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ABSTRACT

We interact with many objects with a touch, a natural exploratory procedure.

Similar to the real world, modeling and rendering an interactive haptic model of an

object in the virtual world has been done to give immersiveness and realism. A vis-

coelastic behavior is one of the target models, and it has been trained using a data-

driven method due to the non-linearity. The modeling was successful, except that it

becomes computationally intractable in a large dataset.

In this dissertation, we propose a fractional derivative as a modeling feature on a

data-driven haptic modeling and rendering method of viscoelastic deformable objects.

Here, we propose an optimized form of the Grünwald–Letnikov derivative for haptic

modeling and rendering, considering the time quantization and double precision in
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computing. We compute the fractional derivatives from the zeroth to the first order to

get richer information.

Modeling and rendering the normal interaction of a homogeneous object is per-

formed using fractional derivatives. The discrete-time interaction data (position and

force) is collected for five viscoelastic deformable objects. Regression forest models

(RF-FD) and radial basis function interpolation models (RBF-FD) are trained on the

features of the fractional derivatives as input-output mapping functions. The results

are also compared with the RBF-based data-driven approach (RBF-PV). It validates

that the features based on fractional derivatives are better than the standalone posi-

tion and velocity information for modeling deformable objects. Then, We employ

the trained RF models for haptic rendering and compare subjective similarity between

the rendered and real objects through human perceptual experiments. Results show

that the models trained with fractional derivatives show higher realism than the RBF

model trained with position and velocity information. Most of the participants could

not discriminate between real and virtual objects.

In the later part of this dissertation, we further optimize this modeling method

using the perceptual sampling method. This method is based on the perceptual thresh-

old of the force difference, which is about 5%. In the modeling results, the perceptual

sampled models show dramatically low modeling times and relatively low error rates

compared to the random sampling method. The human experiment of comparison be-

tween the random and the perceptual sampling revealed that our proposed sampling

method marked a statistically worse score than the previous one. However, these sim-
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ilarity scores have a possibility to improve rendering quality, such as by providing

stable rendering or complex input signals.
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I. Introduction

1.1 Research Motivation

Human, social being, wants to be connected. We build connections with our

family, friends, colleagues, and other people in the real world. Physical space is,

however, not enough to keep every connection. Humankind develops technology to

break this limitation using every communication method. Nowadays, we meet our

parents or family far away using video calls, have fun with friends through 3D game

avatars, or share our knowledge with colleagues at a virtual conference. Even though

we see their face and hear their voice, it does not provide exact emotional feelings and

atmospheres at the real meeting due to a lack of a haptic feeling. And every haptic

research question originates from here.

The haptic sensation can deliver rich information in an interactive scenario com-

pared to vision and audition. A human visual system model is good enough to esti-

mate objects with passively-given 2-D static images. However, we can only estimate

its surface properties for haptic sensation in a static contact, such as its hardness or

temperature. It is because haptic sensations focus more on active touch than passive

touch. This nature leads the haptic researchers to build interactive models rather than

record and playback the haptic properties.

Assume we interact with an object, such as a soft doll, with our finger. We can

slightly touch and slip the object’s surface to figure out its position and shape, rub it

left and right to feel the textures, and gently push it to estimate its material properties.

All these haptic sensations from the interactions are combined in our brains to build

a perceptual model of one object. These information acquisition processes are called

exploratory procedures (EP) [1]. When we do passive and active touches, the object

provides its shape, texture, volumetric information, and material properties. To give a
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presence of haptic sensation, we consider these haptic properties.

A large amount of research has been done to model haptic sensation. These works

are categorized into (1) physical equation-based models and (2) data-driven models.

The former models are supported by well-defined physical equations. For instance, we

can easily build interaction with a solid object because its movement is controlled in a

simple calculation. This method has the best performance on modeling and rendering

the linear properties. However, for the non-linear properties such as viscoelasticity, it

is only successful on the narrow range of interactions. To deal with the complex prop-

erties, the researchers have used the non-linear mapping functions that include input

features and output resultant haptic properties, so-called data-driven haptic models.

