object to a given task is also considered in

13
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Fig. 3.1 The overall procedure for the proposed visual attention tracking.

this step. Then, top-down contextual (spatial and temporal) factors are computed, and the

object saliency map is modulated with them (step 5 in Fig. 3.1). The spatial context refers

to the importance of the spatial layout of objects for predicting the observer’s attention,

which is more effective for short-term tasks. The temporal context reflects the evolution of

the spatial context associated with long-term goals. Finally, the map is linearly filtered for

each object using the Kalman filter for smooth tracking (step 6 in Fig. 3.1). In subsequent

sections, detailed explanations for each step are provided.

3.1 Real-time Bottom-Up Saliency Map

This section presents the details of our computational framework for building a pixel-level

saliency map in real-time. Inputs into the framework are rendered color/depth images, 3D

object models, and a simulation model, all of which are commonly required and available
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in a VE.

3.1.1 Bottom-Up Features and their Image Pyramids

An initial step for building a saliency map is to construct feature maps using the five low-

level features: luminance, hue, depth, size, and motion. Previous neurological studies

showed that all these features are preattentive (see [94] for luminance, [73] for hue, [31]

for depth, [94] for size, and [74] for motion). Compared to the original image features used

by Itti et al. [47], we do not use the edge orientation feature since our approach focuses

more on objects than image-level details. Instead, more relevant features for predicting

object-level saliency in VEs such as depth, size, and motion are adopted. These feature

values can be specified either for each pixel (luminance, hue, and depth) or for each object

(size and motion).

The first two feature maps for luminance (Bl) and hue (Bh) are taken from the luminance

and hue components in the HLS (Hue-Luminance-Saturation) color model converted from

the original RGB image. Each pixel value for the depth map (Bd) is obtained from the

z-buffer and normalized as:

Bd =
z− znear

z f ar − znear
, (3.1)

where z, znear, and z f ar are the 3D, near, and far clipping depths, respectively.

A feature map for size (Bs) is defined at the object-level by considering the image cover-

age of an object. For object k, pixel values of the object are set to:

Bs(k) =
number of pixels belonging to object k

total number of pixels in the image
. (3.2)

This method is effective when the object size is larger than the view volume, or an object

is partially culled by the viewport. The number of pixels corresponding to each object is

counted using the item buffer [97].

A motion feature map (Bm) represents the velocity of an object, obtained from the dif-

ference of 3D positions at consecutive simulation frames τ and τ − 1. It is computed for

object k as:

Bm(k) = ‖pτ (k)− pτ−1(k)‖, (3.3)
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where p denotes the position of a vertex at the outermost position from the object’s center.

This allows us to consider both the translation and the self-rotation of the object.

Each feature map is successively downsampled and converted into a set of lower resolu-

tion images, forming image pyramids from the finest original map (level 0) to the coarsest

(level 6). These image pyramids are used for the center-surround difference operation to

build contrast maps at the next step. Note that the processes are executed in a single batch

using the hardware mipmap generation capability in the graphics hardware for real-time

computation (see Section 4.4 for more details).

3.1.2 Pixel-Level Saliency Map

The five feature maps are converted to local contrast (or conspicuity) maps, Cl , Ch, Cd, Cs,

and Cm, via the center-surround difference [47]. This is an operation that detects locations

standing out from their surroundings. The center-surround difference for a contrast map,

C f ( f ∈{l, h, d, s, m}), is calculated as:

C f =
1
6 ∑

i∈{0,1,2}
∑

∈{3,4}
|Bi

f − Bi+ j
f |, (3.4)

where Bi
f and Bi+ j

f represent feature maps at pyramid level i (finer) and i+ j (coarser),

respectively. This operation is quite effective at finding contrasts [47], and is widely used

for bottom-up saliency map computation.

The contrast maps are merged into a single topographical saliency map, S̄p, by linearly

combining them as:

S̄p = ∑
f∈{l,h,d,s,m}

w f C f , (3.5)

where w f ’s are linear combination weights. Even though various schemes can be used

for determining the weights [47], most of them are not suitable for real-time use. In our

framework, the weights are set to:

w f =
1

max(u,v) C f (u, v)
, (3.6)
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where (u, v) represents a pixel position in C f . The weights are for balancing the differences

in the dynamic ranges of the features. Finally, S̄p is normalized to Sp (the pixel-level

saliency map), such that each pixel value in Sp ranges in [0, 1].

3.2 Modulation by Top-Down Contexts

Top-down contextual information provides additional criteria for selecting objects among

visually salient candidates found from the bottom-up features. With navigation in a VE as

a primary task, we have modeled a few high-level contexts (i.e., task-related object impor-

tance and spatial and temporal contexts) and included them in our computational framework

for improved and plausible attention estimation.

3.2.1 Object-Level Attention Map

We first convert the pixel-level saliency map to an object-level saliency map (Ŝo). As noted

in [75, 89], an object-level saliency map is more appropriate for tracking and applications

in VEs. This is achieved by averaging the pixel values of each object as:

Ŝo(k) = Ti(k)
1

n(k) ∑
(u,v)∈object k

Sp(u, v), (3.7)

where n(k) is the number of pixels of object k, (u, v) is a pixel position, and Ti(k) is the

user-defined task-related importance of object k. The pixels that are associated with object k

are determined using the item buffer [97]. The task-related importance is used for excluding

unimportant background objects (e.g., wall, floor, sky, and seawater) from consideration.

The object saliency map is further elaborated with spatial and temporal contexts (Ts and

Tt) that are used to infer the user’s intention during interactive navigation. The models of

the spatial and temporal contexts are described in the subsequent sections. Once the spatial

and temporal contexts are determined, the final object attention map, So(k), is computed

as:

So(k) = (Ts(k) + Tt(k))Ŝo(k). (3.8)

Note that So(k) values may become temporally unstable due to the bilinear magnification

in the texture lookup used in the center-surround difference operation, which is a common
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problem with texture magnification. The blocky artifacts due to the magnification can result

in abrupt changes of saliency values. In order to smooth the changes, the attention levels of

objects are postprocessed using a linear Kalman filter [98].

3.2.2 Spatial Context Based on User Motion

Typical models of spatial perception such as the topological 3-stage model (landmark, route,

and survey knowledge) require a hierarchical cognitive map of objects [91, 54]. These rep-

resentations are related to long-term goals rather than immediate responses of perception-

action. Such models are usually too complex to be used in practice for predicting a user’s

intention.

Assuming that landmarks (foreground objects) exist in a VE, one effective way to esti-

mate the general area of a user’s interest, without any cognitive map, is to find the moving

direction of the user’s egocentric view based on atomic interaction data. Hinted at previous

findings of Cutting et al. [24], our method is to model three spatial behaviors of an observer

who navigates in a VE.

Let x be a distance from the observer to an object in the 3D scene, y be a normalized

distance between the center of a screen and the object in the screen coordinates, v be the

viewing direction of the observer, and w be the moving direction of the observer (see Fig.

3.2 for conceptual illustrations). ∆x = xτ−xτ−1 is the difference in x between two con-

secutive simulation frames, where τ−1 and τ are the corresponding time indices. Firstly,

we note that observers tend to situate themselves so that they can see objects in the center

of a screen during navigation. It follows that objects far from the screen center are not

likely to be attended to. A modulation factor for this behavioral pattern is expressed as an

exponential decay of the distance between the screen and object centers: e−cy y2
, where cy

is a scaling constant. Secondly, observers prefer to maintain a proper distance from objects

of interest, which requires modulating the spatial emphasis of objects based on the distance

from an observer. Our modulation factor for this pattern is in accordance with the Weibull

distribution: (x/cx)e−(x/cx)2
, where cx = L/0.707 is a scaling constant that is determined

from a desired distance (L) of maximum spatial emphasis. Thirdly, when observers move
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Fig. 3.2 An example of the spatial context model. An observer is currently moving toward
the target object (v ·w > 0). The left fish moving in the opposite direction to navigation
(∆x > 0) is ignored for top-down contextual modulation. The other fish is under the influ-
ence of the distance emphasis model (Weibull curve in the right) and the screen emphasis
model (the 2D Gaussian weights on the image plane).

forward (v·w > 0; also see Fig. 3.2), they usually approach objects that they want to see.

Therefore, objects that are becoming more distant from the observer (∆x > 0) are very un-

likely to receive any attention from the observer. Combining the three modulation factors,

the spatial context model for object k is defined as:

Ts(k)=

{
0 if v·w>0and ∆x>0

cs(
x
cx

)e−( x
cx )2

e−cy y2
otherwise , (3.9)

where cs represents a scaling constant to maintain Ts(k) within [0, 0.5].

3.2.3 Temporal Context

High spatial context values observed for an object during a certain period of time implies

that the object has been followed by the user. Consideration of this temporal property

is useful for estimating the long-term intention of the user whereas an immediate task is

mediated by the spatial context. To reflect this, we define temporal context, Tt(k), for

object k using the running average of the spatial contexts as:

Tt(k) =
1
λ

τ0

∑
τ=τ0−λ+1

Ts
τ (k), (3.10)

where λ denotes a time duration for controlling the long-term interest, and τ0 and Tτ
s are

the current simulation frame and the spatial context at τ , respectively. An additional role
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of the temporal context is to compensate for the erroneously derived spatial context values

(e.g., unintended control errors).

3.3 Implementation Details

The proposed framework for real-time visual attention tracking was implemented using the

OpenGL Shading Language (GLSL) and the OpenSceneGraph on a 3.2 GHz Pentium 4 PC

with a GeForce 7900GTX. In the preprocessing stage, objects represented in 3D models

were segmented in a scenegraph, and a unique ID and task-related importance (Ti) were

assigned to each.

During run-time, the computational procedure shown in Fig. 3.1 is applied at every

simulation frame. The computational steps consist of four stages: (1) updating the object-

level features and spatial and temporal contexts, (2) building a pixel saliency map using the

GPU acceleration, (3) converting the pixel saliency map into an object saliency map and

modulating it with the top-down contexts, and (4) storing the result in an object attention

list and postprocessing it using a linear Kalman Filter.

In the first stage, the simulation engine updates the object-level features (the motion

and size) and the spatial and temporal contexts based on the data recorded in the previous

simulation frames. The spatial and temporal contexts for each object are computed using

the object position and the viewing matrix from user interaction.

In the second stage, the graphics engine renders bottom-up feature maps and contrast

maps using the GPU to construct a unified pixel-level saliency map. Firstly, a typical RGB

image is rendered from the 3D object models. Since three channels (usually for red, green,

and blue) in a single texture can be simultaneously processed in a fragment shader, we ren-

der two feature map textures for the five bottom-up features, LH (Bl , Bh, ·) and DSM (Bd,

Bs, Bm). To obtain contrast maps for the five features, we build two feature mipmaps using

the hardware mipmap generation capability and compute the center-surround difference us-

ing the mipmaps. A sample fragment program for the center-surround differences is shown

in Fig. 3.3. The texture look-up operation for a coarser scale corresponds to the magnifica-

tion of an image, and thus it significantly improves computational performance, achieving
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uniform sampler2D DSM; // texture sampler
#define tc0 gl_TexCoord[0].st // texture coordinate

void main()
{

vec3 c[7];
for(int i=0; i<7; i++)

c[i] = texture2D(DSM,tc0,float(i)).rgb;
vec3 C = abs(c[0]-c[3])+abs(c[0]-c[4])+abs(c[1]-c[4])+

abs(c[1]-c[5])+abs(c[2]-c[5])+abs(c[2]-c[6]);
gl_FragColor = vec4(C/6.0,1.0);

}

Fig. 3.3 An excerpt from the GLSL fragment shader program—the center-surround differ-
ence operation for the DSM texture image.

real-time construction of the pixel-level saliency map. Then, the pixel saliency map (Sp)

is built by linearly combining the two center-surrounded textures with the normalization

weights. The weight of a contrast map is the reciprocal of a maximum pixel value in the

map.

The third stage is to convert the pixel-level saliency map into an object-level saliency

map. For this, the correspondence between pixel position (u, v) and object k is found using

the item buffer [97], which is an image where each pixel contains the ID of the object that

the pixel belongs to. Using the ID image and the top-down contexts (Ti, Ts, and Tt), the

attention value of each object can be computed. For efficiency, the object-level attention

map is stored in a linked-list.

Finally, the computed attention value of each object is smoothed and tracked using a

discrete Kalman Filter [98], based on the position and velocity state model.

Fig. 3.4 shows examples of intermediate and final output images of our attention track-

ing framework applied to static and dynamic environments. Object-level lists (So, Ts, and

Tt) were represented in maps for illustration. In these examples, a number of bottom-up

candidates for attentive objects are initially suggested, with similar saliency levels in the

contrast maps. Thus, the pixel-level saliency maps (Sp) alone do not clearly single out the

most salient objects. With the aid of the top-down contexts (Ts and Tt), the most attentive

objects are ultimately selected in a manner which is in greater correspondence with our
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Fig. 3.4 Examples of results using the visual attention tracking framework, for static (upper)
and dynamic (lower) scenes. All the images were rendered in real-time. In the static scene,
the motion feature was not used. The whitest object (the bowling pin in the upper image
and the orange fish in the lower image, respectively) is the most attentive object in the
corresponding object attention map (So). The 3D fish models were provided through the
courtesy of Toru Miyazawa at Toucan Co.

visual attention (to be validated in the next section).

