Master’s Thesis

Designing a Photograph Taking and Understanding System for Blind People

Jongho Lim (임종호)
Department of Computer Science and Engineering
Pohang University of Science and Technology
2018
Designing a Photograph Taking and Understanding System for Blind People
Designing a Photograph Taking and Understanding System for Blind People

by

Jongho Lim
Department of Computer Science and Engineering
Pohang University of Science and Technology

A thesis submitted to the faculty of the Pohang University of Science and Technology in partial fulfillment of the requirements for the degree of Master of Science in the Computer Science and Engineering

Pohang, Korea
6. 26. 2018
Approved by
Seungmoon Choi (Signature)
Academic advisor
Designing a Photograph Taking and Understanding System for Blind People

Jongho Lim

The undersigned have examined this thesis and hereby certify that it is worthy of acceptance for a master’s degree from POSTECH

6. 26. 2018

Committee Chair Seungmoon Choi (Seal)
Member Sung H. Han (Seal)
Member Minsu Cho (Seal)
Photographs are a powerful medium for recording moments and sharing them with others. However, visually-impaired users have quite limited access to photograph’s benefits. Due to the nature of the photos as visual media, visually-impaired users cannot easily take part in these activities and are sometimes even alienated. In order to improve the accessibility of the visually impaired, the following studies were conducted.

First, the perceptual characteristics of electrostatic friction vibration were investigated to design effective tactile rendering algorithms: Absolute thresholds, Spatial gap detection thresholds and Spatial numerosity judgment. The results of three perceptual experiments provide the guidelines for rendering tactile graphics using an electrostatic friction display. Second, an integrated system called TouchPhoto that provides multimodal sensory feedbacks that consist of visual,
audio, and haptic stimuli to deliver information and recall memory more lively was implemented to improve the accessibility of photographs for the visually impaired. Two user studies were conducted with the blind: taking a photograph and understanding a photograph. In photograph-taking, the visually-impaired users could be a proactive role in taking photographs. In photograph-understanding, participants understood photographs using the tactile stimuli and auditory cues to recall their memory. Last, a haptic guidance program that provides the experiences of touching the face was implemented. Four types of joy, sorrow, surprise and anger facial emotion were rendered using a force feedback device. The subjects were able to distinguish emotions of faces and the correct answer rate was 88.75%.

The perceptual characteristics data can be used for haptic rendering in the future and implemented systems to improve the accessibility of photographs can be guidelines for the design of the visually impaired.
목차

I. 서론 1

1.1 연구 동기 ... 1
1.2 연구 기여 ... 3

II. 정전기 마찰 자극의 인지 특성 5

2.1 연구 배경 .. 6

2.1.1 정전기 마찰 디스플레이 6
2.1.2 정전기 마찰 자극의 인지 특성 7
2.1.3 시각 장애인의 축각 인지 8

2.2 실험 방법 .. 9

2.2.1 실험 참가자 .. 9
2.2.2 실험 장비 .. 10
2.2.3 실험 I. 절대 인지역시 11
2.2.4 실험 II. 공간적 인지분해능 14
2.2.5 실험 III. 공간적 개수 세기 15

2.3 결과 및 토의 ... 16

2.3.1 실험 I. 절대 인지역시 16
2.3.2 실험 II. 공간적 인지분해능 21
2.3.3 실험 III. 공간적 개수 세기 23
2.3.4 정전기 마찰 자극의 인지 특성 결과 25
-touchPhoto 시스템- 27

3.1 연구 배경 ... 27
 3.1.1 사진 촬영 ... 28
 3.1.2 사진 감상 ... 29
 3.1.3 서피스 헬릭스 ... 30

3.2 시스템 디자인 ... 32
 3.2.1 개요 ... 32
 3.2.2 세부 구현 ... 33
 3.2.3 사진 촬영 기능 ... 35
 3.2.4 사진 검색 및 감상 기능 ... 36

3.3 정전기 마찰 진동 렌더링 ... 37
 3.3.1 높낮이 렌더링 ... 37
 3.3.2 질감 렌더링 ... 39
 3.3.3 렌더링 요약 ... 40

3.4 사용자 실험 ... 41
 3.4.1 실험 참가자 및 사전 인터뷰 ... 41
 3.4.2 사용자 실험 1 ... 42
 3.4.3 사용자 실험 2 ... 45

3.5 토의 ... 50
 3.5.1 TouchPhoto 기능의 역할 ... 50
 3.5.2 정전기 마찰 진동 렌더링의 가능성과 한계점 ... 51

IV. 힘 피드백을 이용한 얼굴 렌더링 53

4.1 연구 배경 ... 53
4.1.1 가상 벽 54
4.1.2 시각 장애인을 위한 협력 피드백 55

4.2 협력 유도를 이용한 선 렌더링 56
 4.2.1 실험 참가자 56
 4.2.2 실험 방법 57
 4.2.3 실험 방법 58
 4.2.4 결과 59
 4.2.5 결과 및 토의 60

4.3 협력 유도를 이용한 얼굴 렌더링 65
 4.3.1 실험 참가자 65
 4.3.2 실험 방법 65
 4.3.3 결과 68
 4.3.4 결과 및 토의 68

V. 결론 72

참고 문헌 74
표 목차

<p>| 3.1 각 얼굴 부위에서 정전기 마찰 진동에 사용된 파라미터 | 39 |
| 3.2 실험 참가자의 시각 상태에 대한 정보 및 사진 활동의 익숙함 정도 | 41 |
| 3.3 사용자 실험 1 설문 조사 결과 | 44 |
| 3.4 TouchPhoto 사용 전 후 사진 설명 비교 | 47 |
| 3.5 사용자 실험 2 설문 조사 결과 | 48 |
| 4.1 설문 조사 결과 | .. 70 |</p>
<table>
<thead>
<tr>
<th>제목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 정전기 마찰 디스플레이(왼쪽과 중간)와 실험 모습(오른쪽)</td>
<td>10</td>
</tr>
<tr>
<td>2.2 실험에 쓰인 세 가지 헬릭 자극: 실험 I(왼쪽), 실험 II(중앙), 실험 III(오른쪽)</td>
<td>12</td>
</tr>
<tr>
<td>2.3 트리보미터(Linear tribometer)</td>
<td>13</td>
</tr>
<tr>
<td>2.4 150 Hz 사각파에서 측정한 미가공(Raw) 데이터(왼쪽)와 그 데이터 오른쪽</td>
<td>16</td>
</tr>
<tr>
<td>2.5 정전기 마찰 진동의 진폭(왼쪽)과 각 조건의 마찰력 오프셋(오른쪽)</td>
<td>17</td>
</tr>
<tr>
<td>2.6 마찰력 오프셋 설명(조건: 150 Hz, 20 V)</td>
<td>17</td>
</tr>
<tr>
<td>2.7 인가 전압 기준으로 절대 역치를 나타낸 그래프(왼쪽)과 전압을 N단위로 변환하여 나타낸 그래프(오른쪽)</td>
<td>19</td>
</tr>
<tr>
<td>2.8 공간적 인지분해능 측정 결과 그래프</td>
<td>21</td>
</tr>
<tr>
<td>2.9 공간적 개수 세기 측정한 결과, 응답한 선의 개수 평균(위쪽)과 에러 개수(아래쪽)</td>
<td>23</td>
</tr>
<tr>
<td>3.1 TouchPhoto 시나리오</td>
<td>32</td>
</tr>
<tr>
<td>3.2 TouchPhoto의 구조 및 데이터 호름</td>
<td>33</td>
</tr>
<tr>
<td>3.3 TouchPhoto 어플리케이션 사진 활용 시 화면</td>
<td>35</td>
</tr>
<tr>
<td>3.4 지역 태그(노란색 네모) 화면(왼쪽) 및 얼굴 확대 기능(오른쪽)</td>
<td>36</td>
</tr>
<tr>
<td>3.5 TouchPhoto의 총각 렌더링 절차</td>
<td>40</td>
</tr>
<tr>
<td>4.1 실험 진행 모습</td>
<td>57</td>
</tr>
</tbody>
</table>

VII
4.2 선을 렌더링하기 위한 험 피드백의 방향(왼쪽) 및 험의 크기(오른쪽) 58
4.3 렌더링된 경로 ... 59
4.4 실제 경로와 움직인 경로의 오차 거리 60
4.5 K의 차이에 따른 사후 검정(Tukey’s grouping) 61
4.6 d의 차이에 따른 사후 검정(Tukey’s grouping) 62
4.7 K-d의 차이에 따른 사후 검정(Tukey’s grouping) .. 63
4.8 K가 증가함에 따른 평균 오차의 변화(왼쪽) 및 탐색 시간(오른쪽) 64
4.9 각 감정에 따른 얼굴 렌더링 영역 65
4.10 각 감정 표현의 렌더링에 대한 사용자 응답 결과 68
I. 서론

1.1 연구 동기

사진은 다양한 시각적 정보를 기록, 공유, 감상하기 위한 유용한 방법의 하나로 널리 활용되었다. 최근 들어 스마트폰과 사회 연결망 서비스(Social network service; SNS)가 대중화되면서, 스마트폰으로 많은 사람들이 쉽게 사진을 찍고 SNS에 사진을 업로드한다. 이렇게 사진 촬영 및 감상은 이미 일상생활의 일부가 되어 있으며, 많은 사람들이 서로의 사진을 공유하고 소통한다. 그러나, 전 세계 2억 8500만 명에 달하는[1] 시각 장애인들은 저조한 접근성(Accessibility)으로 인하여 현실적으로 사진이 제공하는 정보 및 사교적 이점을 누리기 어렵다.

또한, 사진 촬영은 일반적으로 정안인의 영역이라고 생각하기 쉬우나, 취미의 영역뿐만이 아니라 직업으로써 사진 촬영을 수행하는 시각 장애인도 존재하며, 이들의 촬영 결과물은 정안인과는 다른 특수성으로 인해 예술적 가치를 인정받고 있다. 하지만 현재 시각 장애인의 경우 사진 촬영 전에 정안인으로부터 풍경에 대한 설명을 듣고 사진의 구도를 잡을 수 밖에 없고, 촬영 후 결과물을 본인이 확인하기 어려워 다른 사람의 도움을 받는 등, 사진 활동에 있어서 어려움이 존재한다.

이러한 현실을 극복하기 위하여 다양한 연구들이 수행되었다. 이들 연구는 크게 사진 촬영을 보조하기 위한 연구와 사진의 정보 전달을 위해 감각 대체(Sensory substitution)를 사용하는 연구로 나누어 볼 수 있다. 사진 촬영을 보조하기 위한 수단으로는 컴퓨터 비전(Computer vision) 등을 이용하여, 인물
사진을 촬영할 때 피사체가 사진 중앙에 올 수 있도록 유도하는 방법이 주로 활용되었다 [2]. 사진의 정보를 전달하기 위한 연구로는 사진에 나타난 물체를 물체 인식(Object recognition) 알고리즘을 통하여 음성으로 알려주거나 [3], 사진 촬영 시 주변 환경과 관련된 소리(Ambient sound)를 같이 녹음함으로써 사진의 내용을 알 수 있도록 도와주는 방법 등이 활용되었다 [4]. 그러나 이들 방법은 사진이 제공하는 정보를 간접적으로 전달받을 수는 있지만, 사진의 정보를 직접적으로 받아들이는 힘들다는 한계가 존재한다.

앞서 언급했던 문제를 해결하기 위해 본 논문에서는 다음과 같은 과정으로 연구를 진행하였다. 첫 번째로, 정전기 마찰 디스플레이에 대한 인지적 특성을 정안인 및 시각 장애인 대상으로 조사를 하였다. 정전기 마찰 디스플레이를 이용하며 인가 전압, 파형, 주파수 등의 파라미터들을 조절하여 다양한 합력 자극을 이끌어 낼 수 있으며, 소비 전력이 작고 다양한 장치와 결합할 수 있는 가능성을 가지기 때문에 많은 장점이 존재한다. 정전기 마찰 디스플레이로 적절한 합력 자극을 생성하기 위해서는 기초 인지 자료가 필요하며, 조사한 인지 특성은 절대 인지역치(Absolute threshold; AL), 공간적 인지분해능(Spatial gap detection) 및 공간적 개수 세기(Spatial numerosity judgement)로 총 3가지이다. 또한 실험 결과를 바탕으로 정안인과 시각 장애인의 인지 특성에 유의미한 차이가 없는지 비교하였다.

두 번째로, 스마트폰 및 정전기 마찰 디스플레이를 사용하여 시각 장애인이 스스로 사진을 찍고 시-청-촉각으로 사진을 감상할 수 있는 다중감각 시스템을 구현하였다. 시각 장애인의 사진 촬영을 보조하기 위해 음성 안내를 사용하였으며, 사진 검색 및 이해를 돕기 위해 음성 메모, 주변 음향 녹음과 더불어 사진의 특정 위치에 정보를 기록하는 지역 테그(Regional tag) 기능을 활용하였다. 또
한, 첫 번째 연구에서 얻은 인지 특성을 활용하여, 인물 사진에 나타난 얼굴을 높이거나 낮춰 렌더링을 적용하고 정전기 마찰 디스플레이에서 만질 수 있도록 구현하였다. 시스템의 효용성을 확인하기 위해, 시각 장애인 5명을 대상으로 2개의 사용자 실험을 수행하였다. 첫 번째 사용자 실험에서는 스마트폰에서 개발된 어플리케이션으로 시각 장애인이 독립적으로 사진을 촬영하고 사진을 다른 사람에게 설명할 수 있는지 확인하였다. 두 번째 사용자 실험에서는 같은 피실험자를 대상으로 2달 후에 본인이 촬영한 사진을 다중감각 시스템을 이용하여 감상하고 설명할 수 있는지 확인하였다.

세 번째로, 힘 반향 헬틱 장치(Force feedback device)를 사용하여 시각 장애인에게 인물 사진 속 얼굴의 시각 정보를 촉각 정보로 전달하는 시스템을 구현하였다. 두 번째 연구에서 정전기 마찰 진동은 시각 장애인이 만지기에 불편한 느낌을 주었기에 얼굴을 인지하는데 어려움이 있었다. 따라서, 정전기 마찰 디스플레이 대신 힘 반향 헬틱 장치로 장비를 교체하였으며, 사용자가 쉽게 인지할 수 있는 적절한 힘과 렌더링 범위를 알기 위해 인지 실험을 진행하였다. 실험 결과를 바탕으로 감정 표현에 따른 얼굴 렌더링 시스템을 구현하였으며, 사용자는 촉각으로 렌더링된 얼굴을 만지고 감정을 추측하게 함으로써 효용성을 평가하였다.

1.2 연구 기여

본 논문의 학문적 기여는 다음과 같다.

- 정전기 마찰 진동의 인지적 특성을 파악하기 위해 절대 인지역치(Absolute threshold), 공간적 인지분해능(Spatial gap detection) 및 공간적 개수 세기(Spatial numerosity judgement)를 조사하고, 시각 장애인과 정상인의 데이터
터를 비교함으로써 정전기 마찰 진동의 기초 인지 데이터를 확보하였다.

• 시각 장애인이 외부 도움을 최소화하여 독립적이고 주도적으로 사진과 관련된 행동을 수행할 수 있도록 시스템을 구현하여, 사전에 대한 접근성을 높였다.

• 헬틱 유도(Haptic guidance)에 필요한 힘과 렌더링 범위를 조사하고 데이터화 시켰으며, 이를 바탕으로 얼굴을 축각으로 렌더링함으로써 시각 장애인이 사전의 얼굴을 감상 할 수 있도록 구현하였다.
II. 정전기 마찰 자극의 인지 특성

본 챕터에서는 정전기 마찰 디스플레이(Electrostatic friction display)의 인지적 특성을 파악하기 위해 절대 인지역치(Absolute threshold), 공간적 인지분해능(Spatial gap detection) 및 공간적 개수 세기(Spatial numerosity judgement)를 조사하였다. 정전기 마찰 디스플레이는 디스플레이에 접촉된 사용자의 손가락 혹은 터치펜 사이에 정전기적 인력을 발생시켜 디스플레이와 접촉된 물체 사이의 마찰력으로 촉감을 만들어내는 헨틱(Haptic) 장치의 일종이다. 정전기 마찰 디스플레이는 구조가 간단하고 다른 촉감 디스플레이와 달리 기계적으로 움직이는 부품이 포함되어 있지 않으며, 디스플레이를 투명하게 만들 수 있기 때문에 일반 디스플레이나 터치스크린(Touch screen)과 결합하는 것이 가능하다[5]. 또한 넓은 면적에 균일한 촉감을 생성할 수 있으며, 전기적인 정전기력을 이용하기 때문에 응답시간이 매우 빠르고, 소모 전력도 매우 작아 효율적인 시스템을 구현할 수 있다는 장점도 가지고 있다.