Data-driven modeling and rendering viscoelasticity is successful using a radial-basis

function (RBF) except that it becomes computationally intractable in a large dataset.

We address this problem with new model features and a new modeling method.

We first attempted to model the viscoelasticity using the position and the past positions

trained on the random forest [2]. The results were successful in the modeling, but it

became easily unstable in rendering due to the negative damping. The main issue is

that the random forests with past positions cannot perfectly predict whether the user’s

hand is going up or down.

In this dissertation, we first explore the possibility of the fractional derivative as

a feature of viscoelasticity in data-driven haptic modeling and rendering. We hope our

report on the fractional derivatives in haptic modeling and rendering inspires haptic

researchers who use time features such as velocity or acceleration.

1.2 Organization

This dissertation is organized as follows. Chapter II shows the works for mod-

eling viscoelasticity, especially fractional derivatives, and the current states of data-

driven haptics. It also includes our last modeling results on the features of the current

and past samples. In Chapter III, we introduce our numerical background of fractional

– 2 –



derivatives. This method, derivated from Grünwald–Letnikov derivatives, is optimized

for numerical calculation.

Chapter IV introduces the modeling and rendering results using fractional deriva-

tives. In Section 4.2, the experimental setup for data collection is explained. The

following section defines the fractional derivatives modeling methods and validates

the modeling results using the comparison with the previous state-of-the-art method.

In Section 4.4, the trained models are employed for haptic rendering. Results of human

subjective experiments are also discussed here.

The following chapter, Chapter V, describes the perceptual sampling method to

improve the fractional derivatives method. We further train the same models with the

sampling method and evaluate them with the previous models. Section 5.2 shows the

performance compared with the previous models in error rates, and Section 5.3 vali-

dates the modeling results with a human experiment. Finally, the paper is concluded

in Section VI.
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II. Related Works

2.1 Viscoelastic behavior

Viscoelasticity is one of the most typical haptic behavior. We can easily find vis-

coelastic material in biological materials like human skin tissue [3]. There have been

tremendous studies and applications to model and represent it in the virtual world,

such as a surgery simulation or a human interaction scenario. To this end, the early

pioneers tried to describe the complex viscoelastic behavior based on mechanical ele-

ments such as the Hookean spring and Newtonian damper. One of the basic equations

for viscoelasticity is as follows:

F = kx+ bẋ (2.1)

where x is the position, ẋ is the velocity, k is the spring coefficient, b is the damping

coefficient, and F is the response force of the material. In equation 2.1, viscoelastic-

ity is represented as a parallel connection of a spring and a damper, and it is called

the Kelvin-Voigt model. Alternatively, the serial connection of two elements, named

Maxwell model, was also studied. These equations represent the relationship between

the response force and the main physics terms, position and velocity. The studies had

been performed to fit the coefficients of the equations to the recording of the real ob-

ject, and expand the models to the generalized form using a combination such as tje

generalized Maxwell model (GMM) [4]. Also, an attempt to model it using finite el-

ement method models was also proposed [5]. This series of studies had been widely

spread due to its simplicity. However, these models have the limitation that they are

only accurate in limited conditions.
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2.2 Fractional derivatives

The study of the viscoelastic behavior continued through the fractional deriva-

tives (FD). In the literature, Scott-Blair and Coppen proposed an alternative method

to describe viscoelastic behavior based on fractional derivatives. First, they defined

the “firmness” using a unified equation for the intermediate status of elasticity and

viscosity [6]. Throughout the series of studies [7, 8, 9], their idea suggested a new

rheological model named springpot using a fractional differential equation on stress

[10]. They described this as a quasi-property.

Many attempts combined the springpot with other traditional mechanical ele-

ments to describe complex behavior for many-real world objects. The fractional cal-

culus reduced the number of coefficients while modeling the stress-strain relationship

of viscoelastic deformable objects [11, 12]. Many researchers have tried to adopt

this concept to model the viscoelastic behaviors of tissues [13, 14], linear viscoelas-

tic behaviors of elastomers [15, 16], or build a governing equation of some materials

[11, 17].