3.4 Computational Performance

In order to compare the computational performance of our framework to a typical CPU-

based method and the most recent GPU-based method [60], the same algorithms were im-

plemented using the OpenCV toolkit and GLSL. To remove the effect of the polygonal

model size and the number of objects, we excluded the time required for model rendering

(i.e., RGB, depth, and item buffer images). Also, the computation time for the top-down

contexts was not included, since the top-down contexts are unique in our framework. In

practice, the time required to compute the top-down contexts is negligible compared to that

of the bottom-up saliency map (e.g., less than 0.3 msec for the virtual undersea model in

Fig. 3.4). The comparisons were performed for four saliency map sizes (64×64, 128×128,

256×256, and 512×512). Fig. 3.5 shows the results of comparison. The speed-up com-

pared to Longhurst et al.’s method is between 1.57 times (for the 64×64 image) and 1.15

times (for the 512×512 image). The speed-up compared to the CPU-based method is be-
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Fig. 3.5 Comparison of measured computation times for generating a saliency map, between
the CPU-based and GPU-based (ours and Longhurst et al.’s [60]) implementations.

tween 2.20 times (for the 64×64 image) and 6.27 times (for the 512×512 image). Thus,

we project that real-time use of our framework is possible with up to 256×256 saliency

maps. Even if the model rendering times excluded in the comparison were to be included,

our framework could produce 256×256 saliency maps in real-time for 3D environments

consisting of up to a million polygons (attention computation ≈ 5.68 msec, a total of 30

frames per sec.).

3.5 Evaluation of Attention Prediction Accuracy

This section reports the design and results of a user experiment conducted to validate the

accuracy of our attention prediction compared to the actual human gaze pattern.

3.5.1 Methods

A participant’s eye movements were recorded using a monocular eye tracking device (Ar-

rington Research Inc.; see Fig. 3.6(a)) with a 60 Hz sampling rate and 640×240 video

resolution. A 42-inch LCD display with a resolution of 1,600×900 was used for the pre-

sentation of visual scenes (see Fig. 3.6(b)). The participant, wearing the eye tracker, was
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Fig. 3.6 A monocular eye tracker (Arrington Research, Inc.) and a 42-inch LCD display
used in the experiment.

seated at approximately 1.5 m in front of the display in a lighted room for both a wide field

of view and precise eye tracking.

A dynamic and a static VEs were used in the experiment. The dynamic environment

modeled a virtual undersea (shown in the upper row of Fig. 3.7), where 30 animated fishes

(of six types, with five fishes per type) were swimming. The static environment was a

virtual art gallery shown in the lower row of Fig. 3.7.

16 paid subjects (15 male and 1 female) participated in the experiment. Their ages varied

from 18 to 36 years, with a mean of 25.1 years. All participants had normal or corrected-

to-normal vision. They were assigned to two tasks, free navigation and visual search. For

free navigation, the participants were asked to simply move around the VEs and look at

virtual objects using the keyboard for controlling navigation. For visual search, objects in

the two VEs contained numbered tags on their body (see Fig. 3.8 for examples), and the

participants were instructed to find objects that had specific numbers. For objects in the

undersea, the numbers were 5, 15, 25, and 35. For the gallery, they were 7, 17, 27, and 37.

The participants were asked to press the spacebar on the keyboard when they found objects

with the specified numbers. This instruction was given solely to maintain the participants’

concentration on the search task. Whether they indeed found the objects was irrelevant for

the purpose of the experiment. With the two environments and the two tasks, the experiment
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Fig. 3.7 The virtual undersea (dynamic; upper row) and virtual gallery (static; lower row)
environments used in the experiment.

Fig. 3.8 Two examples of number-attached objects. For fishes in the virtual undersea, tags
were attached to both sides of the abdomen. For the virtual gallery, they were four tags
around the middle section of an object.

used a 2×2 within-subject design.

Prior to an experimental session, a participant was briefed about the experimental pro-

cedure and undertook a training session to learn the navigation scheme in the art galley
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model where no objects appeared. A control mechanism with three degrees-of-freedom

(forward/backward translation and turns for yaw and pitch) was used for navigation. Four

(2×2) main sessions followed the training session, and their presentation order was bal-

anced using Latin squares. Each session started with calibration of the eye tracker to map

screen-space points in the 5×5 grid to eye-space coordinates. In order to find eye-space

coordinates, oval-fitted centers of a pupil or a glint were extracted from an input video of

the eye tracker. After the calibration, the participant was instructed not to move his or her

head, and this was facilitated with a chin rest (see Fig. 3.6(a)). The task for each session

was verbally explained to the participant at the beginning of the session. Each session lasted

for three minutes, and the participant took a rest for a few minutes before starting another

session.

3.5.2 Data Analysis

For each experimental condition and each participant, 10,800 (60 pt./sec.×180 sec.) screen

positions that were stared at by a participant were measured with the eye tracker and

recorded in terms of normalized screen-space coordinates ((0.0, 0.0) to (1.0, 1.0)). These

data were classified into four categories (blink, saccadic, drift, and fixation) according to

the aspect ratio of a fitted ellipse and eye movement velocity. If the aspect ratio of an ellipse

fitted to the eye was less than a threshold (0.7 for our data analysis), the eye movement was

considered to be a blink. If not, the eye movement velocity was used for further classifi-

cation. The velocity value is simply the difference between the current and the last gaze

points, i.e., the change in the normalized position of gaze. A frame that showed eye move-

ment velocity slower than 0.03 was regarded as fixation, a frame with eye velocity faster

than 0.1 as saccadic, and a frame with eye velocity in between as drift. Only fixation and

drift were used for analysis.

Three quantitative measures, A1, A2, and A3, were defined in order to assess the accu-

racy of attention prediction. In each simulation frame, if one of the objects that the user’s

gaze lingered on was the object predicted to be attended to, the attention estimation was

considered correct for that frame. If so, the total number of frames with correct atten-
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tion estimation was counted up. Note that during the counting, frames that showed only

background objects were excluded, since no attentive objects were available in the partic-

ipant’s sight. The number of frames with correct attention estimation was divided by the

total number of frames that contained foreground objects, and the result was represented as

A1. Accuracies where two and three of the most attentive objects were compared with the

participant-stared object were also computed and denoted by A2 and A3. These two mea-

sures accounted for the near-misses of attention prediction that may occur due to the human

attention simultaneously laid on multiple objects [17, 75, 4, 89] or the limited precision of

the eye tracker.

We also investigated the relative contributions of features to attention estimation. The

features were classified into three groups: image features (B: {Bl , Bh}), extended 3D/object

features (E: {Bd, Bs, Bm}), and top-down context (T: {Ts, Tt}). To investigate the role

of each feature group, attention maps were generated with and without the feature group,

resulting in a total of eight (23) attention maps. Their estimation accuracies were compared

using statistical analyses. Note that the baseline attention map, which corresponds to a

map generated with no feature groups, cannot be clearly defined, since such a map contains

no information about attentive objects. However, ignoring the baseline case would yield

an unbalanced missing cell design, which makes the interpretation of main factor effects

unclear in ANOVA [93]. To avoid this problem, we simulated the baseline attention map

by randomly choosing a pixel on the screen as the most attentive pixel.

3.5.3 Results

When the attention map generated with all components is used, the overall average of the

measured accuracies increased from 0.553 for A1 to 0.811 and 0.914 for A2 and A3, respec-

tively. The mean accuracies for the two independent variables, task (K) and environment

(V), are shown in Fig. 3.9, including the standard errors as the error bars. The visual

search task yielded higher accuracies than the free navigation task, with an overall mean

difference of 0.096, whereas the effect of the environment on the prediction accuracies was

rather weaker than that of the task.
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Fig. 3.9 Means and standard errors of the three estimation accuracies (A1, A2, A3) for
the task (free navigation versus visual search) and the environment (static versus dynamic)
factors.

Table 3.1 Source table of the within-subject 2×2×2 ANOVA, for the effects of task (K)
and environment (V).

A1 A2 A3

F1,15 p F1,15 p F1,15 p

K 34.75∗ <.0001 30.64∗ <.0001 22.80∗ .0002
V 1.31 .2700 3.36 .0866 7.40∗ .0158

K×V 3.59 .0776 6.93∗ .0188 22.17∗ .0003

Note: ∗p < .05.

These effects of task and environment were analyzed via a two-way within-subject ANOVA

for each accuracy measure, A1, A2, and A3, and the results are summarized in Table 3.1

where all the relevant statistics are shown. The effect of the task on all three accuracies

was statistically significant, with very small p-values. The effect of the environment was

statistically significant for A3, but not for A1 and A2. Even for A3, the p-value (0.0158)

was much larger than the corresponding p-value of the task (0.002). The interaction effects

between the task and the environment were statistically significant for A2 and A3, but not

A1. Simple effect tests conducted as post-hoc analysis showed that, for free navigation,

the mean accuracies in the static environment were significantly higher than those in the
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Fig. 3.10 Means and standard errors of the accuracies with and without B, E, and T for free
navigation (upper) and visual search task (lower), respectively.

dynamic environment (mean differences = 0.061 and 0.055, p = .0079 and .0004 for A2

and A3, respectively), whereas the differences between them were insignificant under the

visual search task condition (p = .7957 and .7687 for A2 and A3, respectively).

The relative contributions of the feature groups (B, E, and T) to attention prediction

were examined by three-way ANOVA. Since the environment factor had little effects on

the accuracies, the data were collapsed across the task factor. For the two types of tasks,

free navigation and visual search, we report the means of A1, A2, and A3 for the main

factors, B, E, and T, in Fig. 3.10. As expected, overall accuracies for visual search were
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Table 3.2 Means and standard errors of the estimation accuracies for the eight combinations
of feature groups (B, E, and T).

B E T A1 A2 A3

0 0 0 .156(.006) .272(.010) .359(.012)
1 0 0 .432(.011) .726(.011) .866(.008)
0 1 0 .459(.011) .746(.011) .880(.008)
1 1 0 .446(.011) .734(.011) .874(.008)
0 0 1 .561(.016) .815(.013) .915(.008)
1 0 1 .547(.015) .808(.012) .918(.008)
0 1 1 .554(.015) .812(.012) .914(.007)
1 1 1 .553(.015) .811(.012) .914(.007)

higher than those for free navigation, but other trends were similar. The existence of all

feature groups resulted in significant increases of accuracies in all conditions. In particular,

T group exhibited the largest increases. This indicates that the top-down contexts played an

instrumental role in correctly identifying attended objects.

The means and standard errors for all eight combinations of feature groups are provided

in Table 3.2. The data collected for the four conditions of the task and environment factors

were collapsed into a single data pool for analysis. In the table, B = 0 implies that the

B group features were not used for attention map generation, and B = 1 that the features

were used. E and T can be interpreted in a similar manner. The accuracies, except for the

baseline, varied from 0.432 (only B for A1) to 0.918 (B and T for A3). We can also confirm

that the accuracies showed the largest differences between conditions with and without

the top-down contexts. A 2×2×2 ANOVA performed with B, E, and T as independent

variables showed that all main and interaction effects were statistically significant (p <

.0001) for all accuracies.

3.5.4 Discussion

As discovered in earlier psychological studies [17, 75, 4, 89], human visual attention can

be directed at multiple objects (or split foci) at the same time. Therefore, it is inherently

difficult to precisely define a single object that a person stares at. Moreover, since the eye
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tracking device has inevitable errors (as high as 3 inches for a 42-inch screen), it was some-

times impossible to exactly pinpoint the attended object when several objects were closely

located and overlapped on the screen. Considering all these facts, our attention tracking

framework showed very promising results; the best accuracy was as high as 0.625 for a sin-

gle attentive candidate and 0.945 for three candidates. Our framework can be used to find

a single candidate (e.g., for direct gaze estimation required in depth-of-field rendering) and

multiple candidates (e.g., for gaze-contingent LOD management and automatic generation

of a camera path in VEs).

As expected, the specific task (free navigation versus visual search) imposed on the par-

ticipants resulted in statistically significant differences in attention estimation accuracies.

During free navigation, the participants were often more interested in perceiving the spa-

tial layout of an environment, rather than observing the details of objects. This must have

degraded the overall accuracies for the free navigation task. The post-hoc analysis for the

interactions between the two factors showed that this phenomenon makes attentional cap-

ture more difficult in the dynamic environment. For visual search, the participants more

focused on the objects rather than the overall environmental layout. Furthermore, even

when their attention was disrupted by the abrupt appearance of objects that were highly

salient in terms of the bottom-up features, their interest tended to immediately return to the

currently pursued objects, due to their long-term goals (i.e., visual search). Such behavior

is adequately reflected in our top-down context models, enabling good performance for the

visual search.

Among the three feature groups, the top-down factors (T) were shown to make the great-

est contribution to improving the attention prediction accuracies. This gives rise to an im-

portant insight for the use of a saliency map. That is, even though attentive candidates can

be partially estimated from a saliency map generated with only bottom-up features, correct

prediction of the most attentive objects is greatly facilitated by considering the top-down

contexts related to a user’s intention. Therefore, it is necessary to categorize the common

user behaviors in a VE (e.g., navigation, manipulation, and selection) and develop appro-

priate high-level context models to accomplish more precise prediction.
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There was one notable top-down behavior associated with the novelty of objects encoun-

tered during the analysis of the users’ gaze patterns. The first spatial context that emphasizes

the objects in the center of the screen was shown to be quite effective. However, after fin-

ishing the task (e.g., reading the numbers on the objects), the participant’s attention shifted

from the objects in the center of the screen to the boundaries of the screen to find a new

object to stare at, often moving to unexplored areas in the VEs. Including this behavior in

our spatial context model may significantly improve the accuracy of our framework. An-

other feature that is not included in our computational framework is the head movement of

a user. Tracking the movement of the user’s head may result in the same improvement in

the tracking accuracy, but this would require an additional device such as a camera or 3D

tracker. Note that in the present experiment, the user’s head had to be fixed on the chin rest

due to the restriction of the eye tracking device.