여러 장점에 의해 정전기 마찰 디스플레이는 다양한 형태의 하드웨어로 구현되고 연구되어 왔으나 [6, 7, 8], 정전기 진동 마찰을 이용하여 다양한 촉감을 제공하기 위한 기초적인 인지 특성 자료가 아직 부족하기 때문에 체계적인 연구를 할 필요가 있다. 특히, 시각 장애인에 대한 정전기 마찰 진동에 대한 인지 특성 조사 결과는 현저히 적은 편이다. 따라서 본 챕터에서는 정전기 마찰 진동 랜더링에 기초가 되는 절대 인지역치, 공간적 인지분해능 및 공간적 개수 세기를 정안인 및 시각 장애인을 대상으로 측정하고 비교하여, 향후 연구에 만들어질 정전기 진동 마찰 랜더링에 도움이 되고자 하였다.
2.1 연구 배경

2.1.1 정전기 마찰 디스플레이

정전기 마찰 디스플레이는 디스플레이와 디스플레이에 접촉된 사용자의 손가락 혹은 터치패널 사이에 정전기적 인력을 발생시켜 디스플레이와 접촉된 물체 사이의 마찰력을 변화시킴으로써 촉감을 생성한다. 정전기 마찰 디스플레이의 구조는 유리판 위에 전압을 가하기 위한 ITO(Indium Tin Oxide) 전극판을 부착하고 그 위에 유전체 역할을 수행하는 절연체로 이루어진 판을 하나 더 올린 형태이다. 사용자의 피부를 접지시킨 상태에서 ITO 전극에 높은 전압을 가하면 충전현상이 일어나면서 ITO 전극과 사용자의 피부가 대전되어 정전기적 인력이 발생하고, 이로 인해 절연체와 사용자의 피부 사이의 마찰력이 증가하게 된다. ITO 전극에 가하는 전압을 조절함으로써 마찰력의 크기를 조절하여, 사용자가 느끼는 힘을 제어할 수 있다 [9,10]. 적류를 가하거나 접촉 물체가 정지해 있을 때는 진동이 발생하지 않고, 사용자가 디스플레이를 문지를 때 교류를 가해야만 마찰력의 변화와 함께 약간의 진동이 발생한다.

Strong과 Troxel은 정전기진동을 이용하여 처음으로 측각 펜 배열 장치를 구현하였으며, 정전기 진동의 인지 강도는 전류보다는 피크 전압(Peak voltage)에 의해서 더 영향을 많이 받는다는 것을 밝혀내었다 [7]. Beebe 등은 높은 전압 (200-600V)에서 미세점착을 나타내는 느낄을 만들어내는 정전기 마찰 디스플레이를 개발하였다 [8]. 최근에는 Bau 등이 투명한 전극을 사용하여 터치 스크린 위에서 다양한 마찰 진동을 만들어내는 성공을 하였으며 [10], 이러한 결과는 정전기 마찰 진동이 모바일 기기에 적용할 수 있다는 점을 시사한다.

정전기 마찰 디스플레이의 단점은 높은 전압(80V [10]-2400V [11])을 요구한다는 것이다. 이를 개선하기 위해 많은 연구자들이 전압 요구치를 낮추려고 노력하였고...
력하였으며, Kang 등은 진폭 변조(Amplitude modulation)와 적류 오프셋(Direct current offset)을 사용하여 동일 강도대비 구동 전압을 17-39%까지 낮추었다 [12]. 현재 산업적 용도로 쓰이는 정전기 터치 패널 제품(3M Microtouch)은 100V이하 에서도 명확한 정전기 마찰 전등을 느낄 수 있으며 많은 연구에 쓰이고 있다.

2.1.2 정전기 마찰 자극의 인지 특성

정전기 마찰 진동에 대한 인지 특성 조사는 중요한 연구 주제 중 하나이 다. Tang과 Beebe는 시각 장애인들을 대상으로 정전기 마찰 진동의 절대 인지 역치를 측정하였으며, 진동 주파수에 따라 차이가 있지만 약 97V-228V사이로 측정되었다 [4]. 다른 인지특성 조사로는 Agarwal 등이 정전기 마찰 디스플레이의 유전체 두께는 절대 인지역치와 무관하다고 밝혔으며 [13], Kaczmarek 등은 음펄스(Negative pulse)와 이상성펄스(Biphasic pulse)가 양펄스(Positive pulse)보다 느끼기 쉬움을 증명하며 극성(Pulse polarity)이 정전기 마찰 진동의 인지에 영향을 끼치는 것을 보여주었다 [14]. 최근에는 Vardar 등이 3M 마이크로터치 패널(Microtouch panel)의 절대 인지역치를 측정하였으며, 사인파의 최소 절대 인지역치는 120Hz 및 240Hz에서 50V임을 밝혔다 [15]. 또한 주파수가 120Hz에서 감소할 때는 절대 인지역치가 증가하고, 240Hz보다 커질 때도 절대 인지역치가 증가함을 보였다. 사각파일 경우에는 주파수와 상관없이 절대 인지역치는 50V로 측정되었다.

정전기 마찰 진동으로 생성된 마찰력은 인가되는 전압과 주파수를 조절하여 다양한 효과를 낼 수 있으며, Meyer 등은 마찰력을 측정하기 위해 트리보미터(Tribometer)를 사용하였다 [16]. 280V 전압을 인가하였을 때, 3M 마이크로터치 패널은 근적거리는 느낌을 내기 충분한 힘인 약 0.25N의 마찰력이 측정되었다. 마찰력은 인가되는 전압을 V라고 할 때 V^{1.92}으로 비례하며 증가하였고, 주파수
가 클수록 마찰력이 더 커지는 경향을 보였다.

다른 인지적 특성으로는 공간적 특성(Spatial features)이 있다. 정전기 마찰
디스플레이에서 Tang과 Beebe는 시각 장애인 대상으로 공간적 인지 분해능을
알기 위해 실험을 하였다 [9]. 그 결과, 약 5.8mm 정도가 떨어져있으면 빈 공간
으로 인식할 수 있다는 것을 보여주었으며, 실험 참가자들은 70% 확률로 원이나
사각형 등으로 이루어진 기본 도형을 정전기 마찰 진동으로 구분할 수 있었다.
Vardar 등은 정전기 마찰 진동의 다양한 파형(Waveforms)과 홈(groove)의 폭을
조절하여 가상으로 렌더링된 절감의 거칠기(Roughness)를 조사하였다 [17]. 홈
의 폭과 파형은 거칠기를 느끼는데 큰 영향을 미쳤으며, 폭이 1mm에서 2mm
일 때 가장 거친 느낌을 주었다. 파형의 경우, 사각과가 다른 파형보다 거칠게
느껴지는 것으로 나타났다.

2.1.3 시각 장애인의 측각 인지

일반적으로 측각 인지능력은 정안인과 시각 장애인을 비교했을 때, 다소 차
이를 보인다고 알려져 있다. 예를 들어, Goldreich와 Kanics은 정안인과 시각
장애인을 대상으로 수동(Passive)으로 측각을 인지할 때 얼마나 세밀하게 구분
할 수 있는가를 실험하였으며, 작은 표면에 대해서 시각 장애인이 정안보다
좀 더 민감한 것으로 나타났다 [18]. Grant 등은 일정한 패턴 모양이 있을 때, 정
안인과 시각 장애인을 대상으로 측각 패턴 구분 능력을 비교하였다 [19]. 점자일
경우에는 시각 장애인이 정안보다 구분하는 능력이 훨씬 뛰어났지만, 그와
대조적으로 처음 접하는 측각 패턴은 시각 장애인과 정안인이 큰 차이를 보이지
않았다.

앞서 언급된 것처럼, 몇몇의 경우에는 시각 장애인의 민감도는 정안인과 큰
차이가 나지 않는다. Hollins 등이 실시한 두 개의 서로 다른 점을 측각으로 구

분하는 실험이에서 정안인과 시각장애인이의 역치는 서로 비슷하였다 [20]. Heller 등은 정안인과 시각 장애인 대상으로 만질 수 있는 양각 형태의 모양을 맞추는 실험을 하였으며, 경확도는 서로 간의 큰 차이를 보이지 않았다 [21].

위의 연구들을 바탕으로 시각 장애인과 정안인은 쪽각 인지 능력에 대해서 비슷한 민감도를 가지고 있다고 추측할 수 있다. 하지만 쪽각으로 인지해야 할 대상의 모양이 복잡하고 인지하기까지 시간이 오래 걸리는 형태이면 시각장애인이 정안인보다 더 나은 결과를 보일 수 있다.

2.2 실험 방법

정전기 마찰 진동을 이용하여 그래픽 정보(Graphical information)를 전달하기 위해서는 정전기 마찰 진동의 인지 특성 조사는 필수적이다. 인지 특성을 알기 위해 정안인 및 시각 장애인을 대상으로 총 3개의 실험을 실시하였다. 첫 번째 실험은 절대 인지역치를 측정하였으며, 실험이에서 측정된 전압은 장비의 특성과 무관하게 나타내기 위해 트리보미터로 한번 더 측정하여 전압을 N(Newton)단위로 변환하였다. 두 번째 실험이에서는 평형한 두 개 직선 사이의 거리를 조절하여 직선을 두 개로 구분할 수 있는지 알아보는 공간적 인지분해능을 측정하였으며, 마지막 실험이에서는 일정한 영역의 넓이에서 여러 개의 평형한 직선을 렌더링 했을 때 최대 및 개까지 인지할 수 있는지를 확인하는 공간적 개수 세기를 측정하였다. 실험이 실험이는 임상시험심사위원회(Institutional Review Board)의 승인을 받고 진행하였다(PIRB-2016-E037).

2.2.1 실험 참가자

8명의 시각 장애인(저시력자 2명, 선천 전쟁 3명, 후천 전쟁 2명, 평균 나이 22.0세)과 8명의 정안인(평균 나이 24.6세) 대상으로 실험이를 실시하였다. 참가
자들은 세 가지 실험에 모두 참여하였으며, 각 실험 사이에 3분씩 휴식 시간을 가졌다. 모든 참가자들은 축구를 인지하는데 문제가 없었으며, 실험이 끝난 후 15,000원을 지급하였다.

2.2.2 실험 장비

![Figure 2.1: 정전기 마찰 디스플레이(왼쪽과 중간)와 실험 모습(오른쪽)](image)

정전기 마찰 인지 특성을 조사하기 위해 투명한 정전기 진동 마찰 패널(3M Microtouch, SCT3250)을 17인치 LCD 모니터 위에 부착하여 장치를 만들었다 (Figure. 2.1). 또한 손가락의 움직임을 추적하기 위해 적외선 프레임(E&T Tech Inc., 모델 T17, 해상도 4096×4096, 응답 시간 16 ms)을 추가적으로 패널 위에 부착하였다. 입력 신호는 컴퓨터에서 생성하여 데이터 수집 장치(National Instruments, NI-6251)로 전송한 뒤, 증폭기를(Piezodrive, PDu150m)으로 증폭하여 정전기 마찰 디스플레이에 전송하였다. 실험자의 실수를 미연에 방지하기 위해 쓰지 않는 공간은 하드보드지로 움직임을 제한하였으며(Figure. 2.1 오른쪽), 사용된 공간은 12.7 cm × 12.7 cm의 넓이를 가진 정사각형 모양으로 하였다. 실험 중에는 정전기 마찰 디스플레이가 발생하는 소리와 다른 소리를 막기 위해 피실험자들은 노이즈 캔슬링 헤드폰(Bose QuietComfort 15)을 쓰고 실험이 참가하였다.
2.2.3 실험 I. 절대 인지역치

첫 번째 실험의 목표는 정전기 마찰 자극의 절대 역치를 측정하는 것이다. 본 실험에서는 인가 전압의 진폭을 조절하여 사용자들의 절대 역치를 측정하였으며, 장비의 특성과 무관하게 나타내기 위해 인가 전압에 따른 마찰력을 트리보미터로 한번 더 측정하여 절대 역치로 측정된 인가 전압을 N(Newton)단위로 변환하였다.

생성 자극

절대 역치를 측정하기 위해 이전 연구에서도 자주 쓰인 파형인 사인파와 사각파를 사용하였다 [16, 12, 8, 15].

\[x_{sine}(t) = \frac{a}{2} (1 + \sin(2\pi ft)), \]
\[x_{square}(t) = \frac{a}{2} (1 + \text{sgn}(\sin(2\pi ft))) \]
\(a \)는 V에 대한 파형의 최대 양의 진폭과 최대 음의 진폭 차이이며, \(f \)는 주파수, \(\text{sgn}(\cdot) \)는 부호 함수이다. 입력 신호의 진폭 \(a \)는 같은 진폭이라도 좀 더 강한 자극을 주기 위해 직류 오프셋(Direct current offset)을 적용하였다 [12]. 주파수는 60Hz와 150Hz를 사용하였으며, 총 4가지 조건(2개의 파형 × 2개의 주파수)에 대해서 실험하였다.

절차

실험 방법은 One-up one-down adaptive staircase과 Three-alternative forced choices를 함께 사용하였다 [22]. 이 방법은 심리 측정 함수(Psychometric function)에서 약 71% 지점의 역치를 측정할 수 있다 [23].
실험은 전폭 a에 해당하는 한 개씩의 수직선이 화면 위의 세 위치(왼쪽 기준으로 25%, 중앙, 오른쪽 기준으로 25%) 중 한 곳에 무작위로 랜덤되고 사용자는 해당하는 위치를 선택한다(Figure. 2.2 오른쪽). 랜덤된 선의 굵기는 5.2mm이며 피실험자는 자유롭게 탐색하면서 선의 위치를 확인할 수 있다. 피실험자가 정답을 고르게 되면, 전폭 a의 스텝 크기(Step size)가 감소하며 틀릴 경우 증가 한다. 초기 스텝 크기는 4dB이며, 두 번의 변곡점(Reversal)마다 반씩 줄어든다. 각 Staircase는 10번의 변곡점(Reversal point)마다 종료되었으며, 마지막 6개의 변곡점(Reversal point) 평균을 절대 역치로 측정하였다.

피실험자는 트레이닝으로 무작위로 조건이 설정된 Staircase 프로그램을 체험한 뒤, 실험을 진행하였으며 총 4개의 실험 조건에 대해서 2번씩 반복하여 측정하였다. 두 번의 실험 뒤에는 1분의 휴식 시간을 가졌으며, 평균 20분의 시간이 소요되었다.

Figure 2.2: 실험에 쓰인 세 가지 힐틱 자극. 실험 I(왼쪽), 실험 II(중앙), 실험 III(오른쪽)
측정된 절대 인지역치는 입력 신호의 진압을 조절하였기 때문에 단위가 V(Voltage)로 측정되며, 이 단위는 장비에 따라 달라지기 때문에 일반화하기 어렵다. 따라서 Figure. 2.3과 같이 트리보미터를 사용하여 정전기 마찰 진동으로 생기는 횡력을 측정하였다. 트리보미터는 터치펜이 부착된 수직의 암(Arm)과 선형 모터(Linear motor, D&J Technologies, RB-35GM), 6축 힘 센서(Six-axis force/torque sensor, ATI Technologies, Nano 17)로 구성된다[24]. 일정한 조건에서 작용하는 마찰력을 측정하기 위해 사람의 손가락 끝과 비슷한 터치펜(접촉 면적 약 0.5 cm²)을 사용하였으며, 일정하게 누르는 힘을 생성하기 위해 무게주(110g)를 장착하였다. 터치펜은 수직으로 세워진 상태에서 직선 방향으로 일정한 속도(6.5 cm/s)를 유지한 상태에서 3M 마이크로터치 패널 위를 움직였다. 측정은 데이터 수집 장치(National Instruments, NI-6251)를 사용하여 10 kHz 샘플링 레이트(Sampling rate)인 상태에서 측정하였다.

측정 대상 데이터는 총 4가지 입력 신호에 대해서 서로 다른 진압에서 측정

Figure 2.3: 트리보미터(Linear tribometer)
하였다. 전압의 전폭 범위는 0 V에서 40 V까지 4 V 단위로 측정하였으며, 최대 전압(80 V)도 측정하였다. 정확한 마찰력을 구하기 위해 5번의 반복 실험을 실시하였으며, 총 240번을 측정하였다(12개의 전압 단계×2개의 주파수×2개의 파형×5 반복).

2.2.4 실험 II. 공간적 인지분해능

두 번째 실험 목표는 평행한 두 직선 사이의 거리를 조절하여 두 개의 직선으로 인지할 수 있는 최소 거리를 측정하는 것이다. 공간적 인지분해능은 촉각 그래픽스(Tactile graphics)에서 두 선을 틀로 가까이 렌더링하였을 때, 한 개의 선으로 인식하여 사용자에게 의도치 않은 정보를 전달할 수 있으므로 중요한 기초 데이터로 사용된다.