In the area of haptic modeling and rendering, using fractional derivatives is one of

the novel topics. Recently, there have also been efforts to employ fractional derivative

components in haptic rendering models using springpot elements. In [18], the authors

studied the perceptual meaning of the springpot in the rendering model. They de-

scribe the springpot using the amplitude and the phase in the frequency domain, then

investigate how the firmness and the bounciness in perceptual feeling change as the

parameters change. Their paper first investigates the perception of springpots using

familiar physical concepts. In haptic texture modeling and rendering, Hu and Song

[19] used adaptive fractional differential method to extract texture features from the

image.
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2.3 Data-driven modeling

The recent advances in machine learning have allowed data-driven modeling to

be actively used for describing complex phenomena in many fields of science and

engineering, such as physical modeling, material modeling, weather forecasting, and

financial forecasting [20]. In physics, researchers have developed physics-informed

machine learning models trained on the additional information more than the phys-

ical laws [21]. For example, Hatfield et al. [22] has highlighted the importance of

data-driven methods for high-energy-density physics. In [23], the authors have used

deep learning frameworks to solve non-linear partial differential equations. Cenedese

et al. [24] has developed a data-driven modeling and prediction method for non-linear

dynamic systems. Researchers have also started employing data-driven methods in

material science [25]. Forecasting or predicting is also one of the promising topics

in data-driven modeling [26]. For example, data-driven methods are employed for

predicting the electricity consumption of a building [27] and wildfire forecasting [28].

2.4 Data-driven haptics

This dissertation lies in the broad domain of data-driven haptics. Data-driven

haptics consists of three different steps: (1) data collection, (2) haptic modeling, and

(3) haptic rendering. We first measure the target interaction data between the measure-

ment setup and the object. Then, we train some models from the extracted features of

the collected data. Finally, we render the interaction, such as the response force, using

the rendering setup. The most different step from the physical equation-based mod-

eling is the modeling part. As mentioned above, the physics-based model uses some

form of the physics-based equation to fit the interaction force. The data-driven haptics

learns a non-parametric input-output mapping function or a complex neural network

framework.

The first idea started from the paper that suggested “Haptic Camera” [29]. This
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paper successfully trained piecewise linear dynamic models of the 1-D interaction

force of a toggle switch using a measured position and position. In another study

[30, 31], authors record cutting forces from surgical tissues and then tune these signals

via piecewise linear models to provide force feedback. Similarly, in [32], a polynomial

function is employed to model recorded force signals for a pin insertion task. Also, in

[33], the authors apply a non-linear model to the recorded force and acceleration sig-

nals. The obtained parameters are then used for providing force feedback. The other

related work utilizes the recorded data to acquire surface properties, such as texture or

friction. For example, in [34], authors obtain properties like texture and compliance,

and in [35], parameters of the friction model are estimated from the recorded data. In

another study [36], authors scan 3D surfaces and estimate surface compliance based

on force-acceleration profiles. As mentioned above, this model-free method employs

non-parametric machine learning techniques to learn input-output mapping functions

for modeling the complex behavior of objects in a virtual environment. Apart from

modeling deformable objects, the approach has also been successfully employed in

texture rendering [37, 38, 39] and thermal rendering [40]. It also expanded to com-

prehensive modeling and rendering using multiple sensors, including shape, texture

mapping, deformation, and sound [41, 42].

In [43], the authors first proposed a data-driven model for modeling viscoelastic

deformable objects. They employed radial basis functions (RBF) based interpolation

method for learning input-output mapping function. The approach considered posi-

tion, velocity, and filtered velocity as input features and the response force as the out-

put. The RBF-based model successfully predicted the response force (output). Later,

the approach was extended for modeling slip and inhomogeneous interactions on de-

formable objects [44, 45]. Yim et al. successfully employed the RBF-based method

for modeling frictional responses during sliding and sticking interactions on inhomo-

geneous deformable objects [46]. It has been found that the RBF-based model, when

trained on large datasets, becomes computationally intractable. However, recently in

[47], a feature-based learning scheme has been combined along with the RBF-based
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Figure 2.1: Random forest regression algorithm.

model to reduce the dimensionality of the dataset.