In addition, our experiment showed that a few features may have a key role in predicting

attention. If such key factors are selectively included in attention estimation without using

all the features, a reasonably high performance can still be attained (as demonstrated in Ta-

ble 3.2) reducing the computational cost. Also note that for some VEs, bottom-up features

may still be required, because top-down information and object-level segmentation are not

always possible (e.g., an image-based VE).

We also tested the effects of the saliency map size on estimation accuracy. In general,

using a small saliency map is expected to result in difficulties in correctly selecting small

salient objects. Using the data collected for the visual search task in the virtual undersea,

we tested four saliency map sizes (from 512×512 to 64×64) and computed the accuracies.

The results showed very marginal differences below 1%. This is due to the fact that the VE

used for the experiment included relatively large objects.



Chapter 4
Real-Time Depth-of-Field
Rendering Using Anisotropically
Filtered Mipmap Interpolation

This study aims at rendering DOF effects primarily for interactive virtual environments

(VEs). The most crucial requirement for employing DOF effects in virtual reality (VR)

is to guarantee sufficient and constant rendering performance; at least 60 frames/sec is re-

quired for DOF rendering alone, considering time for other operations such as stereoscopy,

collision detection, and simulation of other modalities. Among the previous methods, the

GPU-based post-filtering approach using downsampled images (called the pre-blurring ap-

proach) [26, 83, 87, 39, 29] is most plausible for this purpose. However, their quality loss

in exchange for rendering speed has been a problem for the use in VR applications.

This chapter presents a DOF rendering technique, based on the post-filtering, that accom-

plishes both remarkable real-time performance and acceptable image quality appropriate for

VR applications. Four representative images rendered by our method are shown in Fig. 4.1.

Our method extends the previous pre-blurring approach to one using a generalized mipmap

interpolation approach. Furthermore, we achieve convincing image quality by significantly

reducing three primary visual artifacts often present in the pre-blurring approach: bilinear

magnification artifact (a magnification artifact occurring due to the bilinear interpolation of

33



34

Fig. 4.1 Example images generated with our DOF rendering method and their depth maps
(in the bottom-left corner of each image). The three scenes except the “Forest” scene (at the
bottom right) were rendered in real time. The “Forest” scene was postprocessed in real time
from an offline rendered image. Our method generates realistic DOF effects without any
noticeable bilinear magnification artifacts, intensity leakage, and blurring discontinuity.

downsampled images), intensity leakage (pixel intensities in a focused area flowing into a

blurred area), and blurring discontinuity (discontinuity around blurred boundaries in front

of a focal plane). Major contributions of this chapter are summarized in what follows.

First, we propose a nonlinear mipmap interpolation technique for efficiently generating a

color with an arbitrary blurring degree for each pixel in an image. Most of the previous pre-

blurring techniques [26, 83, 87, 39, 29] approximate the thin-lens model [81] using linear

interpolation of original and downsampled images, while the blurring degree determined

by a CoC is nonlinearly related to the depth of a pixel. Our formulation accurately follows

the classic thin-lens model, as originally proposed by Potmesil et al. [81].

Second, we propose a filtering method for suppressing the bilinear magnification arti-

fact. Since the pre-blurring approach uses a texture lookup capability in the GPU, blocky

magnification artifacts commonly occur when one or two samples are used for a blurred

pixel [26, 39, 29]. Some of the previous methods [83, 87] tried to reduce the artifact us-

ing Poisson disk sampling, but introduced another artifact called “ghosting” that refers to
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the overlap of several copies of pixels. Our idea for this problem is to use special filtering

where the neighbor pixels for filtering are sampled in circular positions at a one-level lower

mipmap.

Third, we propose an anisotropic mipmapping scheme for reducing the intensity leakage.

Since most post-filtering methods use spatial filtering (or downsampling) regardless of pixel

depths, the blurred image inherently contains intensity leaks from sharp pixels. Although a

few previous methods based on heat diffusion [10, 49, 52] attempted to reduce this artifact in

the original resolution, additional computational cost made their real-time use very difficult.

Inspired by the Perona-Malik pyramid [79, 1], we efficiently preclude the effects of adjacent

pixels on the leakage through mipmap construction.

Fourth, we propose an improved and effective method for reducing the blurring discon-

tinuity (or depth discontinuity [26]) at blurred regions in foreground. The discontinuity

occurs due to missing directional information from different viewpoints within a lens (also

called partial occlusion [34]). This is an inherent limitation of all post-filtering methods

that use a single viewpoint, but such an anomaly should be alleviated for acceptable visual

quality. The previous technique such as blurring of a depth buffer [10] may cause artifacts

around the blurred boundaries. Our method blurs the amount of blurring instead of the

depth, and ensures the blurred boundaries in foreground look smooth.

Finally, all the methods listed above are completely accelerated using the GPU. Most

essential operations including blurring and intensity leakage prevention are performed in

reduced resolutions. The computation of anisotropic filter weights is a slight modification

of Gaussian weights. Therefore, our method is greatly faster than the previous methods

that have provided acceptable image quality, and the performance is comparable to the pre-

blurring techniques. For example, our method can produce DOF effects 180 frames/sec at a

1024×768 resolution for 3D models with 287k triangles, indicating sufficient performance

for typical VR applications.

The rest of this chapter is organized as follows. Section 4.1 describes our basic frame-

work using the nonlinear mipmap interpolation for real-time DOF rendering. Sections 4.2

and 4.3 extend the basic framework to reduce intensity leakage and blurring discontinuity,
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respectively. Implementation details are provided in Section 4.4, followed by rendering

results and performance statistics in Section 5.4. Section 4.6 discusses the applicability of

our work to VR systems and its current limitations.

4.1 DOF Rendering Based on Nonlinear Mipmap Interpolation

This section describes the basic structure of our GPU-based DOF rendering algorithm.

Given an image rendered with a pinhole camera model, the depth of a pixel is mapped

to a continuous mipmap level, and the final pixel color with the DOF effect is computed by

nonlinearly interpolating the pixel colors from discrete-level mipmap images. This basic

framework is further extended in Sections 4.2 and 4.3 for reducing intensity leakage and

blurring discontinuity, respectively.

4.1.1 Construction of Mipmap Pyramid

We first render a scene to two textures (one for color and the other for depth) whose di-

mension is the same as a frame buffer. A 16-bit floating-point texture is used to maintain

the precision of depth computation. Our framework uses the magnification of mipmap

images downsampled from the color texture to simulate spatial filtering. Since a hardware-

generated mipmap exhibits awkward aliasing in the enlarged images, we employ Gaussian

filtering during downsampling. The depth texture is used for computing a mipmap level

required for nonlinear mipmap interpolation.

Let I(l) be a mipmap image at level l and G be a Gaussian convolution operator with the

kernel size of 3×3. Beginning from an input image (l=0), the next level (coarser) mipmap

is rendered onto a quarter-sized image by

Ip(l) = G ∗ Ip(l − 1) = wG ∑
q∈Ω

G(q− p)Iq(l − 1), (4.1)

where p is a center pixel position, Ω is a set of the center and eight neighbor pixels, G(x) is

the typical Gaussian weight at an offset x. wG is the reciprocal of the sum of the Gaussian

weights.
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Fig. 4.2 The thin-lens model [81].

4.1.2 Computing CoC from Depth

Fetching a color from the constructed mipmap for each pixel begins with the computation

of CoC size from its depth using the thin-lens model shown in Fig. 4.2. Here, the image

distance, V, of an object located at P and the image distance, V f , of a focal position at P f

are related to the configurations of the lens and the object by

V =
Fd

d− F
and V f =

Fd f

d f − F
, (4.2)

where F is the focal length of a lens (typically 16.7 mm in an adult for an object at infinity

[57]). d and d f are the depths at P and P f , respectively. Then, for an effective lens size E,

the diameter of the CoC on the image plane (or the human retina), R, can be computed as

R = |V −V f |
E
V

=
(

EF
d f − F

) |d− d f |
d

. (4.3)

R can be further projected onto the diameter of the CoC on the screen in the pixel-space, C:

C = DPI
ds

dr
R, (4.4)

where DPI is the number of pixels per unit length (in our implementation, dots per mm),

and ds and dr denote the distances from the lens to the screen and the image plane, respec-

tively. Typically, dr=24 mm for an adult [84] is used in our computation.
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Fig. 4.3 A mapping from mipmap levels to the standard deviations of a Gaussian filter that
produces the most similar images in terms of RMSE.

4.1.3 Relating CoC to Mipmap Level

The pixel-space CoC diameter, C, represents the degree of blurring obtained by Gaussian

filtering at the original resolution. In our approach, the Gaussian filter is approximated using

magnification from a mipmap level to its original resolution. Since the blurring degree is

determined by the intensity distribution function in a CoC [81, 18], we should choose a

specific lens, such that its optical property matches the Gaussian intensity distribution with

a standard deviation, σ . In our implementation, a lens with σ = C/2 is chosen, and σ is

called the degree of blurring (DoB).

A quantitative relationship between σ and a corresponding mipmap level, m, can be

found by finding a best match in terms of pixel-wise root-mean-square error (RMSE) be-

tween a blurred image using the Gaussian filter and an image magnified from the mipmap.

Average results empirically obtained with the “Lena” and “Baboon” images are provided in

Fig. 4.3. The relation between m and σ can be approximated by

σ =
3
2
· 2m−1. (4.5)

Using this rule, we can define a continuous mipmap level index, m, related to σ , as

m =
{

0 ifkσσ < 0.5
1+log2(kσσ) otherwise

, (4.6)

where kσ (= 2
3 in our implementation, from (4.5)) is a scaling constant. The values of σ

such that kσσ <0.5 represent that the corresponding filtering has no blurring effect.
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4.1.4 Nonlinear Mipmap Interpolation with Circular Filtering

An adequately blurred pixel color can be obtained by magnifying a mipmap image at m to

the original resolution. A major difficulty in this step stems from the fact that, although m

is defined in a continuous range, a mipmap has discrete levels. Thus, an interpolation using

two integer mipmap levels, l =bmc and l+1, is required.

Once l and m are determined for a pixel p, a straightforward interpolation can be

Ip(m) = Ip(l)1−β Ip(l + 1)β, where β = m− l. (4.7)

However, when this interpolation is implemented using the built-in bilinear magnification,

it may exhibit some blocky artifacts that can cause temporal flickering in dynamic scenes.

This magnification can be improved using cubic interpolation [11], but with heavy compu-

tation.

Our strategy is to blend neighbors at the one-lower mipmap level, m−1:

Ip(m) = wG ∑
q∈Ω

G(q− p)Iq(l − 1)1−β Iq(l)β. (4.8)

This equation uses finer mipmap images that contain more image details, and thus, results in

magnification quality much better than that of cubic interpolation using the source pixels at

level m. Moreover, this technique requires only eight additional texture lookup operations

per pixel compared to the 16 operations of cubic interpolation (one for weights and 15 for

neighbor pixel colors).

Another technique we use for quality improvement is to change the sampling positions

to follow a unit circle as shown in Fig. 4.4b. In general, the bilinear interpolation artifacts

are worst at pixels corresponding to edges in a lower resolution image. When such a pixel

is sampled from a non-edge position, the artifact can be suppressed. For example, a pixel

at the upper right is sampled from ( 1√
2
, 1√

2
) instead of (1, 1) (see Fig. 4.4). We find that

this simple technique greatly improves magnification quality. Fig. 4.5 shows a comparison

between images magnified using the bilinear magnification and our method.
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(a)Rectangular sampling. (b)Circular sampling.

Fig. 4.4 A comparison between (a) rectangular sampling and (b) our circular sampling for
Gaussian filtering. In the circular sampling, diagonal samples (red points) are located more
closely toward the center.

(a)Bilinear interpolation. (b)Circular filtering.

Fig. 4.5 A comparison of DOF effects with (a) bilinear magnification and (b) our magnifica-
tion method with finer mipmap images and the circular blending. The bilinear magnification
yields severe jagged artifacts, while ours almost removes the artifacts and well maintains
the object shapes.

4.2 Anisotropic Mipmap Construction for Intensity Leakage Reduc-
tion

In this section, we extend the basic framework (described in Section 4.1) to further reduce

intensity leakage using an anisotropic Gaussian filter. Since our anisotropic filter, unlike the

isotropic mipmapping, uses DoB (σ) and depth values at each mipmap level, we also build

isotropic mipmaps for depth and DoB, and denote them by Z and B, respectively.

In principle, intensity leakage occurs when focused pixels are blended during Gaussian
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(a)Isotropic Gaussian filter. (b)Anisotropic Gaussian filter.