생성 자극

실험 조건은 첫 번째 실험과 마찬가지로 두 개의 주파수(60 Hz, 150 Hz)를 사용하였으며, 파형은 쉽게 인지할 수 있는 사각파를 사용하였다. 전압의 전폭은 최대치(80 V)를 사용하였으며, 각 주파수에 해당하는 힘은 60 Hz일 때 0.04 N, 150 Hz일 때, 0.75 N이다. 렌더링된 선의 굵기는 5.2 mm와 10.5 mm를 적용하였다.

절차

공간적 인지분해능은 One-up two-down adaptive staircase를 사용하였다[22]. 매 회마다 정전기 마찰로 렌더링된 평행한 두 개의 수직선이 모니터의 중앙 영역(약 20%)에 무작위의 거리로 떨어진 상태에서 나타난다(Figure. 2.2 중앙). 피실험자는 렌더링된 두 개의 직선을 탐색하고, 1개 혹은 2개인지 대답을 한다. 만약 1개라고 대답하면 스텝 크기만큼 두 직선 사이의 거리를 늘였고, 2개라고
대답하면 스텝 크기를 두 직선 사이의 거리를 줄였다. 스텝 크기와 실험 종료 절차는 실험 1과 동일하며, 약 25분 정도의 시간이 소요되었다.

초기 두 직선 사이의 거리는 26 mm, -5.2 mm(부분적으로 겹친 상태)를 사 용하였으며, 각 피험자간은 2개의 주파수, 2개의 직선 사이의 거리, 2개의 직선 굴기에 대해 요인 배치법(Factorial design)을 사용하여 8번의 Staircase를 실시 하였다. 실험 전에 실험 1과 마찬가지로 무작위로 선택된 조건을 2번 반복하여 트레이닝으로 활용하였다.

2.2.5 실험 III. 공간적 개수 세기

세 번째 실험이에서는 피험자에게 일정 공간안에 렌더링된 선의 개수를 세 는 실험이 하였다. 피험자가 최대 몇 개까지 선의 개수를 인지할 수 있는 지를 측정하는 것이 실험이 목표였으며, 실험 결과는 축각 그래픽스에서 왜곡없이 사용 자에게 정보를 전달하는데 활용할 수 있다.

생성 자극

실험에 사용된 조건은 60 Hz, 150 Hz를 주파수로 사용하였으며, 파형은 사 각파, 전압 전폭은 80 V로 설정하였다. 렌더링된 직선들의 크기는 5.2 mm로 동 일하며, 최소 1개에서 최대 10개까지 일정 공간안에 무작위의 위치에서 직선이 나타난다. 또한, 직선들은 두 가지의 방향(수직, 수평)을 가진다. 총 40(2개의 주파수×2개의 방향×10개의 직선 수)개의 자극에 대해서 2번 반복 실험이하였다.

절차

각 시험마다 피험자에게 직선의 방향(수직, 수평)을 알려준 뒤, 피험자는 자유롭게 손가락을 사용하여 탐색하였다. 시간은 제한을 두지 않았으며,
탐색이 끝나면 피험자는 몇 개의 선을 세었는지 대답하였고, 40회의 시행이 끝난 후, 약 3분의 휴식 시간을 가지었다. 총 실험시간은 약 20분 정도이다.

2.3 결과 및 토의

2.3.1 실험 I. 절대 인지역치

자극 특성 일반화

Figure 2.4: 150 Hz 사각파에서 측정한 미가공(Raw) 데이터(왼쪽)와 그 데이터를 필터링한 데이터(오른쪽)

그림 2.4는 트리보미터에서 측정된 미가공(Raw) 데이터와 그 데이터를 필터링한 데이터이다. 스캔을 시작하는 약 1초 즤부터 정전기 마찰 진동이 작용하기 시작하며, 측면 힘은 -0.5 N에서 -1.0 N사이로 측정되었다. 전압의 진폭을 높게 설정하면 진동의 진폭은 크게 나타났다. 측정된 마찰력 중 정전기 마찰 진동에 관한 데이터만을 보기 위해 미가공(Raw) 데이터에 통과대역(Band-pass filter) 필터를 적용하였으며, Figure 2.4 오른쪽으로 나타냈다. 정전기 진동 마찰의 진폭은 인가 전압의 진폭(a)이 높으면 높을수록 증가하였으며, a가 80V일 때 측각 자극으로 느끼기에 충분한 약 0.8N(peak to peak)의 힘을 보여주었다.
Figure 2.5: 정전기 마찰 진동의 진폭(왼쪽)과 각 조건의 마찰력 오프셋(오른쪽)

정전기 마찰 진동의 진폭을 N 단위로 변환한 결과는 Figure. 2.5의 원쪽 그래프이다. 사각파의 경우, 같은 주파수일 때 사인파보다 더 높은 진폭을 보였다. 또한 같은 파형이라도 150-Hz가 60-Hz보다 더 높은 진폭을 보였다.

Figure 2.6: 마찰력 오프셋 설명(조건: 150 Hz, 20 V)

측정된 미가공(Raw) 데이터를 분석해보면 다른 감각 신호(Sensory cue)가 있다는 것을 추측할 수 있다. Figure. 2.6는 사각파가 150 Hz이며, a가 각각 0 V, 20 V일 때 측정한 미가공(Raw) 데이터이며, 전류가 인가되었을 때 마찰력 오프
셋(Friction offset)이 서로 차이가 남을 알 수 있다. 만약 마찰력 오프셋(Friction offset)이 차이가 크게 났다면, 이 영향은 축각 자극에 영향을 미칠 것이고 실험자의 인지에 영향을 미칠 가능성이 존재한다. 따라서, 다른 조건에서 측정된 데이터의 직류 성분에서 0 V(정전기 마찰 진동이 없는 상태)상태의 직류 성분을 차감하여 변동 마찰력 오프셋(Dynamic friction offset)을 계산하였고 Figure. 2.5의 오른쪽 그래프로 나타내었다. 변동 마찰력 오프셋은 인가된 전압의 크기와 무관하게 보이며, 측정된 힘은 0.16 N보다 작았다. 도출된 결과값을 바탕으로 변별역(Difference threshold)이 0 V일 때의 마찰력의 값(0.912 N; Figure. 2.6)과 비교하여 계산하였다. 변별역은 마찰 판별(Friction discrimination, 18% [25])의 JND(Just Noticeable Difference)를 사용하여 계산하였고, 역치는 0.164 N (= 0.912 N × 18/100)로 나타났다. 변별역이 다른 모든 변동 마찰력(Dynamic friction)과 비교했을 때 더 크기 때문에, 변동 마찰력(Dynamic friction)이 있다하더라도 정전기 마찰 진동의 절대 역치를 측정할 때 크게 영향을 미치지 않았음을 것이다.
점대 인지역치 결과

Figure 2.7: 인가 전압 기준으로 점대 역치를 나타낸 그래프(왼쪽)과 전압을 N 단위로 변환하여 나타낸 그래프(오른쪽)

피실험자 정안인 8명과 시각 장애인 8명에 대해 점대 인지역치의 차이를 보이는지 확인하기 위해 t-검정(t-test)을 실시하였다. 통계 결과, 모든 조건에서 두 집단 간의 차이는 보이지 않았다(150 Hz–sine, 150 Hz–square, 60 Hz–sine, 60 Hz–square에 대해 각각 $t(14) = 1.027, 1.223, 1.629, 0.86, p = 0.322, 0.249, 0.134, 0.404$). 따라서, 시각 장애인과 정안인의 데이터를 합쳐서 분석하였다.

점대 역치는 Figure 2.7과 같이 상자 그림(Box plot)으로 나타내었다. 왼쪽의 그래프는 인가된 전압의 진폭을 기준으로 점대 역치를 측정하였고, 오른쪽의 그래프는 같은 데이터를 트리보미터로 측정한 데이터를 활용하여 N 단위로 변환시킨 그래프이다. 전압에 대한 역치는 사각파일 때 150 Hz에서 8.51 V, 60 Hz에서 9.45 V였으며, 사인파에 일 때 150 Hz에서 8.63 V, 60 Hz에서 15.56 V였다. 표준 편차는 앞서 언급한 순서대로 각각 4.93, 4.57, 3.76, 6.98 V였으며 힘으로 변환하면 각각 0.048, 0.039, 0.040, 0.022 N으로 나타났다. 추가적으로, 주파수와
파형에 대해서 이원분산분석(Two-way repeated-measure ANOVA)을 실시하였고, 각각의 독립변수에 대해서는 유의미한 결과가 나타나지 않았다. 하지만 상호관계는 통계적으로 유의미하게 결과가 도출되었다\(F(1,15) = 2.759, F(1,15) = 2.766, F(1,225) = 0.560\)에 대해 각각 \(p = 0.117, 0.117, 0.466\).

토의

절대 인지역치를 측정한 연구는 이전에도 있었으며, 같은 장치인 3M 마이크로 터치패널에 대해서 전압의 전폭을 절대 인지역치로 측정했다\[20\]. 이 연구에서 측정된 절대 인지역치는 본 챔버에서 측정된 절대 인지역치보다 값이 조금씩 작다. 예를 들어, 60 Hz에서 사각파와 사인파의 절대 인지역치는 50 V였지만, 본 챔버에서는 15.6 V와 9.45 V로 나타났다. 주요 원인은 직류 오프셋(Offset)때문에 같은 전압이라도 더 큰 마찰력이 작용했다고 생각할 수 있으며\[12\], 정전기 마찰 패널의 크기(17")가 연급한 연구보다 크기 때문에 같은 전압대비 마찰력이 크게 작용했을 가능성이 있다. 그 외의 이유로 온도, 습도 등이 절대 인지역치에 영향을 미쳤을 것이다.

정전기 마찰 전등의 절대인지 역치를 마찰력을 마찰력으로 측정한 데이터는 아직까지 없기 때문에 이전의 연구와 비교하는 것은 힘들며, 측정된 결과값은 사용되는 장비와 무관하게 활용할 수 있기 때문에 다른 연구에 많은 도움이 될 것이라고 예상한다. 하지만 사람의 손을 사용하지 않고 터치펜을 사용하여 마찰력을 측정했기 때문에 연구에 활용하기 전에 개인 특성을 고려해야 한다.
2.3.2 실험 II. 공간적 인지분해능

공간적 인지분해능 결과

Figure 2.8: 공간적 인지분해능 측정 결과 그래프

공간적 인지분해능에서 시각 장애인과 정안인이 차이가 있는지 확인하기 위해 대응표본 t-검정(Paired t-test)을 실시하였고, 통계 결과, 모든 조건에서 두 집단 간의 차이는 나타나지 않았다(150 Hz–Wide(W: 10.4 mm), 150 Hz–Narrow(N: 5.2 mm), 60 Hz–W, 60 Hz–N의 조건에 대해 각각 $t(14) = 0.237, 1.015, 0.411, 1.133, p = 0.816, 0.336, 0.690, 0.286$). 따라서, 시각 장애인과 정안인의 데이터를 합쳐서 공간적 인지분해능을 분석하였고, 결과는 Figure 2.8과 같이 나타내었다. 별 모양은 평균을 나타내며, 개개인의 데이터는 점으로 표시하였다.

역치는 조건 150 Hz–W, 150 Hz–N, 60 Hz–W, 60 Hz–N에 대해 각각 2.94, 3.70, 2.94, 4.97 mm으로 측정되었고, 표준편차는 2.11, 3.03, 2.96, 4.18 mm이었
다. 추가적으로, 주파수와 선의 굵기에 대해 이원분산분석(Two-way repeated-measure ANOVA)를 실시하였고, 선의 굵기는 통계적으로 유의미한 차이를 보였지만\((F(1, 15) = 7.40, p = 0.016)\), 주파수에 대해서는 차이를 보이지 않았으며\((F(1, 15) = 2.00, p = 0.178)\), 두 요인간의 상호작용도 차이가 없었다\((F(1, 15) = 2.98, p = 0.105)\). 따라서, 선의 두께가 다 굵으면 사용자는 홀(Gap)을 더 잘 느끼기 쉽다.

토의

Figure. 2.8를 참고하면, 개개인의 역치는 1 mm보다 작게 나오거나 15 mm보다 크게 나올 정도로 편차가 크다는 것을 확인할 수 있다. 이런 결과가 나온 이유는 사용자가 정전기 마찰 디스플레이를 탐색할 때 속도의 제한을 두지 않아서 일정하지 않았고, 개인마다 정전기 마찰 디스플레이를 탐색할 때 수직으로 누르는 힘이 다르기 때문이라고 생각할 수 있다. 참가자들이 탐색할 때, 빠르게 움직이는 사용자도 있었지만 천천히 움직이는 사용자도 있었으며, 정전기 마찰 디스플레이를 수직으로 누르는 개인간의 힘의 차이는 정전기 마찰 진동의 인지에서 큰 영향을 미친다 [27, 28].

공간적 인지분해능의 결과는 Tang 등이 측정했던 두점식별역치(Two-point threshold)와 비교 할 수 있다. Tang 등은 정전기 마찰진동으로 렌더링한 지름이 1.78 mm인 두 개의 점을 이용하여 측정하였고, 3.3 mm만큼 떨어진 거리에서 피실험자들은 15\%의 정답률을 보였으었다. 두 점 사이의 거리가 5.8 mm만큼 늘어났을 때의 정답률은 80\%였다. 따라서, 정답률 70.7\%를 두점식별역치라고 가정했을 때, 두점식별역치가 3.3 mm와 5.8 mm 사이에 있다고 생각할 수 있으며, 본 실험의 정답률 70.7\%의 두점식별역치는 2.94 mm와 4.97 mm 사이에 존재하므로 실험 조건이 조금씩 다른 것을 고려하면 비슷한 결과가 나왔음을 알 수 있다.
2.3.3 실험 III. 공간적 개수 세기

공간적 개수 세기 결과

Figure 2.9: 공간적 개수 세기 측정한 결과, 응답한 선의 개수 평균(위쪽)과 에러 개수(아래쪽)

공간적 개수 세기에 대해 시각 장애인과 정안인이 차이가 있는지 확인하기 위해 대응표본 t-검정(Paired t-test)을 실시하였고, 통계 결과는 모든 조건에서 두 집단 간의 차이는 나타나지 않았다(150 Hz–수평 탐색 (H), 150 Hz–수직 탐색 (V), 60 Hz–H, 60 Hz–V의 조건에 대해 각각 $t(14) = 0.088, -0.921, 0.253, -0.671, p = 0.930, 0.358, 0.800, 0.503$). 따라서, 시각 장애인과 정안인의 데이터를 합쳐서 분석하였고, 주파수, 렌더링 방향(Orientation), 렌더링 선의 개수에 대해 삼원산분석(Three-way repeated-measure ANOVA)을 실시하였다. 통계적으로
주파수와 선의 개수는 유의미한 차이를 보였지만 \(F(1,15) = 17.74, p = .0007 \) 및 \(F(9,135) = 183.9, p < 0.0001 \), 직선의 렌더링된 방향(수직, 수평)은 상관없는 것으로 나타났다(\(F(1,15) = 4.305, p = 0.056 \)).

따라서, 주파수를 고려하여 Figure. 2.9와 같이 그래프로 나타내었다. Figure. 2.9의 위쪽 그래프는 사용자가 탐색 후 응답한 선의 개수를 평균을 주파수로 구분하여 나타냈으며, 점선으로 표현된 직선은 사용자가 완벽하게 응답했을 시 해당하는 수치이다. 아래 그래프는 사용자의 응답한 선의 개수와 실제 렌더링된 선의 개수의 차이를 표현한 그래프이다.

피실험자들은 선의 개수가 1개일 때는 완벽하게 선의 개수를 셀 수 있었지만 150-Hz일 때는 선의 개수가 8개일 때부터, 60-Hz일 때는 선의 개수가 7개일 때부터 오차가 1개씩 발생하였다. 또한, 선의 개수가 5개 혹은 6개 일때 부터 0.5개의 오차를 보이는에서 이러한 경향은 주파수의 차이가 선의 개수를 셀 때 영향을 미친다고 볼 수 있으며, 렌더링된 선의 개수가 10개근 2개 이상의 오차가 발생하였다.