A very recent paper proposed the FEM-based models for the realistic modeling

and rendering of viscoelasticity in real time [48]. The authors molded the object of

hyper-elastic materials and added markers at the surface. They tracked the markers

using external cameras to capture the relationship between the force and the resultant

deformation when the force is given to the object. Then, they built a real-time predic-

tor using FEM models. In their recent paper, they also improve the model using the

inverse reinforcement learning method to train the plasticity [49]. These papers are the

most complicated way to model and render with a benefit from the computing power

provided that the modeling environment is set and enough data is provided.

2.5 Random Forests

In this work, we use the random forest for regression, not for classification. A

random forest consists of many decision trees. A decision tree is a hierarchical struc-

ture defined by nodes, edges, and leaves. Edges connect the nodes or leaves, and leaves

determine the outcome of the tree. A regression tree minimizes the mean-squared er-

ror (MSE) of the values (here, “value” refers to the dependent variable, i.e., response

force) at each internal node. This leads to further splitting of the tree. Thus, while

growing the tree, the MSE of the values is minimized in each subset until a stopping
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criterion is reached. For the regression tree, the final outcome is the average of all in-

stances present in the leaf node. Unlike a standard decision tree, a decision tree in the

random forest is trained on a subset of all the observations. For example, if there are N

observations in the original data, a random subset of N ′ observations is chosen from

the original data with replacement (this process is called ‘Bagging’). The chosen sub-

set is called the bootstrap sample. Each decision tree in the random forest is trained on

a different bootstrap sample. In addition, unlike the standard decision tree, the tree in

the random forest chooses the best attributes among a subset of predictors, not among

all. These steps reduce the over-fitting problem. Each decision tree in the forest is

learned independently of each other, and the final outcome of the random forest for a

regression problem is the average of all the trees, as shown in Fig. 2.4. Apart from

this, the random forest is capable of handling a large number of input attributes (both

numerical and categorical), and it has many other advantages like handling of missing

values and outliers. For its implementation, we have used the source code given in

[50].

2.6 Previous work on the past position samples

In one of our previous works, we employed the random forest for modeling de-

formable viscoelastic objects [2]. This method builds a relationship between the re-

sponse force and the input feature vector consisting of current and past position sam-

ples. It was observed that the RF-based model outperformed the RBF-based model in

terms of prediction accuracy, training data, and computational time.

We employed our trained models in the rendering setup. The trained models were

loaded in the virtual environment, CHAI3D, which is implemented on a well-known

haptic rendering framework. We place a static cube that matches the real object in

the rendering. Then, we keep tracking the current position to calculate the distance

between the cube’s surface and the haptic interaction point (HIP). The 100 ms of the

tracked position data is stacked as a queue to be reshaped into a feature vector. The
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random forests traverse the tree with the input vector for each tree. We use the regres-

sion on the results.

At this point, we faced instability issues from the trained models, which was crit-

ical because it changed our research direction. A phantomic movement, an unwanted

large force against a user’s hand direction, frequently appeared during the interaction

with the trained model. It was even severe when the user kept staying in the middle

of the interaction. Any noise-canceling methods were not effective in this inherent

problem.

We decomposed the forces from the model using a simple model of a spring and

a damper to compare it with the ground-truth interaction force. We found that the

damping term sometimes became negative, which was critical to the stability. This un-

stable model was compared with a stable random forest model trained with the feature

of position and velocity. We conclude that the model that uses position and ten past

positions sometimes does not imply the velocity term.