Fig. 4.6 An illustration of the two 3×3 Gaussian filters used during mipmapping. The
elevated pixels represent sharp pixels (lower σ than other pixels), and the arrows indicate
the direction of intensity flow.

filtering for pixels behind the focal plane (i.e., background), whereas the focused pixels have

small CoCs and thus hardly affect their neighborhood. Hence, if we preclude the effects

of the focused pixels when building the mipmap of color, the leakage can be effectively

removed. Fig. 4.6 illustrates how pixel intensities flow during building a mipmap with 3×3

isotropic and anisotropic Gaussian kernels. In Fig. 4.6b, if a neighbor pixel has a DoB lower

than its center pixel (higher sharpness; σq < σp), the pixel is not blended, because it has a

smaller CoC than the center pixel (the upper three pixels). On the other hand, if a neighbor

pixel has a DoB larger or equal to that of the center pixel (less sharp; σq ≥ σp), the pixel is

blended for proper blurring (the other five pixels).

This behavior can be implemented by simply replacing the isotropic Gaussian operator

G in (4.8) with an anisotropic Gaussian operatorH defined as

H(p, q, l)={
0 if σp(l)>σq(l)+δand Zp(l) > Z f
G(q− p) otherwise

,
(4.9)

where σq(l) and σp(l) denote the DoBs at mipmap level l, and Zp(l) the depth at l. δ

is a slight offset for allowing neighbor pixels with similar DoB values to be included in

blurring. The second condition (Zp(l) > Z f ) means that the leakage is prevented only

for background pixels. Fig. 4.7 shows comparative results generated by the isotropic and

anisotropic mipmapping.

The use of the anisotropic Gaussian filter is better than the previous pre-blurring ap-

proach [26, 83, 87, 39, 29] in terms of resulting image quality and than the anisotropic
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Fig. 4.7 A comparison of the results generated by the isotropic and anisotropic Gaussian
mipmapping. The intensity leakage around the sharp area (leaked brown colors in the left
image) was greatly reduced in the right image.

diffusion approach [10, 49, 52] in terms of rendering performance. Since the downsampled

images already contain intensity leakage, remedies in the magnification step [87] cannot be

very efficient nor accurate. Instead, we have chosen to preclude the leakage during down-

sampling. The anisotropic diffusion requires a great deal of iteration, even for a moderately

blurred scene. In contrast, our method performs leakage prevention in lower resolution, and

the computational cost is only dependent on the number of mipmap levels. As a conse-

quence, our method guarantees stable performance suitable for real-time applications, with

significantly reduced intensity leakage.

The anisotropic Gaussian filter can also produce a minor artifact. The filter is a kind

of simplified bilateral filter [3, 92] and tends to preserve edges around focused and back-

ground areas, although background edges should be filtered out for proper blurring effects.

We, however, note that the preserved background edges cannot be easily perceived when

magnified to the original resolution, due to the smoothing effect of the magnification itself.
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4.3 Smoothing Foreground Boundaries

In this section, we explain a method for smoothing discontinuous foreground boundaries.

Since the majority of post-filtering techniques use a single color/depth image, partially vis-

ible areas behind foreground objects cannot be accurately rendered. This limitation may

cause objectionable artifacts where blurred boundaries around the foreground look discon-

tinuous. We alleviate the artifact, without additional visibility information, by improving

the previous depth buffer blurring method [10] and merging it to our mipmap framework.

Note that reading a pixel from a specific mipmap level corresponds to blurring of the pixel.

In our framework, a partial occlusion effect can be approximated by fetching blurred

colors for pixels around the foreground and its boundaries. In (4.6), a mipmap interpolation

level, m, was determined from a discontinuous DoB value, σ(0) (see Fig. 4.8a). Hence, if

we fetch σ from a higher mipmap level, n, instead of σ(0), the foreground boundaries can

be smoothed (see Fig. 4.8b). In addition, n should be higher for only around foreground

objects to maintain non-occluded areas sharply.

Observing that a focused pixel can be occluded by nearer foreground neighbor pixels, we

store the highest DoB value among the pixels. We call this value the degree of foreground

neighbors’ blur (DoN; ρ), and build the mipmap of DoN, N, as

ρp(l) =

{
max
q∈Ω′

σq(l−1) if Ω′ 6= null

0 otherwise
, (4.10)

where Ω′ denotes a subset of Ω containing foreground neighbor pixels (Zq < Z f ) nearer

than the center pixel (Zq < Zp). If a DoN value is taken and magnified (using the circular

filtering) at the highest mipmap level, M, this value (i.e., ρ(M); see Fig. 4.8c) can be used

for finding the foreground objects and their boundaries that may occlude non-foreground

areas.

These conditions are satisfied by defining n as

n =
{

0 if kσρ(M) < 0.5
1+log2(kσρ(M)) otherwise

. (4.11)

This is equivalent to (4.6) but applied to the mipmap of DoB instead of color. As a result, n

for a foreground pixel is determined from a higher (coarser) mipmap level (kσρ(M)>0.5;
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(a)σ(0) (b)σ(n) (c)ρ(M)

Fig. 4.8 DoB and DoN textures: (a) an original DoB image, (b) a DoB image foreground-
smoothed using ρ(M), and (c) a DoN image read from the highest mipmap level, M. Note
that the background pixels in ρ(M) are black (i.e., ρ(M)=0). The images were scaled for
illustration.

non-black pixels in Fig. 4.8c) of B, and n is smoothly changed from the foreground to the

boundaries. On the other hand, n for a background or focused pixel is determined from the

level 0 (kσρ(M) ≤ 0.5; black pixels in Fig. 4.8c), which allows non-foreground DoBs to

be maintained sharply. As a consequence, a DoB image is smoothed for only foreground

and its boundaries, and the discontinuity can be practically removed. Fig. 4.9 highlights the

difference between images rendered using discontinuous and smoothed DoBs.

Compared to the blurring of a depth buffer [10], our smoothing technique is a great

improvement in the following aspects. First, our method does not cancel DoBs where the

foreground and background meet, owing to the blurring of DoB instead of depth. Second,

our method using the circular filtering shows no bilinear artifacts in the blurred DoBs.

Finally, our method can smoothly blend the occluded focused area with the non-occluded

focused area, whereas the depth blurring method cannot blend the two areas easily (no

details presented in [10]).
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(a)Discontinuous foreground. (b)Smoothed foreground.

Fig. 4.9 A comparison of the results generated with (a) discontinuous DoBs and (b)
smoothed DoBs using our method. The blurring discontinuities are significantly reduced in
the right image.

4.4 Implementation Details

The DOF rendering algorithm presented has been implemented using the OpenGL and the

OpenGL Shading Language [50]. The computational procedure consists of five steps as

illustrated in Fig. 5.2 with the circled numbers representing each step.

In step 1, the graphics engine renders color, depth, and DoB to two floating-point tex-

tures, I(0) and ZBN(0) (DoN is not defined in this step). The three channels (usually

for “red-green-blue”) are used for Z, B, and N. In order to avoid redundant model ren-

dering, I(0) and ZBN(0) are simultaneously rendered using multiple-render-target (MRT)

capability in the GPU, which involves the use of multiple textures as output targets.

In step 2, ZBN is built in parallel using ZBN(0) as a source. Z and B are downsampled

using the isotropic Gaussian filtering, and N is down-sampled using a maximum DoB value

among foreground neighbor pixels. The rendering of sub-maps begins from the level one

(i.e., quarter-sized map), and continues to the level corresponding to the maximum DoB,

σmax.

In step 3, I is built using the anisotropic Gaussian filtering. During the downsampling,
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Fig. 4.10 The overall framework of our DOF rendering applied at every rendering frame.

the depth and the DoB values read from ZBN are used for computing the anisotropic filter

weights. In practice, steps 2 and 3 can be simultaneously executed in a single shader using

MRT capability to avoid redundant rendering and texture lookup operations for depth and

DoB.

In step 4, the DoB image, B(0), is smoothed using the mipmap of DoN, N. We first read

and magnify the DoN value, ρ(M) (i.e., N(M)), from the highest mipmap level with the

circular filtering (using 5-point or 9-point samples). Next, we read the DoB value, σ(n),

from the mipmap level, n, that corresponds to ρ(M). This smoothed DoB, σ(n), is used to

determine the interpolation level, m, for color.

In step 5, a result image with a DOF effect is produced by interpolating the two pixel val-

ues read from the color mipmap. To remove the bilinear artifacts we sample 16 (2 levels ×
8 offsets) additional neighbors using the circular offsets. The two texture lookup operations

for reading pixels in the adjacent mipmap levels can be performed in one operation using

the mipmap biasing [50] that directly reads a sub-image at a non-integer mipmap level.

Thus, 18 texture lookup operations are reduced to 9 operations. We tested and confirmed

that the difference between the results of the mipmap interpolation and the mipmap biasing

is marginal.
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4.5 Results

In this section, we report the image quality and rendering performance of the proposed

DOF rendering framework and compare them to those of recent GPU-based post-filtering

methods.

4.5.1 Rendering Quality

We have compared our implemented framework to recent real-time post-filtering tech-

niques: Kraus et al. [53], Zhou et al. [103], and Scheuermann [87], which are based

Fig. 4.11 A comparison of background-blurred images rendered by our method and three
recent GPU-based methods [87, 103, 53]. The nearest can is focused. The reference image
was rendered by the accumulation buffer method [43], and used for computing PSNRs.
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on the pyramidal image processing (similar to our mipmap approach but using multiple

layers), the separable Gaussian filtering, and the pre-blurring, respectively. The accumu-

lation buffer method [43] was also implemented for the reference of image quality. We

did our best to balance minor differences among the methods for fair comparisons; for ex-

ample, in Kraus’ method we used eight layers for producing similar blurring degrees. In

addition to subjective comparisons, visual quality was assessed in terms of peak signal-to-

noise ratio (PSNR) that is a common objective quality metric. The PSNR was computed

as 10 log10(2552/MSE) where MSE represents the mean squared error for the reference

image rendered by the accumulation buffer method.

We first report the image quality of background blurring, primarily to illustrate intensity

leakage. Fig. 4.11 shows the result images for the “Cans” scene focused on the nearest

can. The intensity leakage was observed in the result by Scheuermann’s method only (red

colors are spread over the outer boundary of the focused can; see Fig. 4.11f). Regard-

ing blurring quality, our method generated a natural image without objectionable artifacts

including the bilinear magnification artifacts. Other methods, however, revealed some arti-

facts specific to each. In that of Kraus et al., overall colors seem slightly brighter than the

others (see Fig. 4.11d), resulted from the repeated inclusion of identical pixels into multiple

layers. That of Zhou et al. appeared to be irregularly blurred and distorted (see Fig. 4.11e),

caused by the violation of the separability of the Gaussian filter—their filter is not sepa-

rable. Scheuermann’s failed to achieve accurate blurring degree; their image seemed like

a mix of the original and much blurred images rather than an adequately blurred one (see

Fig. 4.11f). This is because their method used no intermediate blurring information. The

computed PSNRs also confirmed the quantitative differences. Our method created an im-

age most similar to the reference (PSNR=37.66 dB), whereas the others showed relatively

lower PSNRs (25.89 dB, 31.65 dB, and 25.50 dB, respectively).

Fig. 4.12 illustrates the quality of foreground-blurred images. The “Sponza Atrium”

scene was used for comparison, with a focus on the “Neptune” statue. It can be seen that

all methods including ours failed to achieve correct partial occlusion effects (the reference

is shown in Fig. 4.12b); particularly, sharp and semitransparent focused areas were not
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Fig. 4.12 A comparison of foreground-blurred images rendered by the same methods in
Fig. 4.11. The farthest wall is focused.

handled correctly. For the blurring discontinuity, the methods of ours and Kraus et al.

could maintain smooth boundaries around the foreground objects, while those of Zhou et

al. and Scheuermann failed to do so. Moreover, Scheuermann’s showed clear bilinear

magnification artifacts. Although the method of Kraus et al. has an advantage for partial

occlusion effects due to the boundary extrapolation used, it resulted in distorted colors (their

image was also brighter than the others) that can degrade the image quality. These quality

differences were well reflected into PSNRs, where our method showed better image quality

(35.41 dB) than the others (24.43 dB, 31.63 dB, and 28.66 dB, respectively).
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Fig. 4.13 The evolution of blurred appearance. When the mean CoC diameter (C̄) is equal
to or less than 16 pixels, the artifacts do not stand out.

Our framework is not perfect with regard to partial occlusion. In principle, the focused

area partially occluded by foreground objects should be sharply and semitransparently rep-

resented (as shown in Fig. 4.12b). Our method, however, may fail especially for high blur-

ring degree. An example is given in Fig. 4.13 where unnatural partial occlusion rendering

appears for the mean CoC diameter (C̄) larger than 16 pixels. This tendency was common

to many cases we tested. This limitation results from the use of a single color/depth image

as an input [6]. The mean CoC diameter less than 16 pixels is usually sufficient for simu-

lating DOF effects in a human eye, but can be insufficient for simulating a camera system

with a large aperture.

The last quality issue is temporal flickering that may occur when downsampled images

for blurring are used in dynamic environments. We have tested each method for interactive

navigation. The method of Zhou et al. showed no flickering. In our method, flickering was

observed only for much blurred scenes (e.g., the mean CoC diameter larger than 32 pixels),

since more than eight neighbor pixels seem to be necessary in our circular filtering for such

cases. In contrast, Scheuermann’s method exhibited severe flickering due to the bilinear
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magnification. The same is applied to Kraus’ method especially around the boundaries of

focused areas, due to the use of coarser images for extrapolation. In summary, the methods

of Zhou and ours are adequate for dynamic VEs with respect to temporal flickering.