토의

실험 결과를 토대로 분석하면, 피실험자들은 렌더링된 직선의 개수가 작으면 작을 수록 선의 개수를 정확하게 세었으며, 많은수록 오차가 커지는 것으로 나타났다. 인지적으로 1개 미만의 오차가 나지 않게 렌더링하려면 150-Hz일 때는 선의 개수를 8개 까지만, 60-Hz일 때는 선의 개수를 7개 미만으로 렌더링해야한다. 렌더링된 숫자가 늘어날 수록 사용자의 오차가 늘어나는 경향은 이전의 다른 연구에서도 보였던 결과이다. [29, 30, 31]. 앞선 연구에서는 사용자의 신체에 여러 개의 측각 자극을 동시에 주었을 때 최대 몇 개까지 셀 수 있는지 확인하였고, 4개 혹은 5개를 초과할 때부터 사용자는 실제 자극과 인지된 자극의
개수에 차이를 보이며 시작했다. 예를 들어, 저극의 개수가 4개를 초과할 때부터 오차가 1개씩 발생하였다. 29. 30.의 연구에서도 마찬가지로 저극의 개수가 4개보다 커질 때 피실험자는 렌더링된 저극의 개수보다 적은 수를 세었다. 훈련이 된 피실험자들은 빠르게 발생하는 여러 번의 저극(Quickly-repeated stimuli, 15 pulse/s)에 대해서는 5개부터 1개의 오차를 보이며 시작했으며, 절차로 발생하는 반복 저극(Slowly-repeated stimuli, 6 pulse/s)에 대해서는 10개부터 1개의 오차를 보였다. 이전의 연구들과 비교했을 때, 본 실험결과에서는 약 6-7개부터 1개의 오차를 보이며, 약간의 차이가 존재한다. 이러한 이유는 이전의 연구들은 수동 축각(Passive tactile)을 사용하였고, 본 연구에서는 피실험자들이 직접 탐색하였기 때문에 더 잘 셀 수 있었던 것으로 추정된다.

주관수 설계에 따라 공간적 개수 세기의 인지 능력이 달라진다는 것은 유용한 정보이다. 같은 전압(80 V)에 대해서 150-Hz가 60-Hz보다 인지하기 더 쉬웠으며, 통계적으로 유의미한 결과가 도출되었다. Figure. 2.5를 참고하면 150-Hz 일 경우 측정된 힘은 0.75 N이며, 60-Hz는 0.40 N으로 150-Hz일 때가 조금 더 높지만, 역치는 Figure. 2.7를 참고하면 각각 0.048 N, 0.039 N으로 크게 차이나지 않는다. 결과적으로, 150-Hz를 사용하면 같은 전압대비 사용자는 좀 더 저극을 인지하기 쉬우며, 이러한 결과는 정전기 마찰 진동으로 축각 그래픽스를 적용할 때 유용한 정보로 쓰일 것으로 판단된다.

2.3.4 정전기 마찰 저극의 인지 특성 결과

본 쟁바에서 시행했던 3가지의 인지 실험은 정전기 마찰 진동의 축각 그래픽스에서 다음과 같은 가이드라인을 제시할 수 있다.

- 교류 전압(AC voltage) 파형을 사용한 정전기 마찰 진동 디스플레이에서
발생하는 변동 마찰력은 사용자가 무시할 만한 수준이다.

● 정전기 마찰 진동을 감지하기 위해서는 과형과 진동수에 따라 차이는 있지만 최소 약 0.2 N-0.5 N의 힘이 작용해야 한다.

● 공간적 인지 분해능이 편차가 큰 것을 고려하면, 직선 사이의 거리는 최소 10-15 mm 정도 멀어진 상태에서 렌더링을 해야한다.

● 복잡한 물체를 렌더링할 때, 12.7 cm ×12.7 cm의 넓이를 기준으로 직선이 6-7개를 초과해서는 안된다. 더 많은 직선을 렌더링을 할 경우 사용자는 모든 정보를 다 받아들이지 못한다.

이외에도 3가지의 인지 실험에서 시각 장애인과 정안인의 인지 능력 차이는 통계적으로 모두 보이지 않았다. 이 결과는 참가한 피실험자들이 정전기 마찰 진동을 이전에 경험하지 못한 상태였기 때문에, 익숙하지 않은 촉각 자극에 대해서는 시각 장애인과 정안인의 민감도가 비슷하다는 이전의 연구 결과와 부합한다 [19].
III. TouchPhoto 시스템

3.1 연구 배경

사진은 추억을 기록하고 다른 사람과 공유할 수 있는 유용한 방법 중 하나이다. 스마트폰의 보급으로 사진 촬영 활동은 일반인들도 쉽게 접근할 수 있게 되었으며, 평범한 일상은 물론이고 특별한 기억까지 쉽게 회상할 수 있게 되었다. 또한, 최근에는 SNS(Social Network Service)의 영향으로 사진을 적고 공유하는 사람들이 많이 늘었으며, 페이스북(Facebook)의 경우 친구 혹은 가족과 추억을 나누기 위해 하루 약 3억 5000만 개의 사진이 공유된다 [32].

하지만 전 세계 2억 8500만 명의 시각 장애인들의 경우 [1], 정안인들과 마찬가지로 사진 활동에 참여하고 싶은 강한 욕구를 가지고 있지만 [2] [4] [3], 사진 촬영 및 감상을 위한 접근성(Accessibility)이 현저히 떨어지기 때문에 사진과 관련된 행위에 제약을 받고 있다. 사진은 기본적으로 시각을 이용한 매체이기 때문에 시각 장애인들은 사진 활동에 참여하기 어렵거나 때때로 배제되는 상황이다. 예를 들어, 시각 장애이가 사진을 찍기 위해 구도를 잡으려면 화면을 인지해야 하지만, 시각 정보를 받아들이기 힘든 시각 장애인은 구도조차 잡기 힘들다. 이러한 상황은 사진을 감상할 때도 같은 문제가 발생한다.

이를 위해 시각 장애인의 사진 활동을 돕거나 [33] [2] [34] [1] [35], 사진의 감상을 보조하는 연구들이 있었다 [1]. 예를 들어, 시각 장애인의 사진 감상을 돕기 위해 크라우드 소싱 기반 시스템(Crowd-powered system)을 이용하거나 [33] 컴퓨터 비전(Computer Vision)을 사용하여 도와주었으며 [36] [37], 시각 정보를 추적해
정보로 변환하여 사건의 감상을 돕고자 하는 연구도 있었다 [38].

본 연구에서는 시각 장애인의 사건 활동을 도와주기 위해 TouchPhoto라고 명명한 통합 다중 감각 시스템을 제안한다. TouchPhoto는 사건을 활영할 수 있도록 도와주며, 시각, 청각 그리고 촉각을 활용하여 사건을 감상하거나 기억 회상을 돕는다. TouchPhoto 시스템은 일반적인 안드로이드 스마트폰과 시각-청각-촉각을 전달할 수 있는 정전기 마찰 디스플레이로 구성된다. 사건을 활영할 때는 스마트폰의 어플리케이션이 화면 속 사람의 얼굴을 인식하여 음성 안내로 구도를 잡을 수 있도록 도와주며 주변 음향(Ambient sound), 음성 메모, 지역 테그(Regional tag) 기능도 제공한다. 사건을 감상할 때는 앞서 녹음했던 음성 메모를 듣는 것이 가능하며 정전기 마찰 디스플레이에서는 정전기 마찰 진동으로 사용자에게 사람의 얼굴 정보를 촉각으로 전달하고, 스마트폰에서 녹음했던 지역 테그를 촉각으로 확인하여 사건의 내용을 이해하는 것도 가능하다. TouchPhoto 시스템의 효율성을 확인하고자, 시각 장애인을 대상으로 두 번의 사용자 실험을 수행하였다.

3.1.1 사건 활영

시각장애인의 스마트폰 사용을 돕기 위해 상용화된 어플리케이션으로는 VoiceOver(iOS, Apple Inc.), TalkBack(Android, Google Inc.)등이 있으며, 어플리케이션들의 주된 기능은 화면에 있는 시각 정보를 청각으로 변환하여 시각 장애인도 스마트폰을 사용할 수 있게 하는 것이다. 이와 비슷한 방법으로 시각 장애인이 사건 활염 시에 음성을 통해 사건의 구도 잡는 것을 도와줄 수 있다. 많은 연구에서 시각 장애인의 사건 활염을 보조하기 위해 컴퓨터 비전(Computer vision)을 사용해왔으며, 시각 정보를 청각으로 전달하기 위해 TTS(Text-to-speech)를 사용하였다. 사건 활염을 보조해주는 연구 중 하나인 EasySnap
은 추적 알고리즘(Tracking algorithm)을 통해 ‘우하단, 60퍼센트, 각도를 조금 아래로’와 같은 음성으로 피사체의 구도를 잡는데 도움을 준다[2]. 또한, EasySnap은 촬영 후에 화면의 밝기와 사진의 흐릿함 정도를 판별하여 사진이 제대로 잘 찍혔는지 판별하는 기능도 가지고 있으며, 실험을 통하여 사용자들은 사진을 찍는데 60%의 성공률을 보였다. 같은 연구에서 EasySnap을 개선하여 만든 PortraitFramer 어플리케이션은 화면 상에 사람들들이 몇명이 있는지를 음성으로 알려준다[2]. 또한 화면위의 얼굴을 터치하면 진동으로 얼굴이 어느 위치에 있는지를 알려 주는 기능도 있다. 다른 어플리케이션으로는 Vázquez와 Steinfeld가 만든 프로그램이 있다[39, 35]. 이 어플리케이션은 화면 상에 사용자가 관심을 가질 만한 영역(Region of interest)을 자동적으로 분석하고, 분석된 영역을 화면의 중앙에 옮 수 있도록 소리로 도와준다. 사용자 실험에서는 말(Speech), 소리(Tone), 음소거 세 가지 조건에 대해서 실험을 진행하였으며, 사용자는 음성으로 안내해주는데 가장 선호한다고 응답하였다. 다른 비슷한 어플리케이션으로 Vizwiz가 있으며[33], 화면 속의 물체(Object)를 인식하고 어떤 물건인지 알려 주어 시각 장애인이 물건을 찾는데 도움을 준다.

3.1.2 사진 감상

시각 장애인이 사진의 내용을 쉽게 이해할 수 있도록 만드는 것 또한 중요한 연구 주제 중 하나이다. 시각 장애인은 일반적으로 시각 정보를 받아들이기 힘들기 때문에 감각 대체(Sensory substitution)를 사용하여 시각을 다른 감각으로 변환하는 작업이 필요하다. 초기에는 크라우드 소싱 기반 시스템(Crowd-powered system)을 이용하여 사진의 내용을 청각 정보로 변환하였다. 시각 장애인이 사진을 활용하여 정인에게 전송하고 정인은 사진에 대한 정보를 입력한 뒤, 입력된 내용을 읽어주는 방법을 사용하여 VizWiz 어플리케이션이 만들어졌다[40].

사진을 관리하고 친구들과 공유하는 것 또한 사진 활동에서 중요한 부분이다. 사진의 관리 및 공유를 위해 Susumu 등은 두 가지 방식의 음성 녹음(주변 음향, 음성 메모)을 사용하여 쉽게 사진을 찾고 희상하는 것을 도왔다 [4]. 주변 음향과 음성 메모의 효용성을 확인하기 위해 시각 장애인 13명을 대상으로 장기간 사용자 실험을 했던 연구도 있었으며 [43]. 이 연구에서는 시각 장애인들이 시간이 지남수록 자신들의 사진에 더 더욱 자신감을 가지고 온라인에 사진을 공유하고 싶어했다.

3.1.3 서피스 헤틱스

서피스 헤틱스(Surface Haptics)는 타치 스크린과 같은 물리적 표면에서 프로그래밍이 가능한 헤틱 자극(Haptic stimuli)을 생성하는 헤틱 분야 중 하나이다. 서피스 헤틱스(Surface Haptics)는 타치 스크린의 표면과 사용자 손가락 사이에 발생하는 마찰력을 조절하여 헤틱 피드백(Haptic feedback)을 생성하며, 하나의 예로 초음파 기체 진동(Ultrasonic mechanical vibrations, 약 40kHz)을 사용하여 손가락 끝과 타치 스크린의 표면 사이에 미세한 공간을 만들어 마찰력을
조절하는 스퀴즈 필름(Squeeze-film) 효과를 사용하는 방법이 존재한다[44]. 다른 방법으로는 전기흡착(Electroadhesion)을 사용하는 것이 있으며, 정전기 필름(Electrostatic film)을 손가락으로 탐색할 때 높은 교류 전압을 인가하면 마찰력이 증가하여 혼탁 피드백을 생성하는 것이 가능하다[10, 16]. 사용자가 느끼는 마찰력은 조절이 가능하므로 다양한 혼탁 자극을 만들 수가 있으며, 기계적인 진동자를 사용하지 않기 때문에 다른 장치에 적용하기 쉽다. 또한 필름형태이기 때문에 모바일기기와 결합하기 용이하다는 장점이 있다.

정전기 마찰은 이러한 장점을 때문에 많은 연구가 진행되었다. Kim 등은 정전기 질감 및 마찰력을 조절하여 평평한 정전기 마찰 디스플레이에서 3D 물체를 렌더링하였다[9]. Osgouei 등도 경사도 기반(Gradient-based) 알고리즘을 이용하여 정전기 마찰 디스플레이에서 마찬가지로 3D 모양을 렌더링하였으며, 힘 반향 혼탁 장치(Force feedback device)에 동일한 알고리즘을 적용하여 정전기 마찰 디스플레이와의 차이점을 비교하기도 하였다[24]. Klatzky 등은 정전기 마찰 디스플레이에서 높낮이 렌더링을 하기 위한 최소 공간을 찾아내기 위하여 실험을 하였고, 약 1인치 정도의 공간만 있으면 평평한 정전기 마찰 디스플레이라도 사용자들이 높낮이를 느낄 수 있다는 것을 밝혔다. Vardar 등은 정전기 마찰 진동의 주파수, 파형 등 여러 파라미터를 조절하여 다양한 거칠기를 느낄 수 있는 정전기 마찰 진동을 만들어 내었다[17].
3.2 시스템 디자인

3.2.1 개요

본 연구에서는 시각 장애인이 독립적으로 사진을 촬영하고 감상할 수 있는 시스템을 만들기 위해 전문가 및 시스템의 실사용 예정자의 인터뷰 결과를 참고하여 사진 촬영 및 감상을 도출 수 있는 TouchPhoto 시스템을 구현하였다. 시각 장애인이 TouchPhoto를 사용하는 시나리오는 Figure. 3.1과 같으며, 사용자는 피사체를 찍기 위해 스마트폰으로 제공되는 음성 안내를 들고 피사체가 화면 중앙부에 올 수 있도록 구도를 잡는다. 화면의 구도가 맞춰지면, 사용자는 사진을 촬영하고 사진에 대한 음성 메모 및 사진의 지역 정보를 저장하기 위한 지역 태그(Regional tag)를 녹음한다. 저장된 사진은 어플리케이션의 앨범 기능에서 확인할 수 있으며, 음성 메모로 원하는 사진을 찾을 수 있다. 사용자가 감상하고 싶은 사진이 있으면 스마트폰에서 간단하게 확인이 가능하며, 전송 버튼을 눌러 대형 시-촉각 디스플레이에서도 감상 할 수 있다. 만약 사진에 얼굴이 있으면

Figure 3.1: TouchPhoto 시나리오
정전기 마찰 진동을 이용한 촉각 렌더링을 통해 얼굴을 만지는 것이 가능하다.