2.7 Sampling method

In the literature on haptic data communication [51, 52, 53, 54], a perceptually

adaptive sampling mechanism has been used to reduce the data. The mechanism is

based on the Weber’s law of perception, and selects only perceptually significant sam-

ples for the transmission. The perceptual significance is determined by the Weber

fraction δ. The approach reduces the data upto 90 − 95%. The mechanism is named

as perceptual deadband/deadzone in the literature.
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III. Computational Fractional Derivatives

A fractional derivative, first proposed in 1695 by L’Hospital, is a derivative of

arbitrary order, real or complex. As with integer-order derivatives, the rth-order frac-

tional derivative of a function f(x) is described as: 3.1.

Drf(x) =
dr f(x)

dxr
, (3.1)

where Dr represents the operator for the rth-order fractional differentiation.

In this dissertation, we implement one of the fractional derivatives methods, such

as Grünwald–Letnikov, Riemmann-Liouville, or Caputo fractional derivatives [55].

Our numerical calculation method of fractional derivatives starts from the Grünwald–Letnikov

derivative for computation efficiency. This approach extends the classical definition of

derivation. From the generalized form of n-th integer order derivatives, the equation

can be described using binomial coefficients like the below equation.

f (n)(x) = lim
h→0

∑
0≤m≤n

(−1)m
(
n
m

)
f(x+ (n−m)h)

hn
(3.2)

Here, h is the time difference, n is the fractional order, m is the order for the

polynomial equation, and
(
n
m

)
is the binomial coefficient. The binomial coefficient is

generally represented upon the Γ function when we remove the limitation that n is a

positive integer. Therefore, we rewrite Eq. 3.2 like the below equation.

Drf(x) = lim
h→0

lim
m→∞

m∑
k=0

c(r, k)f(x+ (r − k)h),

c(r, k) =
(−1)k

hr
Γ(r + 1)

Γ(k + 1)Γ(r − k + 1)
(3.3)
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Figure 3.1: An example of fractional derivatives by its orders. It show the displacement

and its fractional-order derivatives from 0.1 to 1.
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In our modeling and rendering processes, the independent variable is the time t,

and we approximate (3.3) by taking small h and large m, such that

Drf(t) =
m∑
k=0

c(r, k)f(t+ (r − k)h)

c(r, k) =
(−1)k

hr
Γ(r + 1)

Γ(k + 1)Γ(r − k + 1)
. (3.4)

We optimize Eq. 3.3 for our modeling and rendering purposes. In haptic render-

ing, we quantize analog signals such as time or position. Our modeling and rendering

update rate can be set to 1,000 Hz, which means the time difference h is 1 ms. The

order of the polynomial equation m is also taken as the maximum within the floating

point number range. We use m = 171 as larger values cause overflow in computing

the gamma functions (double floating-point type, 64-bit CPU). Given r, the coeffi-

cients c(r, k) are precomputed for all k (0 ≤ k ≤ m). Then, (3.4) works as a filter on

f(t) and can be easily computed in real-time.

One exemplar calculation result of these fractional derivatives is shown in Fig.

3.1. It describes the 1 Hz frequency signal and ten orders of fractional derivatives

from it. The fractional derivatives show the gradual transition between the position,

f(t) = D0f(t), and the velocity, f ′(t) = D1f(t).

During haptic rendering, the update rate may vary depending on many internal

and external factors. Figure 3.2 shows changes in the computed values of fractional

derivatives for different sampling times. Compared to the reference at h = 1 ms,

the values remain very similar for the shorter (0.8 ms) and longer (1.2 ms) sampling

time when the derivative order r is low until r = 0.50. The differences become more

notable as r increases further to 1.00.
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IV. Modeling and Rendering of Homogeneous

Behavior

In this chapter, we train normal interaction models on the viscoelastic homo-

geneous deformable objects (i.e. 1-D interaction). We introduce the modeling and

rendering method using the fractional derivatives on random forests and radial basis

functions, which is our main approach.

4.1 Overview

The data-driven modeling and rendering method usually consists of data col-

leciton, modeling, and rendering. This chapter firmly follows the general flow of the

data-driven research.

First, we choose silicone materials which shows viscoelastic behavior. These ma-

terials are easy to mold in any kinds of shape and also deformable and shape-restorable.