To summarize, our method simulates realistic DOF effects in an image without notice-

able artifacts including bilinear magnification artifact and intensity leakage. Despite miss-

ing directional information, image quality on foreground blurring is acceptable for moder-

ately blurred scenes. Furthermore, in such a blurring range, our method does not exhibit

temporal flickering in dynamic environments.

4.5.2 Rendering Performance

We measured the rendering performance of the four methods in terms of frame rate. The test

was performed on an Intel 2.67 GHz Core2Duo machine with an nVidia GeForce 8800GTX

at 1024×768 display resolution. The accumulation buffer method was excluded, since it

requires at least 1 sec per image. Four scenes, “Forest”, “Cans”, “Elephants”, and “Sponza

Atrium”, shown in Fig. 4.1 were chosen for various scene complexity. The numbers of

triangles were 2 (a quad for the rendered image), 287,695, 456,114, and 2,061,886, respec-

tively. Focal parameters were controlled so that the mean CoC size, C̄, changed from 4 to

128 pixels.

Fig. 4.14 shows the benchmark results. The method of Scheuermann was the highest due

to its simplicity. Our method ranked the second, with frame rates higher than 90 frames/sec

even for the most complex scene. The performance was also independent from the size of

CoC. The method of Kraus et al. was the slowest with the best frame rate lower than 30

frames/sec, indicating that it cannot be used for real-time VR applications. The performance

of Zhou et al. had significant correlation with the CoC size. Its frame rate was the highest

for small CoCs but rapidly dropped to be slower than our method with increasing CoC.

To sum up, our method demonstrated a balanced performance between the speed and the

independence from the degree of blur, proving its adequacy to VR applications.

Finally, the results of formal analysis on the computational costs of the four methods

with respect to the number of texture lookup operations (the most relevant bottleneck in a
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Fig. 4.14 Performance comparison in terms of frame rate for the four methods: ours, Zhou
et al. [103], Scheuermann [87], and Kraus et al. [53].

GPU program [10, 103]) are summarized in Table 4.1. A scene where a maximum CoC

diameter is 16 pixels at 1024×1024 display resolution is used for the comparison. Oper-

ations required for model rendering are excluded. All methods except ours used a RGBA

color/depth texture where the depth is stored in the alpha channel, while ours used a ZBN

mipmap to read a depth. The table shows that our method requires only 20.98 units (1 unit =

1,048,576 = 1024×1024 operations), which is much smaller than those of the other methods

(24.03, 27.00, and 173.02 units, respectively). This is because in our method most opera-
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Table 4.1 Examples for the number of texture lookup operations required in GPU programs
for the four methods. The largest CoC is 16 pixels (σmax = 8) at a 1024×1024 display
resolution. 1,048,576 (= 1024× 1024) operations are considered one unit.
Method Total Intermediate operations Units required to an operation

units

Ours 20.98

Building the mipmap of depth, DoB, and DoN 9×(1/22+1/42+1/82+1/162)
Building the mipmap of color 9×(1/22+1/42+1/82+1/162)
Smoothing foreground DoB with 5-point 6
circular filtering
Mipmap interpolation (biasing) with 9-point 9
circular filtering

[87] 24.04

Downsampling and Gaussian filtering of color to 9×(1/162)
1/162 size
Reading the original color/depth during blending 12
Reading the downsampled color during blending 12

[103] 27.00
Reading the original color/depth during horizontal 4×2+1
filtering
Reading the blurred color and the original depth 2×(4×2+1)
during vertical filtering

[53] 173.02

Culling of foreground pixels 8
Analyses for disocclusion and pyramidal blurring 8×20×(1/22+1/42+1/82+1/162)
Syntheses for disocclusion and pyramidal blurring 8×9×(1+1/22+1/42+1/82)
Matting of the disoccluded sub-images 8
Blending of the blurred sub-images 8

Note. For Scheuermann’s, 12-point sampling was used in the final blending step. For that of Zhou et al., the
mean CoC radius was assumed to be 4 pixels, requiring 9 (=4×2+1) iterations. Kraus’ method used 8 layers.
Implementation details for each are found in [87, 103, 53].

tions except the final blending are carried out in coarser resolutions. Our method also has

additional overhead for building and copying mipmaps by rendering multiple view-ports,

which results in the final performance shown in Fig. 4.14.

4.6 Discussion

We have shown that our DOF rendering framework satisfies both acceptable image quality

and sufficient rendering performance that are appropriate to our target, VR applications.

Our method yields accurate results that cannot be easily distinguished from those of mul-

tipass rendering, except for scenes with a high blurring range (e.g., C̄ > 16; see Fig. 4.13
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again). In such scenes some artifacts may occur due to the lack of information required for

correct handling of partial occlusion, and this is an inherent limitation of the post-filtering

approach. We, however, argue that such high-degree blurring is very rare in VR applica-

tions. Suppose that we use a projection display located at 3 m in front of the user’s pupil,

and that its resolution and dimension are 1024×768 and 3.2 m× 2.4 m, respectively. Using

the typical lens parameters of the human eye [84], we have the following numbers: dr=24

mm, E=4 mm, F=17 mm, ds=3000 mm, ds/dr=125, and DPI=0.32 pixels/mm. Consid-

ering the shape of the CoC function [53], objects producing maximum CoCs are mostly

located at the nearest distance from the eye. If the nearest distance is 300 mm (d=300 mm),

the maximum CoC diameter computed by (4.4) does not exceed 10 pixels. This indicates

that our DOF framework can be used for VR applications without quality issues.

Another expected advantage of our DOF rendering is related to the depth cue in a VE.

A DOF effect in an image is regarded as a relative depth cue rather than an absolute depth

cue [69], similarly to other pictorial depth cues (e.g., relative size, texture gradient, and

occlusion). In particular, perceiving the relative order of objects is greatly facilitated by the

DOF effects [64, 68]. However, sharply maintained foreground boundaries in the previous

post-filtering techniques often make this judgment ambiguous. The correct judgment of the

relative order requires foreground boundaries to be blurred over focused objects [64]. Since

our method uses different blurring behaviors in the background and foreground by smooth-

ing foreground boundaries, we anticipate that our method can help the correct judgment of

the relative depth order of objects located in a VE.

Our current framework does not support various point-spread functions (PSFs; also

called the intensity distribution functions [18]) of a lens. The PSF of a lens controls the

appearance distorted by the aperture shape or the aberration of a lens (called the “bokeh”

[70]). The bokeh effect can be realized by stochastic sampling that follows a specific PSF

[14], but our framework only supports Gaussian PSF. This is because our method approxi-

mates the spatial filtering using coarser images that do not allow stochastic sampling. This

limitation, however, is common in the pre-blurring (using downsampled images) or iterative

filtering techniques that approximate spatial convolution.



Chapter 5
Real-Time Depth of Field
Rendering using Point Splatting
on Per-Pixel Layers

This chapter presents a real-time high-quality DOF rendering algorithm that provides the

convincing partial occlusion effect without other major artifacts such as the intensity leak-

age. Two representative examples rendered by our method are shown in Figure 5.1. To ob-

tain the missing information on the occluded area, an additional pinhole image is rendered

and combined with the visible image in a way to create proper partial occlusion effects.

The composition with the hidden image requires a layered representation such as the scatter

method [81] (also called the splatting) or the composition of discrete layers [8, 53]. How-

ever, the two methods have some difficulties to be directly used for our purpose. Since the

scatter method requires costly depth sorting of entire pixels, its real-time use is still chal-

lenging. The layer methods well approximate the depth sorting using a few discrete layers,

but have another quality problem called the discretization artifact [6]. This artifact refers to

a band-like artifact appearing in objects separated across multiple layers that do not reflect

local depth variation.

Our algorithm is a GPU-based method that combines the advantages of the scatter and

layered approaches. Instead of globally defined layers, our method defines three per-pixel

55
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Fig. 5.1 Two example images generated by our DOF rendering method. The upper im-
age shows no intensity leakage, and the lower image shows a partial occlusion effect with
defocused highlights of a hexagonal aperture.

layers according to the depth order of a source pixel (scattered from a pinhole image) rel-

ative to the destination pixel (to be blurred). This allows even a long object to be decom-

posed into coherent layers. The visible and hidden images are separately splatted to the

per-pixel layers, and then properly blended. As a consequence, our algorithm can produce

a high-quality partial occlusion effect. In particular, a sharply focused area occluded by the

foreground is semitransparently represented with its accurate colors.

Another feature of our framework is the amenability to the simulation of photorealistic
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Fig. 5.2 Overview of our DOF rendering framework.

bokeh (distortion of a defocused area) and defocused highlights (specular highlights stand-

ing out more from blurred areas). These effects can be easily created using the texturing

extension of GPU point sprites.

Major contributions of this chapter can be summarized as: (1) a new DOF rendering

algorithm using the per-pixel layer decomposition, (2) a method to generate the partial

occlusion effect using an occluded pinhole image, (3) a real-time GPU implementation of

the intensity scatter algorithm, and (4) its application to the bokeh and defocused highlights.

5.1 Depth-of-Field Rendering Algorithm

The procedure of our DOF rendering framework at run-time is illustrated in Figure 5.2.

The circled numbers represent independent steps running on separate GPU programs. First,

given a 3D scene, a typical pinhole color/depth image, V, is rendered to a floating-point

RGBZ texture using a special GPU program that simultaneously renders color and depth.

Second, another color/depth image, H, is rendered for partially occluded areas using an-

other GPU program (Section 5.1.2). Third, the two pinhole images are separately blurred
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using the point splatting (Section 5.1.3). During the splatting, the source pixels of each

sprite are written to one of the three layers according to its relative order for the destination

pixel depth (Section 5.1.4). In the last step, the blurred layers are alpha-blended and nor-

malized in the descending order of layer depths (Section 5.1.5), and then the final image is

obtained. The subsequent sections present more details.

5.1.1 Relating Depth to CoC

We first describe how to compute a CoC diameter from the depth of each pixel, which is

frequently used in the subsequent computations. The computation of the CoC diameter, C,

follows the same procedure as that described in Section 4.1.2. The only difference is that

we do not store C to a texture. Instead, the CoC diameter is computed on demand.

5.1.2 Rendering of Partially Occluded Area

In addition to a normally rendered visible color/depth image (V), we render an additional

color/depth image (H) that contains pixels occluded by the visible pixels. This image is

greatly useful for producing semitransparent sharp areas behind the blurry foreground. In

typical model rendering, hidden surfaces are overwritten due to the depth test in the fixed

rendering pipeline. Thus, in order to render the hidden surfaces, a special fragment shader is

required, which is similar to the typical fixed-pipeline shader but performs three additional

depth tests using V as follows.

Let Zv be the depth of a pixel in V, and Z′ be the depth of a fragment being processed

by the new shader. First, a fragment close enough to the visible pixel (Z′ < Zv + ε) is

rejected. Since we use a single hidden image, a small offset, ε, is controlled such that

the fragments belonging to the same object are rejected but those belonging to the second

nearest object should pass the test for avoiding artifacts. In our implementation, ε=0.05

(on the normalized scale) worked well for most cases. Second, if the visible pixel is in

the background (Zv > Z f ), the fragment is rejected, because partial occlusion is scarcely

perceived in the background. Finally, a completely hidden fragment is rejected, which

incurs redundant splatting overhead. If a depth change in the neighborhood of a visible



5.1. DEPTH-OF-FIELD RENDERING ALGORITHM 59

Fig. 5.3 Smooth intensity decrease in the splatted image using CoCs of a 24-pixel diameter
for the boundary of the white rectangle. The distance from the edge to the inner area of the
full intensity is roughly same to the radius of the CoC.

Fig. 5.4 Accepted pixels after the first and second depth tests (left), and the third test (mid-
dle) for the Elephant scene (right). The farthest zebra is focused.

pixel (roughly a CoC; see Figure 5.3) is very small, the splatted intensity in the pixel is

saturated to one. In that case, the occluded fragment becomes completely invisible due to

alpha blending (explained later in Section 5.1.5).

In order to detect the depth change around a pixel position, p, the following operator is

applied:

L(p) = ∑n∈Ω(Zv(n)− Zv(p))/NΩ, (5.1)

where Ω is a set of neighbor pixels, and NΩ is the number of elements in Ω. This oper-

ator is exactly the same as the Laplacian filter (for edge detection), but, instead of typical

4 neighbors, we use random samples within the CoC of p (e.g., 12 Poisson disk samples
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[21]). If L(p) is less than a small threshold (e.g., 0.01 on a normalized scale), the fragment

is rejected as completely hidden. Although some fragments accepted in this test may be in-

visible, they are also removed later during the final blending. Figure 5.4 shows the example

images of pixels accepted with the consecutive tests.

5.1.3 Image-Space Point Splatting

This section describes how V and H are blurred using the point splatting. The point splat-

ting is a common technique to render a sprite for a 3D point using point sprites present in

the GPU, which enlarges a point to a multi-pixel square. The texturing extension of point

sprites allows drawing of a circular CoC, even for complex IDFs for bokeh effects.

Given an image, each pixel is mapped to a point in a screen-aligned point array whose

dimension is the same as that of the image. When these pixels are enlarged to the size of

their CoCs, the overlapped colors stand for the blurred colors.