3.2.2 세부 구현

![Diagram showing photograph taking and data flow]

Figure 3.2: TouchPhoto의 구조 및 데이터 흐름

TouchPhoto는 사진 촬영을 위한 스마트폰과 사진을 감상하기 위한 대형 시-촉각 디스플레이로 구성된다(Figure. 3.2). TouchPhoto에 사용되는 스마트폰은 Google TalkBack을 지원하는 일반적인 안드로이드용 스마트폰이며, TouchPhoto의 어플리케이션은 사진 촬영 및 앨범 기능을 담당한다. TouchPhoto의 어플리케이션에서 시각장애인은 스마트폰의 음성 안내를 받고 인물 사진을 촬영할 수 있으며, 앨범에 있는 사진 목록을 간락하게 확인하는 것이 가능하다. 사용자가 인물 사진을 촬영하면 눈썹, 눈, 코, 입, 얼굴 윤곽선의 좌표를 외부 API를 이용하여 추출하고 [45], 영역의 좌표와 지역 태그 정보가 함께 클라우드 저장 서비스(Amazon S3; simple storage service)에 저장된다. 추후 대형 시-촉각 디스플레이로 사진을 감상할 때 정보를 전송받는다.
대형 시-촉각 디스플레이는 초기에 사용자의 편의를 위해 정전기 필름이 부착된 태블릿에서 모든 기능을 구현할 계획이었다. 하지만, 시각 장애인들의 사전 인터뷰 결과, 촉각을 사용할 때는 좀 더 큰 공간(15-17 인치)을 선호하였기 때문에 하드웨어의 구성은 변경하였다. 작은 태블릿 대신에 17인치 투명한 정전기 마찰 필름(3M, SCT3250)을 17인치 일반 LCD 모니터에 부착하여, 촉각으로 탐색하기 충분한 크기의 공간을 만들었으며, 화면에서 사용자의 손가락 위치를 확인하기 위해 IR(infrared radiation) 프레임(E&T Tech Inc., 모델: T17; 해상도: 4096 x 4096, 응답 속도: 16 ms)을 정전기 마찰 필름 위에 부착하였다. 대형 시-촉각 디스플레이는 사용자가 사진을 감상하려고 하면 스마트폰에서 전송된 사진 및 사진에 관련된 데이터를 받고 시-청-촉각으로 사진을 감상 할 수 있다. 대형 시-촉각 디스플레이의 정전기 마찰 진동은 컴퓨터에서 입력신호를 생성한 뒤, 증폭기(Piezodrive; MX200b)가 연결된 데이터 수집 장치(National Instruments, NI-6251)로 전송하여 정전기 진동 마찰 렌더링을 구현하였다.
3.2.3 사진 촬영 기능

사진 촬영은 시각 장애인이 사진의 구도를 잡을 수 있도록 얼굴 인식 및 TTS(Text to Speech)를 활용하였다. 얼굴 인식은 안드로이드 플랫폼의 OpenCV 라이브러리를 사용하였으며(Figure. 3.3), 인식된 얼굴이 중앙에 올 수 있도록 ‘오른쪽으로 이동하세요’, ‘아래쪽으로 이동하세요’ 등의 음성 안내로 피사체를 화면의 중앙으로 유도한다. 또한, 사용자가 사진을 찍는 동안 자동으로 주변 음향을 저장하며, 사진을 찍은 후에는 사진에 대한 정보를 음성으로 녹음하는 것이 가능하다. 음성 메모는 사용자의 사진에 대한 기억과 경험을 토대로 저장할 수 있기 때문에 추후 사진에 대한 회상을 돕는데 큰 도움이 되며, 앨범 목록에서 사진을 찾을 때 색인으로 사용된다. TouchPhoto는 지역 태그(Regional tag)라고 불리는 다른 형식의 음성 태그도 지원한다 [12].
3.2.4 사진 검색 및 감상 기능

저장된 사진을 검색하기 위해 사진의 음성 메모를 색인으로 사용하여 자
신이 녹음한 내용을 들으면서 검색이 가능하다. Google TalkBack을 기반으로
만들었기 때문에 사용자는 쓸어담는 움직임(Swipe motion)을 사용하여 커서를
움직일 수 있으며, 사진이 선택될 때마다 음성 메모를 듣는다. 음성의 내용을
한번 더 들고 싶으면 한 번의 터치로 다시 듣는 것이 가능하며, 두 번의 터치로
사진이 선택된다. 선택된 사진에서 사용자는 저시력자를 위한 고대비 변환, 음
성 메모, 주변 음향 듣기 및 지역 태그로 사진의 내용을 확인할 수 있으며, 만약
사용자가 촉각이나 큰 화면으로 사진을 감상하고 싶다면 전송 버튼으로 대형
시-촉각 디스플레이에 사진을 전송할 수 있다.

![Figure 3.4: 지역 태그(노란색 네모) 화면(왼쪽) 및 얼굴 확대 기능(오른쪽)](image)

전송된 사진은 대형 시-촉각 디스플레이에서 지역 태그, 얼굴 확대 기능을
이용하여 사진의 감상이 가능하고, 정전기 마찰 진동을 사용하여 촉각으로 얼굴
만지는 것이 가능하다(Figure. 3.4). 전송 버튼을 누르면 모니터에 사진이 보이며
왼쪽 상단에 두 개의 토글 버튼(Toggle button)이 있어 지역 태그 및 얼굴 확대
기능을 자유롭게 켜고 꺼는 것이 가능하다. 만약 사용자가 지역 태그 버튼을

- 36 -
누르면 화면에는 노란색 네모가 나타나며, 사용자의 손이 노란색 네모에 닿을 시, 정전기 마찰 진동을 렌더링하여 지역 태그가 있다는 것을 측각으로 느낄 수 있다. 이 때, 사용자가 정전기 마찰 진동을 느낀 지역을 터치하면 지역 태그를 듣는 것이 가능하다. 얼굴 확대 버튼을 누르면 사진 안에서 인식된 얼굴을 크게 확대한다. 이 상태에서 사용자는 측각으로 얼굴의 특징적인 부위인 눈썹, 눈, 코, 입, 얼굴 유곽선에서 정전기 마찰 진동을 이용한 높낮이 렌더링과 질감을 느낄 수 있다.

3.3 정전기 마찰 진동 렌더링

이전 측각에서 정전기 마찰 진동을 측각 그래픽스에 사용하기 위해 기본적인 인지 특성인 절대 인지역치(Absolute threshold), 공간적 인지분해능(Spatial gap detection) 및 공간적 개수 세기(Spatial numerosity judgement)를 조사하였다. 절대 인지역치의 결과를 토대로 역치 이상의 진압을 인가하여 사용자가 측각을 못 느끼는 경우는 없도록 하였다. 또한, 초기에는 얼굴 전체를 빠짐없이 측각으로 렌더링을 하려 했으나, 공간적 인지분해능 및 공간적 개수 세기의 실험 결과를 참고하여 너무 많은 정보를 정전기 마찰 진동으로 렌더링하면 인지하기 힘들기 때문에 얼굴의 특정 부위인 눈썹, 눈, 코, 입, 얼굴 유곽선만 렌더링하기로 결정하였다. 또한, 사용자가 측각으로 얼굴을 인지할 때 좀 더 사실적인 느낌을 전달하기 위해 높낮이 렌더링과 질감 렌더링을 적용하였다.

3.3.1 높낮이 렌더링

정전기 마찰 디스플레이는 2D 평면이지만 이전 연구들을 참고하면 [9, 24], 렌더링 대상 높낮이의 변화를 계산하여 2D에서도 3D를 표현하는 것이 가능하다. 사람의 얼굴은 높낮이가 있기 때문에 시각 장애인이 측각으로 얼굴을 만질 때
더 많은 정보를 얻을 수 있도록 TouchPhoto에서도 앞선 연구와 비슷한 방식으로 높낮이 렌더링을 적용하였다.

높낮이 렌더링을 하기 위해 우선적으로 사용자가 적은 얼굴 사진에서 얼굴의 특징점(눈썹, 눈, 코, 입의 좌표)을 추출하였다. 사진에서 얼굴의 특징점을 찾기 위해 외부 API를 사용하였으며, 2차원의 좌표가 반환된다(Face++, Landmark Analysis). 반환된 2차원 좌표들은 3차원 얼굴 모델(CANDIDE-3 model [46])에 사상(Mapping)하여 각 2차원의 좌표들을 3차원으로 변환하였다.

사용자가 정전기 마찰 디스플레이의 표면을 스캔하게 되면, 정전기 마찰 디스플레이에 부착된 적외선 프레임이 손가락의 좌표를 추적한다. 만약 손가락 위치가 얼굴의 눈썹, 눈, 코, 입에 있다면 이전에 샘플링된 점 \((x_1, y_1)\)과 현재 샘플링된 점 \((x_2, y_2)\)을 이용하여 벡터 \(d = (x_2 - x_1, y_2 - y_1)\)를 생성한다. 이 때, 이 두 점의 좌표는 각각 이전에 생성한 도의 높이 정보를 가지고 있기 때문에 두 점의 높이차인 \(\Delta z = z_2 - z_1\)을 계산할 수 있다. 구해진 \(d\) 와 \(\Delta z\)을 이용하여 정전기 마찰 진동에 인가될 진폭의 전폭을 다음의 식과 같이 결정하였다.

\[
A = 20 \frac{\Delta z}{\|d\|} + 10.0\ (V) \tag{3.1}
\]

이 식에서 10.0 V은 절대 인지역치 이상의 마찰력을 만들기 위해 더해주었으며, 하드웨어의 한계 때문에 \(\Delta z / \|d\|\)의 값이 2.0을 초과하지 않도록 설정하였다. 정전기 마찰 진동을 만들어내기 위한 전체 수식은 다음과 같다.

\[
V(t) = A \sin(2\pi ft) + A \quad \text{or} \tag{3.2}
\]

\[
= A \sgn(\sin(2\pi ft)) + A \tag{3.3}
\]

(2)는 사인파일 때 사용한 식이며, (3)은 사각파를 이용할 때의 수식이다. 주파수는 Table. 3.1에 해당하는 값을 사용하였다.
3.3.2 질감 렌더링

<table>
<thead>
<tr>
<th>표현한 질감</th>
<th>눈썹</th>
<th>눈</th>
<th>코</th>
<th>입술</th>
<th>얼굴 윤곽선</th>
</tr>
</thead>
<tbody>
<tr>
<td>파형</td>
<td>사각파 + 사인파</td>
<td>사인파</td>
<td>사각파</td>
<td>사각파</td>
<td></td>
</tr>
<tr>
<td>주파수(Hz)</td>
<td>40</td>
<td>550</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>진폭(V)</td>
<td>80</td>
<td>80</td>
<td>40</td>
<td>60</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 3.1: 각 얼굴 부위에서 정전기 마찰 진동에 사용된 파라미터

정전기 마찰 진동에서 주파수와 진동의 진폭을 바꿈으로써 서로 다른 귀절기의 질감을 생성하는 것이 가능하다 [17, 17]. 따라서 각 장애인이 촉각으로 얼굴의 서로 다른 부위를 구별하기 쉽게 하기 위해, Table. 3.1과 같이 각 부위마다 서로 다른 주파수 및 파형을 사용하였다. 이 때 생성된 질감은 최대한 얼굴의 특징과 비슷하게 하려고 여러 번의 반복 작업을 통해 파라미터들을 정하였다. 예를 들어, 눈은 고주파수를 사용하여 매끄러운 진동을 생성하였으며, 털이 있는 부위는 저주파수를 사용하여 만졌을 때 거칠게 느끼도록 질감을 생성하였다.
3.3.3 렌더링 요약

Figure 3.5: TouchPhoto의 총각 렌더링 절차

TouchPhoto의 대형 시-촉각 디스플레이에서의 총각 렌더링 절차를 나타낸 것은 Figure. 3.5와 같다. 사용자의 손가락 움직임을 읽어 높이차를 계산한 뒤, 그에 해당하는 전압을 인가하여 높낮이를 렌더링하였으며 그와 동시에 각 얼굴 부위에 해당하는 질감을 파라미터로 설정하여 시각 장애인들이 얼굴을 쉽게 인지할 수 있도록 만들었다.
3.4 사용자 실험

TouchPhoto의 효용성을 확인하고자 2번의 사용자 실험을 수행하였다. 첫 번째 사용자 실험에서는 TouchPhoto의 안드로이드 어플리케이션으로 시각 장애 인이 독립적으로 사진을 촬영하고 원하는 사진을 찾아서 다른 사람에게 설명할 수 있는지 확인하였다. 두 번째 사용자 실험은 TouchPhoto의 여러 기능들(앨범, 음성 메모, 지역 태그, 촉각 엔터링 등)을 사용하여 사진을 회상할 수 있는지 확인하였으며, 검증을 위해 같은 피실험자를 대상으로 2달 후에 실행하였다.

3.4.1 실험 참가자 및 사전 인터뷰

<table>
<thead>
<tr>
<th>참가자</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>성별</td>
<td>여</td>
<td>남</td>
<td>남</td>
<td>남</td>
<td>여</td>
</tr>
<tr>
<td>나이</td>
<td>20</td>
<td>20</td>
<td>24</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>시각 상태</td>
<td>선천 장애</td>
<td>선천 장애</td>
<td>후천 장애</td>
<td>저시력</td>
<td>저시력</td>
</tr>
<tr>
<td>사진 활영에 대한 익숙함</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>사진 감상에 대한 익숙함</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>사진 공유에 대한 익숙함</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 3.2: 실험 참가자의 시각 상태에 대한 정보 및 사진 활동의 익숙함 정도

사진 장애인 참가자는 북지 센터가 있는 대구대학교에서 모집을 하였다. 3 명의 전병과 2명의 저시력자가 사용자 실험에 참가하였으며, 실험 참여 전에 사진 인터뷰를 통해 개인의 시각 상태와 사진 활동에 대해 얼마나 익숙하지 물어보았다(Table 3.2).

T2를 제외한 모든 실험자는 스마트폰이나 태블릿의 카메라 어플리케이션

- 41 -
을 사용하여 사진을 찍었던 경험이 있었고, 또한 개개인의 뜻도는 다르지만 적은 사진을 SNS에 올린 경험이도 있었다. 참가자들의 사진 활동에 관련된 인식은 다 양하였지만, 저서력자 참가자들은 다른 시각 장애인들보다 다소 긍정적이었다. 예를 들어, 저서력자들은 사진 활동에 익숙하다고 답변하였지만 T2 참가자는 ‘사 진에 대해 아무생각이 없으며, 낙관 전향 관계가 없다.’라고 응답하였으며, T3 참가자는 ‘사진은 추억을 회상하기에 의미가 있지만, 더 이상 사진을 찍지못하기 때문에 아쉬움이 있다.’라고 답변하였다.

3.4.2 사용자 실험 1

첫 번째 사용자 실험의 목적은 시각 장애인이 TouchPhoto의 안드로이드 어 플리케이션을 활용하여 독립적으로 사진을 찍고, 앨범 기능을 사용하여 원하는 사진을 찾은 후, 타인에게 설명할 수 있는지를 확인하는 것이 목적이었다. 각 사용자 실험에는 시각 장애인 1명과 피사체 역할 및 지역 태그를 도와줄 친구 1 명을 동행하여 수행하였다.

절차

실험을 시작하기 전에 참가자들에게 어플리케이션 조작법을 설명하였다. 참가자들은 TouchPhoto의 사진 촬영, 지역 태그 기능, 앨범 조작, 사진 감상 기 능들을 능숙하게 쓸 수 있을 때까지 실습을 하였다. 사진을 찍기 위한 장소는 참가자들에게 익숙한 대구대학교 캠퍼스로 선정하였으며, 참가자들은 시간 제한 없이 캠퍼스 내를 돌아다니며 자유롭게 10장의 사진을 찍었다. 사진을 촬영할 때에는 참가자들에게 최소 5장 이상은 지역 태그 기능을 사용하도록 요청하였다. 사진을 찍을 동안에 실험자는 기술적 문제 발생에 대비해 참가자들과 동행하였다.
사진 촬영이 끝난 직후에는 곧바로 기억 회상 실험을 수행하였다. 시각 장애인은 10장의 사진에 대해 TouchPhoto 어플리케이션의 앱별 기능, 움성 메모, 지역 태그 기능을 사용하여 사진에 대한 감상을 친구에게 설명하였으며, 어플리케이션의 평가를 위하여 7점 리커트 척도(7-point Likert Scaling)로 설문 조사를 실시하였다. 설문 문항은 TouchPhoto의 사진 촬영 및 감상 기능 평가로 구성되어 있으며, Harada 등이 시각 장애인 대상을 사용했던 설문 문항을 참고하여 작성하였다 [1].

모든 절차를 완료하기까지 소요 시간은 약 2시간 30분이 걸렸으며, 참가자들은 25,000원을 실험비로 지급받았다.