Due to the scatter of a single pixel on a multi-pixel circle, its intensity should be de-

creased by its area such that the sum of intensities is equal to one. This intensity decrease

is reflected to the alpha channel of the pixel in a sprite (note that the pixel format of a sprite

is RGBA unlike RGBZ of V and H). Let p be the source pixel of a sprite, and q be the

destination position to be written. The alpha value at q, A(p, q), is proportional to the

reciprocal of the CoC area with the diameter, C(p), as:

A(p, q) = kn/C(p)2, where ‖q− p‖ ≤ C(p)/2. (5.2)

kn is a scaling constant determined by an IDF. For example, a uniform IDF (ideal IDF [18])

uses kn=4/π . In order to apply various bokeh patterns, IDFs are stored into textures and

read back in the fragment shader.

The problem here is that whereas C(p) is defined in a continuous range, a sprite is

rasterized into discrete pixels, relying on specific GPU implementation. The left image in

Figure 5.5 shows examples of such rasterization patterns when the point of intensity one

is splatted for each discrete C (from 1 to 9). Thus, instead of directly using kn=4/π , we

need to compute kn(C) for each C such that the sum of pixel intensities is one (see the right
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Fig. 5.5 Example rasterization patterns and scaling constants in terms of a point size for the
uniform IDF.

graph in the figure). The kn(C) values are stored in a look-up table (1-D texture) prior to

execution, and are read back in the vertex shader at run-time.

Each overlapping sprite is blended using simple accumulative alpha blending. In OpenGL,

alpha blending factors are given by GL SRC ALPHA, ONE, ONE, ONE for source color,

source alpha, destination color, and destination alpha, respectively. Since the single layer

splatting blurs a focused boundary and the hidden pixels cannot be represented, we extend

the process to the per-pixel layered splatting.

5.1.4 Splatting on Per-Pixel Layers

A layer decomposition technique considering local depth variation is explained in this sec-

tion. In general, local depths around a pixel have the following properties: (1) partial oc-

clusion occurs around where adjacent depths of a pixel abruptly change, and (2) the depths

are concentrated on a few narrow ranges in most cases. Based on these observations, we

group source pixels of similar depths in the incoming sprites to three layers for each desti-

nation pixel. When the layers are properly blended (Section 5.1.5), the partial occlusion and

sharply focused boundary are effectively handled. Due to relying on local depth variation

rather than global layers [8, 53], our method is mostly free of the discretization problem,

and the reduced layers can generate the effects similar to those by a number of global layers.

More specifically, an incoming source pixel from p is assigned to one of the three—in

front of (l=0), at the same depth (l=1), or behind (l=2) the visible pixel at q—layers, as
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Fig. 5.6 An example of the layer decomposition.

follows.

l(p, q) =


0 B(p)− Bv(q) < −δCv(q)
1 |B(p)− Bv(q)| ≤ δCv(q)
2 B(p)− Bv(q) > δCv(q)

, (5.3)

where B is a signed version of C (i.e., B=K(Z−Z f )/Z, K=DPI(ds/dr)EF/(Z f−F)). B(p)

is computed from the image currently being processed (V or H), and Bv(q) and Cv(q),

from V. δ is a constant for determining whether the incoming pixel from p belongs to the

same depth group as q. These conditions smartly control the decomposition according to

the blurring degree at q; that is, if Cv(q) is relatively small, layers are strictly decomposed,

but otherwise are loosely decomposed. Regarding the use of δ, δ that is too small assigns

the pixels belonging to the same object to different layers, which causes the discretization

problem. Conversely, δ that is too large assigns most pixels to a single layer, resulting in

no partial occlusion. For most examples in this chapter, empirically chosen δ (0.3∼0.5)

worked well.

According to the index, l, each processed fragment for V is written to one of the three

layer images, L0, L1, or L2, and, similarly for those of H, to M1 or M2. For H, M0
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Fig. 5.7 Example images blended without (left) and with (right) normalization. Darker and
brighter regions in the left image were correctly normalized in the right image.

is not defined, because hidden pixels do not occlude any pixels. This separate writing

is implemented using the multiple-render-target capability in the GPU. Figure 5.6 shows

example images of the splatted layers. We can observe that the portions of sprites affecting

neighbor pixels are well written to the separate layers, even for depth variations in a small

area.

Note that we consider only three layers for real-time implementation. Hence, if more

than three depth groups are present around a pixel, a hidden area may not be well repre-

sented. However, this problem rarely occurs in practice, unless many thin objects overlap

together (see Figure 5.11, for example). If not constrained by a real-time use, this prob-

lem can be accurately resolved by additional depth scatter for finding multiple depth layers

(possibly, with clustering of the scattered depths).

5.1.5 Composition of Layers and Normalization

The final step for the DOF rendering is the composition of the blurred layers. The compo-

sition follows typical sorted blending from farther to nearer layers [8, 53]. Prior to compo-

sition, M1 and M2 are simply added to L1 and L2, respectively, because they are mostly in

similar depths. Then, the images are blended via the following three steps.

D ← L2

D ← L1 + (1− L1
a)D

D ← L0 + (1− L0
a)D

, (5.4)
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where D is the accumulating image, and L0
a and L1

a are the alpha components of L0 and

L1, respectively. Here, D in each step has “hyper” and “hypo” intensities [72] due to the

overlapped CoCs of various sizes (see bright/dark regions in Figure 5.7). Thus, non-zero

pixels in each D are divided by their alpha so that each alpha value becomes one. Figure 5.7

shows a result of the normalization process.

5.2 Defocused Highlights

Additional feature of our DOF rendering is the simulation of defocused highlights that occur

due to the high intensity contrast in real illumination. This effect plays an important role for

artistic photorealism, with various bokeh shapes. However, it cannot be well represented in

a typical LDR image. In a LDR image, the incoming light intensity exceeding the maximum

pixel value (e.g., 1) is truncated to the maximum, and thus the intensity of the resulted CoC

becomes smaller than that of the original CoC.

Thus, in order to attain correct defocused highlights, a non-truncated HDR image is

required. If so, rendering of the effect is straightforward, similarly to the case of the motion

blur with a HDR image [25]. Instead of splatting on the truncated image, the splatting is

applied on the HDR image, and then the resulting image is tone-mapped to an LDR image.

Figure 5.8 shows example images. Reinhard tone-mapping [82] (a = 0.72) was applied

before and after splatting for the left and right images, respectively.

Furthermore, although an LDR image lacks accurate intensities, we can mimic the effect

using a common trick that extrapolates intensities of bright areas, as described in [55]. For a

pinhole LDR image, the color of each pixel, F, is extrapolated by the successive operations

as follows.
λ = 0.3 Fr + 0.59 Fg + 0.11 Fb
λn = (λ− λ0)/(1− λ0)
F ← ((1− λ

β
n ) + λ

β
nγ) F

, (5.5)

where λ is the luminance of F, computed by red, green, and blue components: Fr, Fg, and

Fb. λ0 is the threshold for expanding luminance, and λn is the renormalized luminance. β

is the exponent for falloff, and γ is the expanding gain. This operation is applied only when
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Fig. 5.8 Example results with and without defocused highlights rendered with HDR and
LDR images. The bottom-left portion in each image represents the IDF texture used (hexag-
onal and Gaussian IDFs). Each highlighted image shows better intensity contrast.

λ > λ0. Figure 5.8 also shows example images generated by this technique. In the figure,

the parameters were set as λ0=0.8, β=3, and γ=2.

5.3 Acceleration of Rendering Performance

The most pressing obstacle to real-time implementation of our method is the heavy data

transfer from the vertex processor to numerous fragments. Unlike the gather approach, the

scatter structure cannot exploit a stochastic sampling scheme, because a point should be

mapped to the whole sprite. Instead, by reducing the resolution of the point array, rendering

performance can be improved.

However, a simple reduction in resolution may result in a magnification artifact around

focused regions (e.g., a CoC less than 4 pixels) or where partial occlusion occurs. If we

reduce the resolution (e.g., 1/4 of the original) except for such areas, it can be a good

alternative of the naive rendering with little perceptual degradation. Since we already have
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Fig. 5.9 Rendered images at the original (left) and reduced (right) resolutions. Normaliza-
tion was not applied.

information related to partial occlusion (H) and CoCs, such pixels can be easily found.

In addition, we note that the blurring difference between the two resolutions may cause

small holes around overlapping edges. This can be resolved by using one more hidden

image for the reduced version, which is similar to H, but the scanning range for L operator

is slightly (e.g., 5%) reduced. This additional hidden image can be simply achieved using H

instead of model rendering. Accordingly, the two versions are slightly overlapped, and the

artifacts are removed. Figure 5.9 shows an example. Foreground boundaries and focused

regions are blurred at the original resolution, but the rest, at 1/4 reduced resolution.

The remainder of this section reports on the measured rendering performance of our

methods with and without the acceleration, a recent GPU-based method [103], and the ac-

cumulation buffer method [43]. We have implemented the four methods using OpenGL and

OpenGL Shading Language on a Pentium 2.67GHz Dual-Core with a GeForce 9800GX2.

The test was conducted at a 1024 × 768 resolution, for the Elephant (216,080 triangles)

and Grasshopper (46,009 triangles) scenes shown in Figure 4.1. We used the mean CoC

size in an image as a control variable. For the accumulation buffer method, 24, 96, and 384

Poisson disk samples were used for obtaining similar blurring degrees.

Table 5.1 shows the benchmark result. Our method significantly improved the perfor-

mance over the non-accelerated method. Zhou’s method [103] showed superior perfor-
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Table 5.1 A performance benchmark for the four methods in terms of frame rate for Ele-
phant (E) and Grasshopper (G) scenes. Subscripts represent mean CoC sizes.
Method E8 E16 E32 G8 G16 G32

Accelerated 67 50 31 68 30 17
Not Accelerated 14 4 1 16 5 3
[103] 105 82 57 144 105 67
[43] 12 3 .7 15 4 .9

mance as well. The frame rate of the accumulation buffer method rapidly decreased along

CoC sizes (i.e., number of model rendering). According to the result, the accelerated ver-

sion of our method can be used at least up to average 16 pixels of CoC diameters for real-

time applications. We note that 16-pixel average of CoCs can represent a larger variation

(e.g., up to a CoC diameter of a maximum 24 pixels).

5.4 Results and Discussion

In this section, we report and discuss the quality of images rendered by our method. Two

representatives were already shown in Figure 4.1. Overall, our method generated natural

DOF effects for both foreground and background, without noticeable artifacts. The upper

image shows no intensity leakage, similarly to the recent methods [10, 49, 103]. The lower

image shows impressive defocused highlights of the hexagonal aperture shape.

With respect to the foreground blurring, we compared our results with Zhou’s method

(see Figure 5.10) in terms of the peak signal-to-noise ratio (PSNR). The PSNR was com-

puted as 10 log10(2552/MSE). The image rendered by the accumulation buffer method

was used as a reference. With our result (using a hidden image), a reasonably high PSNR

(36.33 dB) was achieved, whereas Zhou’s method and ours (not using a hidden image)

showed rather low PSNRs (29.4 and 32.84 dB, respectively). This mostly comes from the

difference of foreground representation. At a glance, our result generated with a hidden im-

age is very similar to the reference image, whereas the other two show discontinuous bound-

aries in the foreground (see the magnified portions). Even with our method, a convincing

foreground cannot be achieved without the hidden image (actually, similar to Potmesil’s
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Fig. 5.10 A comparison of DOF rendering results by our method and those of [103] and
[43]. The rounded boxes represent the magnified portions in the images for comparison of
foreground blurring.

original approach [81]).

Recently, several other methods have also reduced blurring discontinuity in the fore-

ground [6, 49, 53]. However, it seems that they may work only for relatively less blurred

scenes that can be covered by extrapolation. Another fundamental problem of these meth-

ods is blurring of the focused area to remove sudden blurring changes around the extrapo-

lated boundary, whereas our method successfully maintains the sharply focused area. These

problems are similarly applied to the blurring of depth images [10, 29], another simpler

method against the blurring discontinuity.

In order to assess our results for multiple-layer cases, we provide a case-by-case compar-
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Fig. 5.11 Example images rendered for a scene focused on the near (top left), middle, (top
right), and far (bottom left) objects. Whereas the first two are well represented, the third
exhibits small artifacts (see the red and green boxes magnified in the bottom right side).

ison for a scene where thin geometries overlap together (see Figure 5.11). Three cases—

focused on near, middle, and far objects—were compared. Whereas the first and second

cases were well represented, small artifacts (see red boxes) are observed for the third case

(the multiple foreground objects of different depths exist around a focused area). This prob-

lem results from the limitation of our layer decomposition and hidden image; we only use

the second nearest hidden image and a single foreground/background layer. As already

mentioned, this problem can be resolved using exact depth groups and multiple hidden im-

ages, but with longer computational time. Nevertheless, this is not a severe problem in

practice, compared to the discontinuity in the foreground boundaries.

As a final example, Figure 5.12 demonstrates the results when our method is applied to a

scene with long objects. Since our method well decomposes even a long object into coherent

layers, the discretization artifact is not observed in the figure (see hand rails in the left
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Fig. 5.12 Two example images generated using per-pixel layers (left) and globally defined
layers (right) for a scene with long objects.

image). However, such a result might be hard to achieve, if a long object would be allowed

to be separated across multiple layers. The right image rendered using globally defined

layers [8] shows an example. This is because the insufficient (less than one) intensities at

the layer boundaries can make the colors of a hidden area permeate the boundaries during

alpha blending (similarly to the “black band” problem [6]).