결과

즉시 회상 실험에서는 모든 시각 장애인들이 자신들이 찍은 사진을 움성 메모를 사용하여 쉽게 내용을 설명할 수 있었다. 몇몇의 시각 장애인들은 지역 태그를 활용하여 물체 혹은 사람의 위치를 설명하기도 하였다. Table.3.3은 설문 조사 결과를 정리한 표이다. 전체 평균은 5.56으로 평균보다 다소 높은 평이며, 이는 시각 장애인들이 TouchPhoto의 기능을 만족했다고 설명할 수 있다. 또한, 시각 장애인들은 독립적이며 주도적으로 TouchPhoto의 기능을 사용하여 사진 촬영을 할 수 있었음을 알 수 있다. 실험 후, T2, L1, L2의 참가자들은 ‘사진을 혼자 촬영할 수 있었어요.’라고 응답하였으며, 움성 메모 및 지역 태그를 남기는게 유용하며 즐거웠다고 말하였다. T3는 ‘TouchPhoto를 사용하여 좀 더 적극적으로 SNS를 사용할 수 있을 것 같다.’라고 말하였다. 4명의 참가자들은 움성 메모를 이용하여 쉽게보고 싶은 사진을 찾았지만, T2 실험자의 경우, ‘사진이 많으면 많은 수록 찾는데 오래 걸리는 부분이 우려된다’고 말하였다. 저시력자의 경우, 센카 기능을 추가하기를 원하는 참가자들도 있었다.
<table>
<thead>
<tr>
<th>질문</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>L1</th>
<th>L2</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>사진을 촬영하는 것이 재밌었다.</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>5.4</td>
</tr>
<tr>
<td>사진을 촬영하는 것이 쉬웠다.</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>5.4</td>
</tr>
<tr>
<td>음성 메모를 남기는 것이 쉬웠다.</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>5.8</td>
</tr>
<tr>
<td>사진을 촬영하고 메모를 남기는 과정에서 적극적, 주도적 역할을 하였다.</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5.2</td>
</tr>
<tr>
<td>독립적, 주도적으로 사진을 촬영할 수 있다면 좋겠다는 생각이 들었다.</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6.0</td>
</tr>
<tr>
<td>평균</td>
<td>6.0</td>
<td>5.4</td>
<td>4.4</td>
<td>6.2</td>
<td>5.8</td>
<td>5.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>질문</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>L1</th>
<th>L2</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>사진을 공유할 수 있다는 것이 즐거웠다.</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5.8</td>
</tr>
<tr>
<td>사진을 탐색하는 것이 쉬웠다.</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>5.4</td>
</tr>
<tr>
<td>사진의 내용을 쉽게 파악할 수 있었다.</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>4.6</td>
</tr>
<tr>
<td>사진을 공유하는 과정에서 적극적, 주도적 역할을 하였다.</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5.8</td>
</tr>
<tr>
<td>그 전보다 사진에 대해 더 많은 것을 알 수 있었다.</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>4.8</td>
</tr>
<tr>
<td>독립적, 주도적으로 사진을 공유할 수 있었으면 좋겠다는 생각이 들었다.</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>6.0</td>
</tr>
<tr>
<td>평균</td>
<td>6.0</td>
<td>4.3</td>
<td>5.2</td>
<td>5.8</td>
<td>5.5</td>
<td>5.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>질문</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>L1</th>
<th>L2</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>이 실험을 한 후, 사진을 더 찍고 싶다는 생각이 들었다.</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5.8</td>
</tr>
<tr>
<td>필요한 기능들을 모두 실행할 수 있었다.</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>6.2</td>
</tr>
<tr>
<td>어플리케이션의 사용법이 쉬웠다.</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>5.6</td>
</tr>
<tr>
<td>이 실험을 한 후, 사진을 다른 사람들과 공유하고 싶다는 생각이 들었다.</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>5.0</td>
</tr>
<tr>
<td>오늘 향긴 사진과 관련한 경험이 가치가 있었.</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>앞으로도 이와 비슷한 어플리케이션을 사용하고 싶다.</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6.2</td>
</tr>
<tr>
<td>평균</td>
<td>5.4</td>
<td>5.1</td>
<td>6.7</td>
<td>6.1</td>
<td>4.9</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Table 3.3: 사용자 실험 1 설문 조사 결과
참가자들의 다른 코멘트들은 다음과 같다: “제가 써본 어플리케이션 중에 가장 좋은 사진 촬영 프로그램이었습니다.” (L1); “지역 태그가 다각형도 가능하게 만들면 좋을 것 같아요.” (T1); “사진의 감상을 사용자가 얼마나 많은 정보를 담는지에 따라 달라지는 것 같아요.” (T1, L1); “구도를 항상 정중앙에만 맞추는 것이 아니라, 다른 구도도 가능했으면 좋겠어요.” (T1, T2, L2)

3.4.3 사용자 실험 2

첫 번째 사용자 실험이 끝난 후, TouchPhoto를 활용하여 시각장애인의 사진을 회상할 수 있는지 확인하기 위해 2달 뒤에 동일한 참가자들에게 기억 회상 실험을 실시하였다. 첫 번째 실험과 다른 점은 대형 시-촉각 디스플레이를 활용하여 총각으로도 사진을 감상할 수 있게 하였다.

절차

실험을 시작하기 전에 어떤 힌트도 주지 않고 사용자 실험1에서 적었던 2달 전의 사진 내용을 설명해달라고 요청하였다. 참가자들은 기억에 의존하여 사진을 설명한 하였으며, 대형 시-촉각 디스플레이와 안드로이드 어플리케이션의 조작법을 설명 받은 뒤, 사진 감상을 하였다.

참가자들에게 대형 시-촉각 디스플레이를 사용해 사진을 감상하도록 안드로이드 어플리케이션에 있는 사진을 찾고 사진을 전송하도록 요청하였다. 사진이 전송되면, 참가자들은 대형 시-촉각 디스플레이에서 지역 태그 및 총각을 활용하여 사진을 감상하였다. 참가자들은 얼굴 확대 및 얼굴 총각 렌더링 기능, 지역 태그를 자유롭게 활용하여 시-청-촉각으로 사진을 감상하였으며, 사진 감상이 끝난 후에는 회상된 기억을 최대한 자세하게 설명하도록 요청하였다. 앞서 말한 절차는 2달 전에 적은 10장의 사진을 사용하여 시행하였으며, 약 1시간 30분
정도의 시간이 소요되었다. 실험이 끝난 후에는 7점 라이르트 척도 (7-point Likert Scaling)로 설문 조사를 실시하였다.

결과

실험 시작 전, 사진 설명을 요청했을 때 T2 참가자는 5장의 사진을 기억하였으며, 나머지 참가자들은 10장의 사진에 대해서 9-10장까지 사진을 기억하였다. 사진을 설명할 때는 ‘꽃발 사진을 찍어봐요’, ‘담장에서 사진을 찍은 것이 기억나요’ 등 단편적으로만 사진을 설명할 수 있었다. 하지만 TouchPhoto를 사용한 후에는 5명의 사진 장애인들은 10장의 사진에 대해 모두 회상하고 설명할 수 있었다. 각 사진 장애인들은 음성 메모로 사진의 주제를 파악한 뒤, 지역 테그, 저시력자를 위한 엘리 분리기능, 촉각 렌더링을 활용하여 사진의 세세한 부분까지 파악하여 묘사를 하였다. 하지만 지역 테그가 없는 사진들의 경우, 사진에 대한 설명이 단편적이었다. 각 사진 장애인들의 TouchPhoto 사용 전 사진 묘사와 사용 후 사진 묘사에 대해 비교하여 정리하였다(Table. 3.4).

Table. 3.5는 참가자들의 사진 회상을 한 후, 응답한 설문 조사 결과이다. 처음 9개의 질문은 TouchPhoto가 사진 감상에 얼마나 유용했는가에 대한 설문이며, 그 다음 5개의 질문은 촉각 렌더링에 관한 설문이다. 마지막 3개의 질문은 TouchPhoto 사용 후, 전반적인 경험에 관련하여 묻어보았다. TouchPhoto의 사진 감상 효용성에 관한 응답을 살펴보면, 평균 6.4로 사진 장애인들이 아주 긍정적인 평가를 하였다. 특히, 음성 메모와 지역 테그의 평가는 6점 이상을 받음으로써, 피실험자들이 기억을 회상하는 과정에서 아주 유용하게 사용되었다는 것을 알 수 있다. 이 두 기능은 사진 장애인의 기억을 회상하는데 도움을 줌으로써, 사진 장애인이 사진을 더 찍고 싶어하며, 공유를 하고 싶어하는 마음을 이끌어 낼 수 있었다. 촉각 렌더링에 관한 설문의 응답 점수는 개인이

- 46 -
<table>
<thead>
<tr>
<th>참가자</th>
<th>사진</th>
<th>사용 전</th>
<th>사용 후</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td></td>
<td>꽃밭에서 사진을 찍었어요.</td>
<td>꽃밭에서 꽃반침을 하고, '누가 꽃인지 모르겠네'라는 농담을 하면서 찍은 사진인데 벌이 정말 많았고 벌레소리가 심했어요.</td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td>고양이 사진을 찍었던 것이 기억나요.</td>
<td>고양이는 밥을 다 먹은 상태이고, 고양이, 고양이 그릇, 고양이 집이 있는 사진이에요.</td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td>2~3개 정도의 색깔이 있는 꽃밭에서 친구 사진을 찍었어요.</td>
<td>○○생활관 쪽에 있는 야생화원에서 친구 사진을 찍었는데 왼쪽과 오른쪽에 꽃이 있고 가운데 길에 있는 친구를 찍은 사진입니다. 찍을 당시에는 예쁘게 찍은 줄 알았는데 우울해 보이는 표정을 하고 있다네요</td>
</tr>
</tbody>
</table>

Table 3.4: TouchPhoto 사용 전 후 사진 설명 비교
질문	T1	T2	T3	L1	L2	평균
사진의 내용을 쉽게 파악할 수 있었다. | 7 | 7 | 5 | 6 | 6 | 6.2
지역 태그 기능이 사진을 회상하는데 도움이 되었다. | 7 | 7 | 7 | 6 | 7 | 6.8
각각의 사진들이 어떠한 내용인지 알 수 있었다. | 7 | 7 | 7 | 6 | 6 | 6.6
회상한 사진의 내용을 타인에게 적극적, 주도적으로 설명할 수 있었다. | 7 | 6 | 6 | 7 | 6 | 6.4
사진을 타인과 공유할 수 있다는 것이 즐거웠다. | 6 | 7 | 7 | 6 | 7 | 6.6
사진을 공유하는 경험이 제멋었다. | 6 | 6 | 7 | 6 | 6 | 6.2
이 실험을 한 후, 사진을 더 적고 싶다는 생각이 들었다. | 6 | 4 | 7 | 6 | 6 | 5.8
이 실험을 한 후, 사진을 더욱 다른 사람들과 공유하고 싶다는 생각이 들었다 | 6 | 6 | 7 | 6 | 5 | 6.0
사진을 적고 회상하는 경험이 가치가 있었다. | 7 | 7 | 7 | 6 | 7 | 6.8
평균 | 6.6 | 6.3 | 6.7 | 6.1 | 6.2 | 6.4
정전기 자극으로 얼굴 위치를 쉽게 파악할 수 있었다. | 5 | 5 | 2 | 5 | 4 | 4.2
정전기 자극으로 얼굴의 서로 다른 부분(눈, 코, 입 등)을 구분할 수 있었다. | 6 | 6 | 1 | 5 | 4 | 4.4
정전기 자극에서 눈난초처럼 느낄 수 있었다. | 3 | 1 | 1 | 7 | 4 | 3.2
정전기 자극이 사진 감상에 도움이 되었다. | 5 | 1 | 1 | 3 | 2 | 2.4
정전기 자극으로 다른 얼굴을 구분 할 수 있었다. | 5 | 5 | 4 | 5 | 5 | 4.8
평균 | 4.8 | 3.6 | 2 | 5 | 3.8 | 3.8
필요한 기능들을 모두 실행할 수 있었다. | 5 | 7 | 5 | 6 | 6 | 5.8
어플리케이션의 사용 방법을 직관적이고 쉬웠다. | 6 | 7 | 4 | 7 | 6 | 6.0
앞으로도 이와 비슷한 어플리케이션을 사용하고 싶다. | 6 | 5 | 7 | 6 | 5 | 5.8
평균 | 5.7 | 6.3 | 5.3 | 6.3 | 5.7 | 5.9

Table 3.5: 사용자 실험 2 설문 조사 결과

차가 크지만 평균 3.8로 조금 낮은 편이다. 모든 참가자들은 정전기 마찰 진동을 느낄 수 있었으며, 지역 태그가 있는 공간에서는 정전기 마찰 진동 피드백으로 인해 쉽게 지역 태그의 위치를 인식할 수 있었다. 하지만 정전기 마찰 진동의 그래픽 렌더링 효용성에 관해서는 편차가 크게 나타났다. T3 참여자는 정전기 마찰 진동 자극을 느끼긴 했지만 자극의 변화를 인지하는데 실패하였으며, '정전기 마찰 진동이 있는 것만 느껴진다.'라고 말하였다. 다른 실험자들의 경우, 얼굴을 인식하고 얼굴의 눈, 코, 입 같은 특정 부위를 대략적으로 구별하는데는 도움이 되었지만, 세세한 정보를 파악하기는 무리였다고 말하였다. 정전기 마찰 진동 렌더링에서 5명 중 3명은 정전기 마찰 진동의 자극이 각 부위마다 서로 다른 것을 인지하였지만, 2명은 인지하는데 실패하였다. 높낮이 렌더링은 오직 1명의 참가자만이 인지를 하였으며, 다른 참가자들은 인지를 하지 못하였다. 정전기 마찰 진동 렌더링으로 표현하고자 하는 정보를 다 전달하는 것은 못하였지만, 실험 참가자들은 정전기 마찰 진동이 사전을 이해하는데 조금의 도움은 되었다고 평가하였다.

참가자들의 다른 코멘트들은 다음과 같다: “사진을 찍었던 순간을 회상하고 설명할 수 있었어요.” (모든 참가자); “액세서리나 안경을 쓰고 있으므로 렌더링하면 서로 다른 사람을 구별하는 것이 가능할 것 같아요.” (T1); “사진을 만지고 듣는게 가능했어요.” (L2); “저는 사용자 실험1이 끝난 후 사진을 다시 촬영하기 시작했습니다.” (T3); “저시력자들에게 얼굴 확인 기능은 정말 유용한 기능이에요.” (L1).
3.5 토의

3.5.1 TouchPhoto 기능의 역할

duo 번의 사용자 실험을 진행하는 동안 실험 참가자들이 TouchPhoto의 기능들을 실제로 어떻게 활용하는지 관찰하였다. 참가자들은 사진을 찍은 후, 움성 메모를 남길 때 주로 사진의 주제를 기록하였다. 주로 기록된 내용들은 사진을 찍은 대상인 사람 혹은 물체였으며, 날씨에 대한 정보를 부가적으로 기록하기도 하였다. 또한, 사진을 찍을 때 발생한 사건이나 사진에 대한 에피소드들도 움성 메모로 사용되었다. 지역 테그는 주로 사진의 세부 정보를 기록하는데 쓰였다.

지역 테그 및 움성메모와 달리 사진 촬영 당시 주변의 소리를 녹음해주는 주변 음향 녹음 기능은 사진을 회상할 때 거의 사용되지 않았다. 이러한 이유는 사진을 찍은 후, 곧바로 움성 메모를 했기 때문에 움성 메모에 이미 주변 소리가 녹음되어 있어서 주변 음향 기능을 사용하지 않았던 것으로 보인다.

촉각 렌더링은 사진을 감상하는데 사용자들에게 도움이 되었지만 한계를 보았다. 참가자들은 지역 테그의 위치를 확인하는데 정전기 마찰 진동을 유용하게 활용하였지만, 정전기 마찰 진동을 이용한 얼굴 렌더링은 5명 중 4명만이 얼굴의 눈, 코, 입 등 특정적인 부위의 위치를 인지하는 정도였고, 그 이상의 정보인 높낮이나 절감에 대해서는 잘 인지하지 못하였다. 하지만 저시각자들은 약간의 시력이 있는 상태이기 때문에, 얼굴 확대 기능을 촉각 렌더링과 결합하여 유용하게 사용하였다. 저시각자들의 경우, 인물 사진을 찍으면 사람이 있다는 정도만 알고 얼굴을 확인할 수는 없다. 하지만 얼굴 확대 기능을 활용하여 어느 정도 얼굴을 인지할 수 있었으며, 손으로 만점으로써 시각으로 인지하지 못했던 피사체의 대상이 눈이 감겨있다는 사실을 깨닫기도 하였다.
3.5.2 정전기 마찰 진동 렌더링의 가능성과 한계점

정전기 마찰 디스플레이는 투명하게 만들 수 있고 정전기력을 사용하여 측감을 생성하므로 응답시간이 매우 빠르고, 소모 전력도 매우 작아 효율적인 시스템을 구현할 수 있다. 이러한 장점들 때문에 모바일 기기와 결합되기 쉬우며, 시각 장애인들이 향상 들고 다니며 이용할 수 있는 헬릭 장치가 될 수 있는 충분한 가능성을 지니고 있다. 하지만 정전기 마찰 디스플레이의 자극은 접촉한 대상이 움직여야만 자극을 줄 수 있으며, 3D 물체의 높낮이를 렌더링하기에는 한계가 존재하였다. 정전기 마찰 디스플레이는 2차원 평면이기 때문에 3차원을 렌더링하기 위해 설계된 헬릭 장치보다는 좀 더 복잡한 느낌을 전달할 수 밖에 없다. 이러한 단점을 최대한 보완하기 위하여 렌더링 알고리즘을 설계하기 전에 절대 인지역치, 공간적 인지분해능 및 공간적 개수 세기를 측정하고 실험 결과를 바탕으로 알고리즘을 구현하였으나, 시각이 차단된 상태에서 정전기 마찰 진동 만으로 3차원 형태를 인지하는 것은 부족하였다. 사용자 실험 결과에서 5명의 피실험자중 4명이 높낮이를 느끼지 못하였으며, 2명은 절감이 서로 다른 것을 인지하지 못하였다. 이러한 이유에 대해 이전의 연구 [9,21]들은 실험 중 시각이 차단된 상태가 아니기 때문에 높낮이를 느끼는데 시각으로 받아들인 정보가 어느 정도 기여를 했을 것이라고 생각된다.

사용자 실험에서 5명 중 2명은 정전기 마찰 진동으로 렌더링된 입이나 눈의 세부적인 표현을 인지하는 경우도 있었다. 예를 들어 렌더링된 눈이 감겨 있는 상태이면 눈이 없게 표현되기 때문에 사용자는 눈이 감겨있는 상태를 묘사하기도 하였고, 입을 열리고 있는 상태를 인지하기도 하였다. 만약 눈,코,입을 좀 더 과장되게 표현하여 렌더링하면 표정의 변화를 인지하는데 도움을 줄 수 있을 것이다.
사용자 실험이 끝난 후에는 시각 장애인들이 여러 의견들을 남겨주었다. 그 중에 측각 렌더링에서 다른 관점의 의견을 제시했는데, 사람을 구별하기 위해 그 사람이 메일 특별하게 착용하는 안경이나 혹은 약머리같은 특정적인 물건을 렌더링하면 좀 더 구별하기 쉬울 것 같다고 말해주었다. 이러한 렌더링 방식은 사용자가 많은 정보를 받아들일 필요가 없으며 가장 중요한 정보를 전달하므로 유용할 것으로 판단된다.

다른 참가자는 ‘손으로 얼굴을 만질 때 음성으로 피드백을 해주었으면 좋겠다.’라고 말하였다. 예를 들어 사용자가 손으로 코를 만질 때는 스피커에서 ‘코’라고 말해주거나 눈을 만질 때는 ‘눈’이라고 음성 안내가 나온다면 좀 더 쉬울 것이라고 의견을 제시하였다. 만약 그렇게 하면 사람 얼굴의 눈, 코, 입 등 특정 부위는 항상 상대적으로 비슷한 위치에 존재하기 때문에 사용자가 좀 더 쉽게 얼굴을 인지할 수 있을 것이다.
IV. 힘 피드백을 이용한 얼굴 렌더링

4.1 연구 배경

본 챕터에서는 시각 장애인 사진에 적힌 얼굴을 이해할 수 있도록 축각으로 얼굴을 인지하는 시스템을 구현하였다. 장애인은 전적으로 시각을 통해 사진을 활용하고 사진에 담긴 정보를 인지한다. 하지만 시각 장애인은 시각의 제한으로 사진과 관련된 모든 활동에서 심각한 제약을 받게 된다. 특히, 시각 장애인이 불편하게 여기는 점은 혼자서 사진을 볼 수 없다는 것이다. 그로므로 시각 장애인에 대한 사진 감상의 접근성(Accessibility)을 향상시키는 한 가지 방법은 감각 대체(Sensory Substitution)를 사용하여 시각 장애인이 스스로 사진을 감상할 수 있게 하는 것이다.

감각 대체(Sensory Substitution)에서 사용되는 방법 중 하나는 시각 데이터를 축각화하는 축각 그래픽스를 사용하는 것이다. 축각 그래픽스란 그림, 사진, 지도, 도표, 그래프, 도형 등의 다양한 시각적 정보를 축각으로 인지할 수 있는 형태로 바꾸는 것을 의미하며, 시각 장애인의 교육을 비롯한 여러 분야에서 사용되고 있다. 축각 그래픽스에는 여러 장치가 사용되는데, 펌 배열(Pin array)을 사용하여 도형이나 문자를 인지시키거나 [48, 49], 정전기 마찰 전동을 이용하여 물체를 축각으로 나타내기도 한다 [9, 24]. 힘 반향 텀픽 장치(Force feedback device)를 활용하여 정보를 제시하고자 하는 연구도 다양하게 있었으며, 축감(Tactile sense) 및 역감(Kinesthetic sense)을 사용하여 그래프, 다이어그램, 이미지 등을 전달하기 위한 연구들은 예로 들 수 있다 [50, 51, 52, 53].
본 절에서는 앞서 말한 방법으로 힘 반향 흐름 영역을 사용하여 사전의
일관에 초점을 맞추어 사용자에게 2차원에서 촉각을 통해 얼굴의 이미지를 전
달하는 시스템을 구현하였다. 첫 번째 실험에서는 힘 반향 흐름 영역에서 흐름
유도(Haptic guidance)를 사용하여 선을 렌더링할 때, 어느 정도의 흐름과 범위를
지정해야 사용자가 인지하기 쉬운지 알기 위해 인지 실험을 수행하였다. 두 번째
실험에서는 사전에 적힌 대상의 얼굴을 분석하여 눈, 입, 턱선의 좌표를 추출하고
감정을 분석하였다. 감정의 분류에 따라 사용자가 감정을 잘 인지할 수 있도록
얼굴의 표정을 과장한 상태에서 첫 번째 실험의 데이터를 참고하여 사용자의
얼굴을 힘 반향 흐름 영역로 렌더링하였다.

4.1.1 가상 벽

가상 벽(Virtual fixtures)을 적용하면 사람이 움직일 때 움직일 수
있는 구역을 제한하거나, 사용자가 의도한 방향으로 움직일 수 있도록 도와주는
것이 가능하다. 예를 들어 조각 중 위험한 지역을 갈 수 없도록 지역을 제한
함으로써, 안전을 보장받거나 로봇이 사용자의 움직임을 도와줌으로써 정확성
및 작업의 효율을 증가 시킬 수 있다. 이러한 장점 때문에 많은 연구들이 가상
벽(Virtual fixtures)을 사용하여 사용자의 운동 능력(Motor skill)을 향상시키는
연구가 진행되어왔다. Rosenberg는 원칙으로 로봇을 조작할 때, 다양한 가
상 벽을 적용하여 사용자의 능력을 비교하였으며 [54], Morris 등은 흐름 유도
(Haptic guidance)를 사용할 때, 서로 다른 3가지 조건(haptic, visual, haptic +
visual)를 사용하여 사용자의 정확도를 분석하고 비교하였다 [55].

가상 벽은 단순한 경로를 따라가는 것 뿐만 아니라, 문자 같이 복잡한 경로
를 혼란하는데도 응용이 가능하다. Henmi와 Yoshikawa는 가상 현실에서 일본어
문자를 가르치기 위해 흐름 영역을 사용하여 선생님이 먼저 문자를 기록하고, 기
목록 정보를 바탕으로 학생이 따라 읽을 수 있게 하였다 [56]. 마찬가지로 Solis 등도 일본어 문자를 가르치기 위하여 가상 벽을 사용했으며, 그림으로 문자의 장르도를 판별하기 위해 은닉 마르코프 모델(Hidden markov model)을 사용하였다 [57].

본 섹터에서도 앞선 연구들과 마찬가지로 렌더링된 선을 잘 따라갈 수 있도록 가상 벽을 사용하였으며, 렌더링에 사용된 파라미터들을 조절하여 적절한 값을 찾으려고 하였다.

4.1.2 시각 장애인을 위한 헨티 피드백

컴퓨터 시스템과 헨티 장비의 발달로 인해, 시각 장애인에게 컴퓨터로 제어할 수 있는 축각 디스플레이를 이용하는 방식이 시도되고 있다. 고전적인 예로써 카메라를 사용하여 일반 문서를 인식한 후 글자나 그림을 기계적인 편 배열 디스플레이로 표현하는 OPTACON을 들 수 있다 [9]. 그 후 전자 점자 디스플레이(Electronic braille display)가 개발되어 일반 문서, 전자 문서 및 웹 문서의 축각화(Haptization: 축각을 통해 정보를 전달하는 것)에 이용되었다. 이를 발전시켜 최근에는 손목 시계 형태의 점자 디스플레이가 출시되어 시각 장애인들이 휴대 가능한 장치가 출시되었다 [58].

일반적인 헨티 장비를 축갑 그래픽스에 활용하고자 하는 연구도 시각 장애인을 대상으로 다양하게 있었으며, 헨 반향 헨티 장비(Force-Feedback Haptic Interface)를 사용하여 정보를 축각으로 제시하고자 하는 정보 축각화 관련 연구를 예로 들 수 있다. Jansson 등은 피실험자의 시각이 차단된 상태에서 PHANToM을 사용하여 여러 형태의 도형(원통, 원뿔, 정육면체, 구)을 5mm, 25mm, 50mm 크기로 렌더링하고 탐색 시간과 정확성을 측정하였다 [59]. 또한 수학에 쓰이는 그래프 데이터를 시각 장애인에게 전달하고자 하는 연구도 있었다. Yu 등은 시각 장애인에게 2차원의 그래프를 인지시키기 위해 PHANToM을 사용하여 그래프
룰 촉각으로 렌더링하였으며, 인지 상을 좀 더 쉽게하기 위해 서로 다른 두 그래프에 다른 절감을 생성하거나 격자선(Gridline)을 적용하였다 [60]. 이와 비슷하게 Jason 등도 PHANToM을 사용하여 2D 및 3D 그래픽 데이터를 촉각으로 전달하기 위한 혼적 렌더링 기법을 구현하였다 [50]. 데이터 뿐만 아니라 사진을 촉각으로 렌더링하고자 하는 연구도 있었으며, Lareau 등은 적은 사진에서 윤곽선을 추출하여 여러 확대 단계에서 사진을 촉각으로 만질 수 있게 구현하였다 [53].

4.2 혼적 유도를 이용한 선 렌더링

4.2.1 실험 참가자

10명의 피실험자(19-26살, 평균 나이 22.2)가 실험에 참여하였다. 피실험자 중 6명은 남자였으며, 여자는 4명이었다. 피실험자 전원 양팔 및 손목을 움직이는데 불편함이 없는 상태이고, 이전에 PHANToM을 조작해본 경험이 없었다.
4.2.2 실험 방법

![실험 진행 모습](image)

실험에 사용된 헴틱 장치는 PHANToM Premium 1.5(Geomagic, Inc.)를 이용하였다. 실험은 사용자가 사용하기 편한 손으로 수직 방향이 제한되어 있는 PHANToM의 펜을 잡고 탐색을 하면서 시작된다(Figure. 4.1). 사용자는 준비된 상태에서 엔터를 누르면 경로에 해당하는 시작점으로 펜이 자동으로 옮겨지고, 한번 더 엔터를 누르게 되면 시간 정보없이 오직 PHANToM에서 느껴지는 힘만을 인지하여 유도하는 경로를 따라가야 한다. 시작점과 끝점이 동일한 경우, 경로 진행 방향은 무관하다. 모든 경로는 일정 부분 이상 지나간 상태에서 경로의 끝에 도달하면 자동으로 종료음이 들리면서 해당 시행이 종료된다. 만약 사용자가 경로를 제대로 따라가지 못하여 끝점에서 자동으로 종료가 되지 않는 경우, 다시 경로를 탐색하게 지시하여 자동으로 종료할 수 있도록 하였다.
4.2.3 실험 방법

Figure 4.2: 선을 렌더링하기 위한 힘 피드백의 방향(왼쪽) 및 힘의 크기(오른쪽)

PHANToM에서 선을 렌더링하기 위한 방법은 Figure. 4.2로 나타냈으며, 식으로 나타내면 다음과 같다.

\[F = Kx \quad \text{or} \quad (4.1) \]

\[= -Kx + 2Kd \quad (4.2) \]

렌더링하려는 선의 양 옆과 양 끝으로 2d 거리만큼 힘 피드백(Force feedback)이 작용하는 범위이며, 렌더링된 선의 수직 방향으로 범위 d까지는 식 4.1에 의하여 일정하게 힘이 증가한다. 만약 d를 벗어나게 되면, d에서부터 2d의 범위까지 식 4.2에 의하여 일정하게 힘이 감소하며 완전히 벗어나면 힘 피드백은 더 이상 작용하지 않는다.
4.2.4 절차

Figure 4.3: 렌더링된 경로

웹틱 유도에 적합한 힘과 거리를 찾기 위해 사용된 조건 K는 100, 200, 300, 400, 500 N/m, 거리 d는 2, 4, 6, 8, 10 mm로 각각 5가지 조건에 대하여 실험을 하였다. 렌더링에 사용된 경로는 Figure [4.3]와 같으며, 정삼각형의 높이는 5 cm, 원의 반지름은 4 mm, 곡선의 원쪽 끝점과 오른쪽 끝점의 직선 거리는 20 cm이다. 정삼각형과 동그라미는 PHANToM의 가동 범위내에서 20 cm × 20 cm 넓이의 작업 공간을 생성하여 무작위의 위치에 나타나도록 하였으며, 경로의 시작점 또한 무작위로 배치하였다. 곡선의 경우는 나타나는 위치가 고정되어 있지만 양 끝점 2곳을 기준으로 시작점이 무작위로 배치되었다. 모든 조건은 무작위로 1 번씩 나타나며 한 사람당 2번 반복시험하였다. 따라서, 한 사람당 실험 횟수는 총 150번(K조건 5개 × d조건 5개 × 경로 3개 × 2번 반복)이며 1시간 정도 소요가 되었다. 실험을 진행하는 동안에는 사용자가 탐색한 경로 및 탐색 시간을 기록하였다.
4.2.5 결과 및 토의

사용자가 지난간 경로와 실제 경로와의 오차를 구하기 위해 PHANToM에서 샘플링된 점들과 실제 경로와의 오차 거리를 오차로 사용하였다(Figure 4.4). PHANToM에서 샘플링된 모든 점들의 오차 거리를 합한 후에, 샘플링된 점의 개수 만큼 나누어 한 점에 대한 평균 오차 거리를 구하였다. 결과를 바탕으로 K, d, 경로 3가지에 대하여 삼원분산분석(Three-way ANOVA)을 실시하였다. 통계 결과, 경로의 차이는 모든 다른 요소(Factor)에 대해서 유의미한 차이가 존재하지 않았다. 이는 경로의 형태가 선을 정확하게 따라가는데 영향을 미치지 않았다고 해석할 수 있다. 하지만 K, d 사이의 상호 작용이 존재하기 때문에 K, d에 대하여 이원분산분석(Two-way ANOVA)을 다시 실시하였다($F(16, 144) = 26.65, p < 0.0001$). 이원분산분석 결과는 K, d, K-d 3가지에 대하여 모두 통계적으로 유의미한 결과를 나타냈다($F(4, 36) = 26.65, F(4, 36) = 41.97, F(16, 144) = 6.668$에 대하여 각각 $p < 0.0001, p < 0.0001, p < 0.0001$). 따라서 K, d, K-d에 대하여 Tukey’s HSD test를 사용하여 사후 검정을 수행하였다.

Figure 4.4: 실제 경로와 움직인 경로의 오차 거리
K에 대한 사후 검정 결과는 Figure 4.5과 같다. 가로축은 험틱 유도를 사용하는데 쓰인 힘이고, 세로축은 샘플링된 값과 실제로 렌더링된 경로와의 오차 거리 평균이다. 오차 막대는 표준 오차를 나타내며, 그룹은 A, B, C 3개로 나누어졌다. K가 200 N/m일 때와 100 N/m일 때를 비교하면 평균 오차 값이 반이상으로 줄어들기 때문에 확인한 차이를 보이며(100 N/m일 때 7.48 mm, 200 N/m 일 때 3.45 mm), 오차 값이 반이상으로 줄어드는 현상은 K가 200 N/m일 때와 400 N/m를 비교했을 때 또 한번 나타난다(400 N/m일 때 1.48 mm). K의 크기가 작으면 작을 수록 거리 오차는 크게 나타나기 때문에 유도해주는 힘이 작을수록 사용자는 렌더링된 경로를 따라가기 힘들었음을 알 수 있다.
Figure 4.6: d의 차이에 따른 사후 검정 (Tukey's grouping)

d에 대한 사후 검정 결과는 Figure 4.6과 같다. 가로축은 헬틱 유도가 적용되는 범위 d이며, 세로축은 샘플링된 점과 실제로 랜더링된 경로와의 오차 거리 평균이다. d도 K와 마찬가지로 A, B, C 그룹으로 나누어졌다. d가 4 mm일 때와 2 mm를 비교하면 평균 오차가 반이상으로 줄어들면서 확인한 차이를 보이며 (2 mm일 때 8.67 mm, 4 mm일 때 3.21 mm), 이러한 현상은 d가 4 mm일 때와 8 mm를 비교했을 때 또 한번 나타난다 (8 mm일 때 1.09 mm). 또한, d가 감소할수록 오차가 점점 커지기 때문에 헬틱 유도가 적용되는 범위가 클수록 사용자는 경로를 따라가기 힘들음을 알 수 있으며, d가 클수록 최대 힘이 더 증가하기 때문에 사용자는 쉽게 따라갈 수 있었던 것으로 보인다. K-d에 대한 사후 검정 결과는 Figure 4.7과 같다. 가로축은 K-d 쌍이며, 세로축은 평균 오차 거리이다. K와 d는 커지면 커질수록 최대 힘이 증가하기 때문에 통계적으로 K-d간의 상호관계가 나온 것으로 보이며, 이를 분석하기 위해 유의미한 차이를 보이는 K-d값.
Figure 4.7: K-d의 차이에 따른 사후 검정 (Tukey's grouping)
25개에 대하여 그룹화를 하였다. 총 3가지 그룹으로 나뉘어졌으며, 평균 오차가 5.21 mm이하인 값들은 같은 그룹으로 지정되었다. 정확도의 관점에서 렌더링에 사용하는 함과 범위는 크면 클 수록 사용자는 정확하게 선을 따라갈 수 있다. 하지만 힘은 장치의 한계가 있기 때문에 무한정 늘릴 수 없다. 또한 한 평면에서 여러 도형을 렌더링한다고 가정하면, 힘이 클수록 사용자가 다른 도형의 위치로 옮기기 힘들 것이다. 범위의 경우, 크면 클수록 사용자는 정확히 선을 따라갈 수 있지만, 작업 공간이 커져야하기는 단점이 있으며 좀은 간격으로 선이 연속적으로 배치된 상태라면 사용자가 인지하기 힘들 가능성이 존재한다. 따라서, 무조건 큰 값이 아닌 상황에 따라 적절한 K, d를 선택하는 것이 중요하다. Figure. 4.7을 참고하면 K-d가 100-6일 때 B 그룹과 겹치지 않는 A 그룹의 시작이며, 나머지 A 그룹 커리의 비교는 유의미한 차이를 보이지 않는다. A 그룹 중 d가 2mm인 가장 작은 쌍은 400-2, 500-2 두 개가 있으며, 400, 500 N/m가 사용자가 느끼기에 힘이 너무 강하면 K를 줄이고 d를 늘려서 200-4로 설정하는 것도 적절한 선택이 될 수 있다.