Lastly, we summarize the current limitations of our framework. First, our method re-

quires floating-point texturing capability. However, the difference of acceleration perfor-

mance for 8-bit and 16-bit textures is practically marginal with an aid of recent GPUs (sup-

porting shader model 4.0). Second, the anti-aliasing is not supported, which is a common

problem in most post-filtering methods due to the use of a depth buffer that cannot be anti-

aliased. The last limitation is the need of manual tuning of parameters. The performance of

our method mainly depends on ε (in Section 5.1.2) and δ (Equation 5.3). We used ε=0.05

and δ=0.4 for most examples in this chapter, and tested them for various scenes. Whereas

these simple parameters work quite well for moderately blurred scene, a much blurred (e.g.,

a CoC diameter greater than 32 pixels) scene requires slight tuning of the parameters, ac-

cording to the spatial configuration of a scene.



Chapter 6
Attention-Guided Depth-of-Field
Rendering

DOF rendering is one of the applications where perceptual image quality can be improved

with our visual attention tracking framework. This chapter explains how DOF rendering

methods, described in Chapters 4 and 5, can be integrated with the attention tracking frame-

work. The combined rendering system shows improved perceptual quality of a visual scene

with real-time rendering performance enough to be used in interactive VEs.

6.1 Integration of Attention Tracking to Depth-of-Field Rendering

A procedure of rendering DOF effects with the attention tracking is straightforward. For

every rendering frame at runtime, the depth of an object predicted to be the most attentive

is used as a focal depth, Z f . Since we already know the depth of the attended object (used

in the computation of spatial context), no additional computation is required for the depth.

However, since our attention tracking framework selects only foreground objects (ex-

cluding backdrops such as sky, wall, and floor), two minor problems are encountered: (1)

the discontinuous change of a focal depth along the line of sight and (2) the case where no

foreground objects are visible in a scene. The first problem arises from the fact that our at-

71
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tention tracking framework does not consider saccadic eye movements1, while the smooth

pursuits can be considered as an analogy of the smooth tracking of a single attended object.

Thus, in-between gaze movements where an attended target is changed to another one are

not defined. Such saccadic eye movements can be simulated by interpolating the depths of

the objects either in image space or 3D space. Since DOF simulation depends solely on the

focal depth, the focal depth is interpolated in the 1-D depth space for our purpose. As for

the second problem, when there are no visible foreground objects in the scene, we use the

depth picked from the center of the screen as a focal depth. More details are presented in

what follows.

Interpolation of Focal Depths in Depth Space

In general, a saccadic eye movement accompanies both of reflexive and voluntary ocular

motor controls [66]. The reflexive ocular motor control is closely related to common jitter

patterns to stabilize the vision independently of a head movement. Since our framework

does not incur such instability, we only need to simulate voluntary movements to locate

region of interest (ROI) into fovea. In classic eye-tracking methodology, voluntary move-

ments in the raw eye-tracking data are detected using an approximate linear model [27],

which is an operational simplification of the underlying nonlinear natural process [15].

Similarly to the linear model, we simulate the saccadic eye movements by temporally in-

terpolating the depths of previous and next fixated objects. The temporal transition begins

when the attended object (with the highest attention value) is switched to another. The

duration of the transition controls the smoothing degree of the focus change. In our im-

plementation, we set the duration as 300 ms, based on that the latency of refocusing for

misfocused vergence is approximately 200-300 ms [32, 65].

Given the depths of the previous and next attended objects, Zp and Zn, the focal depth,

Z f , is computed using temporal blending:

Z f (t) = lerp(Zp(t), Zn(t), t/τ), (6.1)

1Saccadic eye movement refers to rapid shifts of the line of sight of the two eyes from one target to another
for locating objects of interest to a fovea. In contrast, smooth pursuit refers to the smooth tracking behavior on
objects of interest [27].
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Fig. 6.1 Examples of saccades simulation using the linear interpolation and lowpass filter.

where t (∈ [0, τ ]) is a time period elapsed from the beginning of the transition, τ is the

duration of transition (e.g., 300 ms), and lerp(x, y, z) is the typical linear interpolation

function. We note that Zp and Zn are also varied along the transition time; that is, the

focused objects can move during the transition.

This linear interpolation method works well for most cases, but it cannot handle a very

quick change of fixated objects; for instance, a focus change that occurs before completing

the current transition often yields a temporal delay. In order to deal with such a rapid

change, low-pass filtering can be employed as an alternative to the linear interpolation.

In the low-pass filtering, the smoothing degree is controlled by a cut-off frequency. Our

empirical test suggests that cut-off frequency below than 2 Hz is adequate.

Fig. 6.1 shows the examples of saccadic eye movements simulated by the two methods,

linear interpolation and lowpass filter. The linear interpolation used the duration of 300

ms, and lowpass filter used a cut-off frequency of 1 Hz. The test uses the Elephant scene

shown in Figure 6.2 and the rendering method presented in Chapter 4. To generate abrupt

changes of a focal depth, we moved between the forward and backward repeatedly, and

made the attended object alterenated between the elephant and the zebra. As can be seen

in Fig. 6.1, the linear interpolation method well suppressed the abrupt change of the focal

depth, and the focal depth smoothly changed along the transition time. The lowpass filter

method produced a locus similar to the linear interpolation, but exhibited overshoot effects
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Fig. 6.2 A test scene used for simulating saccadic eye movements. The focus was altered
between the elephant and zebra.

at the ending of the transition. The lowpass filter, instead, can handle the quick change of

the focus, while the linear interpolation method cannot respond to such a change until the

prior transition is completed.

Handling Absence of Foreground Objects

The remaining issue is handling the case where no targets to be focused are defined in the

scene. In this case, we need to determine the focal depth only from the background. In pilot

experiments, we observed that the gaze of a user usually tends to return to the center of the

screen, if no targets to be fixated are found in the scene. Based on this observation, when

the attention value of a single foreground object falls under a certain threshold and thereby

the object becomes invisible, the depth picked in the center of the screen is used as a focal

depth. The depth of the screen center is used as either a previous or next focal depths for

the interpolation (described above).

6.2 Performance Evaluation

We have measured rendering performance of the proposed attention-directed DOF render-

ing framework in terms of frame rate. The framework was implemented on a 2.67 GHz

Pentium Core2Duo PC with a GeForce 9800GX2 graphics card. A 1024× 768 display res-



6.3. PERFORMANCE EVALUATION 75

Fig. 6.3 Comparison of measured frame rates for rendering DOF effects with the visual
attention tracking by the methods presented in Chapters 4 and 5.

olution and a 64 × 64 saliency map were used in the test. The elephant scene with 456,114

triangles, shown in Fig. 6.2, was used for the test. Unlike the controlled DOF rendering,

interactive DOF rendering cannot directly control the blurring degree, since the amount of

blurring depends on the focal depth as well as the optical properties of a lens (e.g., aperture

size and focal length). The degree of blurring was varied by the focal length and f -number

(=F/E). We used two focal lengths, F = 16.7 mm and F = 55 mm, which are the typical

values of the human visual system and the photography, respectively. Four f -numbers, 1.0,

2.0, 4.0, 8.0, were used. The two DOF rendering methods (denoted by DOF1 and DOF2,

which were presented in Chapters 4 and 5, respectively) were used in the test.

Fig. 6.3 shows the benchmark results. For DOF1, we can observe that rendering per-

formances under all conditions are sufficient to be used in interactive VR applications (at

least more than 80 frames/sec), and the performances are mostly independent of the amount

of blurring. As for DOF2, the rendering performance significantly relies on the amount of

blurring. For F = 16.7 mm, the performance was approximately more than 25 frames/sec,

implying that the framework can be used for interactively simulating the DOF effects in the

human retina. On the other hand, the performances under F = 55.0 mm (greatly blurred)

were inappropriate for the interactive applications. In such a case, DOF2 can be used only

for static scene.
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6.3 Discussions

This section discusses the expected advantages and limitations of the attention-guided DOF

rendering compared to the naive rendering based on a pinhole lens model and the typical

DOF rendering based on the eye-tracking, respectively. We also note current limitations of

the implemented framework.

When a virtual scene is rendered with DOF effects guided by visual attention, there is no

doubt that such a rendering significantly improves the visual realism, helps quickly locate

the egocentric or exocentric frames of references by differentiating focused objects from

background/foreground, and thereby, reduces the mental load required for visual search. In

addition to those benefits, DOF rendering is known to mediate monocular (pictorial) depth

perception in the human visual system [64, 67, 68, 76, 69, 96]. Despite the general agree-

ment on the positive role of DOF effects on depth perception in pictures or photographs,

whether it can help depth perception in interactive VEs has not been thoroughly exam-

ined. This is primarily due to the fact that defocused blur depends on focal configuration,

in addition to the depths of objects, which can be dynamically varied along a user’s eye

movements. However, since most previous studies have paid attention to static images with

a fixed focal configuration, their results cannot be easily applied to dynamic focusing in

VR. Moreover, since a typical VE commonly presents occlusion and motion parallax, the

true effects of DOF blur as a depth cue should be investigated by considering their collec-

tive effects. In our future work, the effects of DOF blur towards depth perception will be

investigated in depth.

Over the previous methods based on eye-tracking devices (e.g., [45]), the attention-

guided DOF rendering has two advantages: (1) stable rendering without trembling of the

gaze and (2) more accurate prediction of the attended objects in the presence of an in-

terposition of objects. Despite the recent development of high-performance eye-tracking

devices, most eye-tracking devices still exhibit some trembling or flickering, because the

human eyes are tracked in coarser resolution due to the limited processing power of image

sensors and CPU. On the other hand, since our attention-guided DOF rendering does not
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use a physical image sensor, it does not result in such a temporal instability. The second

advantage results from the limitation of monocular eye tracking. In a typical VR system,

since the accommodation is fixed on the flat display, eye-tracking uses a monocular track-

ing, making the measurement of a 3D depth impossible. Thus, such an eye-tracking has

an innate ambiguity in selecting a gazed object in the presence of interposition of objects.

The ambiguity can yield significantly incorrect tracking, possibly with motion sickness. In

comparison, our attention-guided DOF rendering less suffers from the problem, because the

temporal context of visual attention tracking can maintain an attended object to be followed

even in the presence of partial occlusion. Also, our object-based scene graph reduces the

probability of wrong prediction in singling out the attended object.

Finally, the current implementation of the attention-guided DOF rendering exhibits two

limitations. First, our framework inherently involves a tracking delay, because it uses the

user’s past interaction. Although this delay can adversely affect the task performance, depth

perception, and visual realism of rapid navigation, it is not a severe problem in practice for

slow navigation. The second problem is the relatively lower prediction accuracy compared

to the eye-tracking. This arises from the fact that our method cannot predict the gaze un-

related to the user’s interaction; that is, if a user moves his/her eyes without navigation or

deliberately looks at the side opposite to the moving direction, our framework cannot cor-

rectly predict the accurate gaze. Nonetheless, under the common interaction behavior, our

framework can produce plausible results to be used in practice.



Chapter 7
Attention-Guided LOD
Management

LOD management is one of the applications where rendering performance can be improved

with the use of our attention tracking framework. In this chapter, we describe how to ap-

ply our framework to LOD management using ‘Unpopping LOD’ [38]. The combined

rendering system shows greater computational performance with little degradation in the

perceptual quality.

7.1 LOD Management Using Attention Estimation Framework

The DLOD techniques are still widely used for VR and graphics applications, because of

their simple implementation and decoupled process for mesh simplification and run-time

execution. However, they have a common perceptual problem, ‘popping’ effect, which is

induced from the discrete model transitions between adjacent LOD levels. In this chapter,

we adapt ‘Unpopping’ LOD (ULOD) recently proposed by Giegl et al. [38], where one

model of an object is opaquely rendered and the other model is semi-transparently rendered

for level switching. The two rendered images are alpha-blended according to the transition

time period, effectively removing the popping effect.

A procedure of using ULOD with our attention tracking framework is straightforward.
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In an off-line pre-processing step, we simplify an original object model into a few multi-

resolution models. Then, for every rendering frame at run-time, the attention level of each

object is estimated by the attention tracking framework. This attention value is used to

determine the fidelity level for each object, and the object is rendered based on its fidelity

level. In other words, we simply use the attention level of an object as the metric for LOD

management instead of the conventional metrics.

In principle, the computational performance gain of LOD management is in exchange

for the possible degradation of rendering quality. Thus, psychophysical experiments are

required to objectively assess the benefits of LOD management. However, since they are

dependent upon many environmental and subjective factors, the exact quantification of such

advantages requires strictly controlled experiments, and, unfortunately, their results are of-

ten impossible to be extended to general cases.

Alternatively, several researchers proposed to use computational heuristics that approx-

imate the expected perceptual benefit by considering various user-defined factors such as

image coverage (or size), semantic importance, focus, motion, and simplification accuracy

[36, 40]. On the other hand, the value of object attention computed in our tracking frame-

work already reflects most factors used in the heuristics. For example, the image coverage

and motion of an object are included as bottom-up features. The semantic importance of

an object is also incorporated while converting the pixel saliency map to the object saliency

map. As a consequence, the attention value of our framework is highly correlated to the

benefit heuristics in [36, 40], implying that relating the attention level to the degree of

model simplification for LOD would result in images of high perceptual quality.

7.2 Cost Model of Attention-Guided LOD Management

The cost of rendering without LOD management can be represented in a similar manner to

the cost function proposed by Gobbetti and Bouvier [40, 61] as:

costNOLOD = Tn + t · 1, (7.1)
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where Tn is the time required for initialization, finalization, and set-up of objects, t is the

vector of the rendering times of original object models, and 1 is a 1-vector. The rendering

cost including LOD management with attention tracking can be expressed as:

costLOD = Tn + Ta + t · (a + r). (7.2)

Here, Ta is the time required for computing object attention values, which is independent

of the model complexity (e.g., texture memory transfer, computation of size and motion

features and top-down contexts). a is the vector of ratios of object rendering times for

attention tracking (required for the rendering of color image and depth/item buffer) to the

original. Each entry in the vector r is a simplification degree that ranges from 1 (the original)

to 0 (a no-polygon model).