Figure 4.8: K가 증가함에 따른 평균 오차의 변화(왼쪽) 및 탐색 시간(오른쪽)
탐색 시간(오른쪽)이다. 앞서 분석한 결과와 비슷한 결과를 보이며, d가 2mm일 때는 다른 값보다 평균적으로 높은 오차를 보임을 알 수 있다. K와 d가 작으면 작을수록 유도되는 힘이 작기 때문에 선을 탐색하는데 시간이 오래 걸리기 때문에, 두 그래프는 비슷한 경향을 보인다.

4.3 협력 유도를 이용한 얼굴 렌더링

4.3.1 실험 참가자

10명의 피험자(24-30살, 평균 나이 25.0살)가 실험에 참여하였다. 피험자 9명은 남자였으며, 여자는 1명이었다. 피험자 전원 양팔 및 손목을 움직이는데 불편함이 없는 상태였다.

4.3.2 실험 방법

![Figure 4.9: 각 감정에 따른 얼굴 렌더링 영역](image)
실험에 사용된 헬릭 장치는 PHANToM Premium 1.5(Geomagic, Inc.)를 이용하였다. 업글을 렌더링하기 위해 외부 API를 사용하여 업글의 눈, 입, 업글의 윤곽선에 대한 좌표 및 감정 상태 정보를 추출하였다. 업글에 대한 다른 정보도 추출할 수 있지만, 모든 정보를 렌더링하게 되면 사용자가 축각으로 받아들이기 힘들기 때문에 사람의 감정을 표현할 때 움직임이 큰 눈과 입을 사용하였으며, 얼굴 형태를 느낄 수 있도록 윤곽선도 사용하였다. 구현된 좌표들은 각 감정의 상태를 사용자가 좀 더 인지하기 쉽게 하기 위해 Figure. 1.9와 같이 감정에 따라 각 부위의 변화가 큰 부분을 한변 더 고려하여 추출하였다. 추출된 좌표들은 수가 적기 때문에, 좀 더 원활하고 부드러운 렌더링을 위하여 직선은 1차 베지에 곡선(Linear Bézier curves)을, 곡선은 2차 베지에 곡선(Quadratic Bézier curves)을 사용하여 좌표의 수를 늘렸다.

사용자가 PHANToM을 사용할 때, 헬릭 유도는 Algorithm. 1의 알고리즘을 사용하여 렌더링된 힘의 크기를 구하였다. 첫 번째로, 렌더링에 사용되는 모든 점들의 집합에서 현재 HIP(Haptic Interface Point)과 가장 가까운 점 \(v_1 \)과 두 번째로 가까운 점 \(v_2 \)을 찾는다. 두 번째로, 찾은 \(v_1 \)과 \(v_2 \)을 사용하여 직선의 방정식을 만들고 이 직선에 속하는 HIP와 가장 가까운 점 \(v \)을 구하였다. 세 번째로, \(v \) 가 직선의 방정식 \(v_1 \)과 \(v_2 \)의 사이에 있는지 확인하고, 만약 있다면 \(v \)와 HIP의 두 점 사이의 거리를 계산하여 힘을 계산하였다. 만약 \(v \)가 직선의 방정식에서 \(v_1 \)과 \(v_2 \)의 사이에 없다면 \(v_1 \), HIP의 두 점 사이 거리 계산하여 힘을 구하였다. 구현한 힘은 \(v - HIP \) 혹은 \(v_1 - HIP \)의 단위 벡터와 K(Stiffness)를 곱하여 최종적으로 힘을 렌더링하였다. 실험에 사용된 K는 200 N/m, d는 4mm였다.
Algorithm 1 힘 투입에 도달하는 알고리즘

1: procedure ForceRendering(HIP, VertexSet Q, d)
2: \(v_1 \leftarrow \) nearest vertex in Q from HIP
3: \(v_2 \leftarrow \) second nearest vertex in Q from HIP

▷ make line equation using \(v_1, v_2 \)
4: \(v \leftarrow \text{findMinVertexInLine}(v_1, v_2, \text{HIP}) \)
5: if \(v \) is on the line segment \((v_1, v_2)\) then
6: \(|v - \text{HIP}| \leq d \) then
7: \(F \leftarrow |v - \text{HIP}| \)
8: else if \(|v - \text{HIP}| \leq 2d \) then
9: \(F \leftarrow 2d - |v - \text{HIP}| \)
10: else
11: \(F \leftarrow 0 \)
12: end if
13: else
14: \(|v_1 - \text{HIP}| \leq d \) then
15: \(F \leftarrow |v_1 - \text{HIP}| \)
16: else if \(|v_1 - \text{HIP}| \leq 2d \) then
17: \(F \leftarrow 2d - |v_1 - \text{HIP}| \)
18: else
19: \(F \leftarrow 0 \)
20: end if
21: end if
22: end procedure
4.3.3 절차

실험은 트레이닝을 위해 동일 인물을 대상으로 정면의 웃는 얼굴, 슬픈 얼굴, 화난 얼굴, 놀란 얼굴 4가지를 PHANToM을 사용하여 각 얼굴마다 약 1분씩 탐색할 시간을 주었다. 4개의 얼굴에 대해서 탐색이 끝나면, 시야가 차단된 상태에서 총 16 종류(웃는 얼굴 4개, 슬픈 얼굴 4개, 화난 얼굴 4개, 놀란 얼굴 4개)의 서로 다른 얼굴 정면 사진을 무작위 순서로 배치하여 사용자에게 4가지 중 어떤 표정인지 질문하였다. 최대 탐색 시간을 1분으로 제한하였으며, 실험이 끝난 후에는 7점 리커트 척도 (7-point Likert Scaling)로 설문 조사를 실시하였다. 실험 시간은 약 30분이 소요되었다.

4.3.4 결과 및 토의

![Figure 4.10: 각 감정 표현의 렌더링에 대한 사용자 응답 결과](Image)

- 68 -
Figure. 4.10는 렌더링된 얼굴 표현을 촉각으로 감상한 사용자의 응답 결과이다. 사용자들은 88.75%의 높은 정답률을 보여주었으며, 스핀 표정에서 8개, 화난 표정에서 8개, 웃는 표정 1개, 놀란 표정 1개를 각각 틀렸다. 사용자가 틀린 응답을 분석하면, 대부분의 오답은 스핀 표정 대신 화난 표정으로 응답하거나 화난 표정 대신 스핀 표정으로 응답하여서 정답을 못 맞추었다. 이러한 결과는 비록 스핀 표정과 화난 표정의 눈 렌더링 형태는 서로 다르지만, 입모양이 비슷해서 사용자가 구분을 잘 못했기 때문으로 보인다. 웃는 얼굴과 놀란 얼굴의 경우, 상대적으로 입 모양이 다른 표정들과 명확히 다르지만 스핀 표정과 화난 표정의 경우 입모양이 곡률의 차이만 있기 때문에 사용자가 만졌을 때 비슷하다고 느낄 가능성이 크다. 눈의 경우 렌더링된 형태는 서로 달랐지만, 입이 눈보다 상대적으로 크기 때문에 인지가 쉬워 사용자는 좀 더 편한 대상으로 판단하는 모습을 보였다. 따라서 사용자가 렌더링된 선들은 제대로 인지했다고 볼 수 있으나, 곡률의 변화나 모서리의 꼭임 같은 세부적인 표현들은 촉각으로 느끼기에 힘들 수 있으며, 형태를 서로 명확히 다르게 해야 사용자는 차이를 좀 더 쉽게 인지하는 것이 가능하다.
<table>
<thead>
<tr>
<th>질문</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>렌더링된 얼굴을 만졌을 때, 얼굴처럼 느껴졌다.</td>
<td>4.8</td>
</tr>
<tr>
<td>렌더링된 눈, 입, 턱선을 인지하고 서로 구분할 수 있었다.</td>
<td>6.1</td>
</tr>
<tr>
<td>얼굴을 렌더링하기 위한 힘의 크기는 적절하였다.</td>
<td>5.5</td>
</tr>
<tr>
<td>축각으로 렌더링된 얼굴의 감정을 알 수 있었다.</td>
<td>4.8</td>
</tr>
<tr>
<td>축각으로 렌더링한 얼굴이 사진 감상에 도움이 될 것 같아.</td>
<td>4.7</td>
</tr>
<tr>
<td>서로 다른 얼굴을 렌더링했을 때, 얼굴이 다름을 알 수 있을 것 같다.</td>
<td>2.7</td>
</tr>
<tr>
<td>평균</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Table 4.1: 설문 조사 결과

Table 4.1는 축각 감상을 한 후, 사용자 설문 조사 결과이다. 한 평면에 여러 개의 선분을 그렸음에도 불구하고, 사용자는 축각으로 눈, 입, 턱선을 잘 구분할 수 있었으며(평균 6.1점), 렌더링되는 힘의 크기의 적절성도 평균보다 높은 점수를 받을 수 있었다(5.5점). 이러한 결과는 선행 실험에서 나온 데이터를 참고하였기 때문에 사용자는 별다른 불편없이 렌더링된 축각 정보를 잘 받아들인 것으로 보인다. ‘렌더링된 얼굴을 만졌을 때, 얼굴처럼 느껴졌다.’에 대한 문항에서는 평균 4.8점을 받았다. 렌더링된 얼굴은 사용자에게 정보를 받기 쉽게 하기 위해 얼굴 전체 중 감정 표현에 따라 변화가 큰 부위만을 렌더링만 하였기 때문에 실제 얼굴과는 차이를 보이므로 보통 정도의 점수를 받은 것으로 보인다. 특히 이러한 얼굴의 간략화는 서로 다른 얼굴을 구분하기 힘들게 하기 때문에 사용자는 다른 얼굴을 구분할 수 없다고 평가하였다(2.7점). 전체적으로 설문 조사 결과를 살펴보면, 사용자에게 축각으로 렌더링한 정보는 인지하는데 성공하였으나, 렌더링된 얼굴이 실제처럼 느껴지거나 서로 다른 얼굴을 구분하기 등 세부적인
표현은 사용자에게 충분히 전달되지 못한것으로 보이기 때문에 시각 정보를
촉각으로 변환시키는 작업에서 세부적인 정보는 세심한 주의가 필요하다.
V. 결론

본 논문에서는 시각 장애인의 정보격차 해소라는 측면에서 사건에 대한 접근성을 높이기 위해 측각의 인지 특성 조사 및 사건 촬영, 감상 시스템을 구현하였다. 기존의 연구의 경우, 시각 장애인의 사건 촬영을 도와주거나 사건 감상을 도와주는 연구는 있었지만 청각에만 의존하는 경향이 있다는 점에서 한계가 존재한다. 이러한 한계점을 보완하고자 청각뿐만 아니라 측각도 활용하여 사건의 감상을 돕고자 다음과 같이 연구를 수행하였다.

첫째, 정전기를 사용한 진동에 대한 인지적 특성을 조사하였다. 인지 특성은 절대 인지역이, 공간적 인지분해능 및 공간적 개수 세기 총 3가지에 대하여 조사하였으며, 실험 결과를 바탕으로 정반인과 시각 장애인이 서로 차이가 없는지 비교하였다.

둘째, 시각장애인을 대상으로 사건에 대한 접근성을 향상하기 위해 스스로 사건을 찍을 수 있고, 시-정-측각으로 사건 감상이 가능한 TouchPhoto 시스템을 구현하였다. 사건 촬영 및 감상으로 나누어진 두 개의 사용자 실험을 통하여, TouchPhoto의 효용성을 확인하였고 시각 장애인들은 자신이 2달 전에 찍은 사건을 모두 회상할 수 있었다.

셋째, 힘 반향 헬릭 장치(Force feedback device)를 사용하여 사건의 영감을 측각으로 이미지를 전달하는 시스템을 구현하였다. 총 4가지 기쁨, 슬픔, 놀람, 화남의 영감의 감정을 분류하여 힘 반향 헬릭 장치로 영감을 전달하였으며, 피실험자는 88.75%의 정답률로 서로 다른 영감의 감정들을 구분할 수 있었다.

본 논문에서는 조사한 측각 인지에 관한 데이터들은 향후 헬릭 렌더링을
하기 위한 기초 데이터로 활용될 수 있으며, 사전에 대한 접근성을 높이기 위해 구현된 시스템들은 시각 장애인을 위한 디자인에 좋은 가이드라인을 제시할 것으로 기대된다.

[40] Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew Miller, Robert C. Miller, Robin Miller, Aubrey Tatarowicz, Brandyn White, Samual

Acknowledgements

지난 2년간 많은 분들의 도움을 받아 석사를 무사히 마칠 수 있었습니다. 특히, 처음 포항에 와서 적응도 제대로 못하고 걱정도 많이 했는데 좋은 연구실 사람들과 만나서 무사히 졸업할 수 있었습니다. 먼저, 제가 다니던 회사를 그만두고 석사로 전향하는 것을 지지해주신 부모님에게 감사드립니다. 진로를 바꾸는 결정은 쉽지 않기에, 제 스스로 많은 고민을 하였지만 잘 될 수 있으리라는 보장이 없어서 걱정이 컸습니다. 하지만 부모님이 많이 도와준 덕분에 좀 더 쉽게 석사의 길을 도전할 수 있었고, 힘들 때마다 많은 걱정과 걱정에 어려운 시기를 극복한 것 같습니다. 그리고, 집에 갈 수 없을 때마다 저의 번거로운 요청을 들어준 동생에게도 고맙다는 말을 남기고 싶습니다.

다음으로 지도 교수님이신 최승문 교수님께 감사드립니다. 처음 연구실에 지원했을 때, 교수님께서 혼란히 받아주셔서 너무 감사했습니다. 교수님 덕분에 논문도 써보고, 한 번도 가보지 못했던 학회도 가서 저의 지평을 넓릴 수 있었습니다. 지도해주신 이 동안 저의 부족함이 많았을 견데, 잘 가르쳐주셔서 정말 감사했습니다.

연구실 사람들에게도 감사드립니다. 연구실에 처음 왔을 때 건형이형이 잘 챙겨주시고 마사졌습니다. 종만이형, 호진이형, 용제형 제가 프로젝트랑 논문을 진행함에 있어서 불어볼 때마다 친절히 가르쳐주셔서 너무 감사했습니다. 호준, 성환이형 승제도 나보다 선배인데도 불구하고, 거리낌없이 지내줘서 고마웠습니다. Reza, thank you for teaching me. It was very helpful to me. 한승이 같이 X 프로젝트한다고 고생 많아하고 챙겨주고 도와줘서 고마웠습니다. 인석, 성호
덕분에 그래도 석사 생활에 많은 걸 묻고 도움을 받아서 고마웠습니다. 상윤, 혜진, 성원, 선웅, 견례 제가 도움이 필요할 때마다 한 번의 거리낌 없이 도와주어 감사했습니다.

마지막으로 석사 논문 심사를 맡아주신 한성호 교수님, 조민수 교수님께 감사드립니다.
Curriculum Vitae

Name : Jongho Lim

Education

2008. 3. – 2015. 2. Department of Information and Computer Engineering, Pusan National University (B.S.)

2016. 9. – 2018. 8. Department of Computer Science and Engineering, Pohang University of Science and Technology (M.S.)

Experience

2013. 3. – 2014. 1. Intern, Hyundai Digitech Inc.

Affiliation

1. Haptics and Virtual Reality Lab., Department of Computer Science and Engineering, Pohang University of Science and Technology