In order to obtain performance gain, the cost gain by the use of LOD must be greater

than the additional cost required for the attention estimation such that t · (a + r)� t · 1. A

problem here is that our saliency map computation requires twice the time (color image and

depth/item buffer) for model rendering (that is, by a), although Ta is practically negligible

for a complex scene (as shown in Fig. 3.5, 0.97 and 1.9 msec for a saliency map of 64×64

and 128×128, respectively). If we render color image and depth/item buffer using the

original model, the computation cost for attention maps exceeds that of rendering without

LOD management, because all entries in a are close to 2.

Thus, given a scene, in order to reduce the rendering cost of the feature maps, we sug-

gest two techniques. Firstly, we remove the model rendering for the color image by reusing

the scene (color) image rendered in the previous rendering frame, which makes all entries

in a close to 1. Nevertheless, the item/depth buffer still require rendering of models. Sec-

ondly, we reduce the number of triangles (or vertices) processed in the depth and item buffer

rendering by passing a much coarser model instead of the original one. This allows a to

be much smaller than 1 and r. For instance, if we render the coarsest model with 1/256

triangles of the original model, each entry in a becomes close to 1/256. In this way, the

computing cost for the attention map is significantly reduced, and overall rendering perfor-

mance can be improved.
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(a)L0: 1 (b)L1: 1/4 (c)L2: 1/16 (d)L3: 1/64 (e)L4: 1/256

Fig. 7.1 Comparison between the object attention maps rendered using the raw and sim-
plified models. The upper images are rendered color images, and the lower images, the
corresponding object attention maps. The triangle numbers of simplified models were 1/4,
1/16, 1/64, and 1/256 of the original one, respectively. The Bunny model was provided
through the courtesy of Stanford 3D Scanning Repository.

An important thing to note regarding the use of coarse models in saliency map compu-

tation is whether the result using the simplified models coincides with that computed using

the original models. In order to examine the differences, we empirically compared the at-

tention maps for five simplified levels of models; the model at level 0 (L0) is the original

model, and the models at higher level are the quarter of one-level lower model for each. Fig.

7.1 shows the examples of scenes and object attention maps rendered using the original and

simplified models. The object attention maps of the scene with raw models and simplified

models seem to be almost identical. In order to observe the differences in more detail, the

attention levels of attentive—an object attention value is greater than zero—objects were

measured during a 30-second fixed-path navigation. The results showed that the order of

attentive objects were exactly the same for all levels. The differences of the object attention

values among the five groups were examined via paired t-tests. The difference among all

the pairs were statistically insignificant (all p-values < .0001). The means of differences

ranged from 0.001 to 0.017 over the normalized scale. This arises from the characteristics

of our framework where the saliency map operates at reduced resolutions, and the objects
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in the test VEs are much larger than the polygons modulated by LOD. Furthermore, our

framework relies more strongly on top-down contexts than bottom-up saliency.

7.3 Associating ULOD with Object Attention Values

For LOD management, the level of an object model to be rendered needs to be determined

among its multi-resolution models. The model level can be associated with the attention

value of the object in a straightforward manner. Let M(k), L(k), and r(k, L) be the highest

level (the coarsest resolution) model for object k, the desired level of the object model, and

the simplification degree of triangles (or vertices) at the level L, respectively. For simplicity,

we omit the object identifier, k, in subsequent derivations. For the LOD ranging from 0 to

M, L can be linearly mapped to the attention value, So (∈ [0, 1]), as:

L = M(1− So). (7.3)

Note that L is continuous. In this relation, an object with the highest attention value (i.e.,

So =1) is rendered using its finest model (L=0), and vice versa. This L value is passed

to the ULOD algorithm for blending images rendered using the models at the two adjacent

discrete levels. While the original ULOD was proposed for blending the images during a

transition period [38], we use this scheme to achieve smooth transition along continuous

object attention values.

The multi-resolution models of each object are prepared offline prior to rendering. For

each discrete level, L, the simplification degree (i.e., the ratio of triangles in a simplified

model to the original), r(L), should be passed to a specific simplification metric. In prin-

ciple, r(L) should be carefully designed so that perceptual degradation due to the simpli-

fication is less perceptible to the human, and that sufficient performance gain is achieved.

Aggressive simplification may result in some degree of popping, in spite of the smooth

transitions using ULOD. For a reasonable trade-off, we have experimentally chosen the

following function:

r(L) = β−L, (7.4)
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(a)L0 (b)L1 (c)L2 (d)L3 (e)L4

Fig. 7.2 Simplified Bunny models for LOD management. The original model consists of
69,451 triangles. The triangle numbers of the simplified models decrease by a quarter scale
from left to right (69,451, 17,364, 4,341, 1,086 and 272 triangles, respectively).

where β is a base that determines the simplification degree and should be carefully chosen

such that the transition between adjacent discrete levels does not cause a popping effect.

β = 4 was used in our experiment. A simplified model corresponding to r(L) is generated

using Quadric error metric [37], which has been widely used for mesh simplification. Fig.

7.2 shows an example of simplified models at five levels for the Stanford Bunny models.

7.4 Performance Evaluation

We implemented and tested the proposed LOD management framework on the identical

platform used in the accuracy validation experiment of Chapter 3.5. A 1024×768 display

resolution and a 64×64 saliency map were used in the test. With a simple background

model (floor and wall), the test scene consisted of 256 objects, which is the maximum

capacity allowed in the 8-bit item buffer. Two kinds of scenes were used: one with the

Bunny models and the other with the Dragon models. For each scene the models were

randomly varied in terms of luminance, hue, size, position, and rotation. Each model was

simplified to five fidelity levels. From level 0 to 4, the numbers of triangles were 69,451,

17,364, 4,341, 1,086, and 272 for the Bunny model and 435,708, 108,928, 27,232, 6,808,

and 1,702 for the Dragon model, respectively. Fig. 7.3 shows examples of the Dragon scene

used in the experiment.

We measured the rendering cost (time) during free navigation of the scene. Since all the
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Fig. 7.3 Two example images rendered without (upper) and with (lower) LOD management.
In the lower image, non-attentive objects were simplified based on their object attention
values. The Dragon model was provided through the courtesy of Stanford 3D Scanning
Repository.

objects did not appear simultaneously due to the culling, the true rendering cost depended

on the number of objects visible at a specific view. During the navigation, we measured the

rendering times for each frame and stored them in a separate list based on the number of

visible objects. A large number of rendering time data (in total at least 3,000 samples) were

collected and analyzed.

In performance analysis, the independent variable was the type of LOD: rendering with-

out LOD (NOLOD) and rendering with four sets of LOD levels (ULOD2, ULOD3, ULOD4,

and ULOD5). For instance, ULOD3 represented ULOD applied to the three levels (e.g.,

69,451, 17,364, and 4,341 triangle models for the Bunny scene). The other level sets were

defined in a similar manner. For each condition, the coarsest one in the corresponding
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Fig. 7.4 Mean rendering costs under NOLOD, ULOD2, ULOD3, ULOD4, ULOD5 in the
Bunny and Dragon scenes. The vertical error bars represent the standard errors.

model set was passed to the attention tracking module.

The means and standard errors for each test condition and test scene are summarized in

Fig. 7.4. Overall, as expected, the rendering costs of NOLOD were higher than those of

the ULODs, except for ULOD2. Compared to the Bunny scene, the rendering costs for

the Dragon scene were more reduced. For both scenes, ULOD4 and ULOD5 showed high

performance improvements.

Fig. 7.5 shows the evolution of the rendering costs with respect to the number of ren-

dered objects. For the Bunny scene, when the number of objects was roughly less than 20,

NOLOD was better than those under all the ULOD conditions. As the number of objects

gradually increased, all ULOD methods outperformed NOLOD. However, the performance

gain of ULOD2 required significantly many objects (roughly more than 40 objects). For

the Dragon scene, ULOD3, ULOD4, and ULOD5 exceeded NOLOD, even for scenes with

a small number of objects, whereas ULOD2 showed only marginal improvement.

7.5 Discussion

The attention-guided LOD management system demonstrated the utility of our attention

tracking framework. This attention-based metric can be easily combined with other con-
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Fig. 7.5 Evolution of the rendering costs with respect to the number of visible objects in
the Bunny (left) and Dragon (right) scenes. The triangle number of a non-simplified Bunny
was 69,541. The triangle number of a Dragon was 435,708.

ventional LOD switching metrics such as distance from the viewer, size in the screen, and

eccentricity in the human fovea. Furthermore, other continuous and view-dependent LOD

approaches can be used with our framework. In this sense, our framework can serve as a

general solution to perception-based LOD management for VR applications.

As shown in Fig. 7.5, the computational performance of our LOD framework can be

degraded for a scene with a relatively small number of objects, which is common to any

LOD schemes. What matters is how to minimize the fixed overhead for LOD management.

In our case, the overhead corresponds to the cost required for attention tracking, and the

model rendering time takes the most of it. However, we expect that this limitation can be

partially surmounted by utilizing only top-down contextual information without bottom-up

saliency. As already shown in Fig. 3.10, the accuracy of our attention estimation framework

depends more on top-down contexts than on bottom-up saliency. Top-down information can

be obtained with virtually negligible computation time based on the configuration of objects

in a VE. As a result, in low-end systems where a complete version of our framework cannot

be used, the simplified attention tracking framework using only top-down contexts can be

an attractive alternative.

We also performed preliminary subjective evaluation on perceived visual difference among

the five conditions. Most subjects reported that the model degradation was perceived

slightly under ULOD4 and significantly under ULOD5, and not under any other condi-
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tions. This implies that setting the minimum number of polygons of a model to be between

1/16 and 1/64 of the original can bring performance gain while still maintaining the visual

rendering quality. A similar optimization strategy can be used for other VEs.



Chapter 8
Conclusion and Future Work

In this dissertation, the author presented a comprehensive, practical, and real-time platform

for perceptual rendering in interactive and dynamic VEs. Our visual attention tracking

framework allows more accurate prediction of visually attended objects by utilizing user’s

volitional factors as well as conventional feature-driven saliency map. The user study on

the estimation accuracy showed that the newly included top-down contextual information

played a pivotal role in singling out the most plausible candidate to be attended. The imple-

mented GPU-based framework is suitable for real-time use, even if considering additional

costs required for LOD management or DOF rendering. The author also proposed the two

DOF rendering methods better than the previous real-time methods. Our methods success-

fully achieved high-quality DOF effects as well as remarkable real-time performance.

As perceptual rendering applications, we demonstrated attention-guided DOF rendering

and LOD management as representatives of applications for improving perceptual quality

and rendering performance, respectively. The LOD management integrated with the atten-

tion tracking framework is a better performance regulation metric to encompass a user’s in-

tention beyond the conventional feature-driven passive metrics. The attention-guided DOF

rendering exhibited perceptually improved image quality with real-time performance appro-

priate for VR applications as well. The attention-guided DOF rendering is the first attempt

for interactive DOF rendering without an eye tracker.

88



89

In the future, the author will work on: (1) improving the spatial context model to include

the novelty of objects of consideration, (2) developing adequate top-down context models

for other common user tasks in VEs, (3) investigating effects of defocus blur on perceptual

benefits such as perceptual realism and salient distinction between focused and blurred

objects, and (4) developing a more efficient and accurate method to render the DOF effect.
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요약문

가상환경에서의관심추적및실시간지각기반

렌더링

본 논문은 가상 환경에서 시각적 관심의 계산적인 추적을 기반으로 하는 실시간 지

각기반렌더링체계를제안한다. 시각적관심추적시스템은기존의특징기반샐리

언시맵외에가상환경내내비게이션으로부터추론한사용자의의도를반영하여가

장관심을받을만한객체를실시간에찾아낸다. 구현된체계의예측정확도를눈동

자 추적 장치를 이용하여 채집한 사람의 눈동자 움직임과 비교/평가하기 위해 사용

자실험을수행하였고,그결과는인식이론에의해잘설명되는정확도를보여준다.

관심추적체계는지각적품질과성능향상을위한대표적인두방법인상세도관리

와 필드심도 렌더링에 적용되었다. 필드심드 렌더링에의 적용에 앞서, 인터랙티브

가상환경에적합한기존방법이없었기에,저자는 GPU기반의두가지실시간필드

심도렌더링방법을제안한다. 첫번째방법은기존의밉맵기반접근방식을확장하

고, 다른 방법은 기존의 레이어/분산 방식을 확장한다. 두 방법 모두 기존 방법들에

서 보이는 이미지 단점을 효과적으로 제거하고, 실시간 사용에 적합한 성능을 보인

다. 제안한두필드심도렌더링방법과함께,저자는관심기반의필드심도렌더링과

상세도관리를제안한다. 두방법은관심을받는물체의깊이와관심정도를초점깊

이와상세도로각각이용한다. 관심기반의필드심도렌더링은눈동자추적장치없

이 인터랙티브한 렌즈 블러 효과를 시뮬레이션하고, 관심 기반의 상세도 관리는 지

각적으로품질저하없이렌더링성능을대폭향상한다.
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