We build cubic objects to standardize them. Then, we design that the input-output

function using the concept of the fractional derivatives. This concept of the fractional

derivatives extends the previous approaches of position and velocity pairs towards the

detailed description. We validation our fractional derivatives concept in both objec-

tively and subjectively. The detailed flow of the our data-driven research is described

in Figure 4.1.

4.2 Data collection

This section introduces the data collection hardware apparatus, and the details of

training dataset and test dataset.
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Figure 4.2: A configuration of the data

collection. A load cell is connected to the

force-feedback device. A deformable ob-

ject is placed below the load cell.

Sensor Handle

Ecoflex
00-30

Ecoflex
00-50

Dragon 
Skin FX

Dragon 
Skin 10

Ecoflex
00-10

Figure 4.3: Upper figure shows our

data collection setup and rendering setup.

Lower figure describes our four materials

from Ecoflex 00-30 to Dragon Skin.

4.2.1 Hardware

As shown in Figure 4.2, the experimental setup for data collection consists of a

force-feedback device (Omega 3.0, Force Dimension), a load cell (DBCM-2kg, Bong-

shin), and a deformable object. The software is implemented using an open-source

haptic rendering library, CHAI3D. The load cell is attached to the end-effector of the

force-feedback device. The other end of the load cell has a tip of 6 mm diameter for

interaction with the soft object. The tip is always located at the center of the object’s

top surface for data collection. The deformation depth is measured by the haptic de-

vice, and the force is by the load cell. The data (position and force) is updated at a

sampling rate of 1 kHz.

For haptic rendering, the load cell is replaced with an aluminum handle that has a

very similar size and weight to the load cell. The upper image in Figure 4.3 compares

the sensor and the handle. The gravity compensation constant included in CHAI3D
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for force rendering is adjusted according to the changed mass of the end effector.

We consider five different silicone materials for data collection. The materials are

Ecoflex 00-10, Ecoflex 00-30, Ecoflex 00-50, Dragon Skin FX, and Dragon Skin 10,

from the softest to the hardest, all from Smooth-On, Inc. Their detailed information

is available in Table 4.1. From each silicon material, a cube with an edge length of

3.5 cm is molded and used in this work; see the lower image in Figure 4.3.

Table 4.1: Silicon materials used in our work.
Material Shore Hardness Max. Modeling Depth∗ (mm)

Ecoflex 00-10 00-10 17.7

Ecoflex 00-30 00-30 14.5

Ecoflex 00-50 00-50 10.4

Dragon Skin FX 2A 7.5

Dragon Skin 10 10A 7.1

* The maximum modeling depth of each material is determined from the stiffness of

the object (3.5-cm cube) made from the material and the maximum output force of

the force feedback device used (Omega 3.0).

4.2.2 Training Data

Our data collection procedure is automated using the force-feedback device. An

inverted cosine signal in (4.1) is commanded as a force control signal to the device’s

tip:

f(t) = −a

2
(cos(2πνt)− 1), (4.1)

where a is the target (peak-to-peak) amplitude in N and ν is the indentation frequency

in Hz, respectively. To characterize the object’s rate-dependent deformation property

for users’ general exploratory behavior, we choose three amplitudes, a ∈ {2, 6, 10} (in

N), and nine frequencies, ν ∈ {0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, 5} (in Hz). For each pair

(a, ν), we collect the interaction data for a single indentation cycle. The output force

is controlled by position-derivative (PD) control to ensure stable data collection.
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Figure 4.4: Two figures show the 1 Hz of sinusoidal profile. Upper figure shows the

measured force from the material and selected points by the sampling method, and

lower figures show the measured displacement.

We collect interaction data for each object in Figure 4.3 using the 27 input force

profiles (3 amplitudes× 9 frequencies). The total length of the training dataset is

48.85 s. An example of the collected data is provided in Figure 4.4. These datasets are

used for training interpolation models (Section 4.3).

4.2.3 Test Data

We collect another dataset for each object to validate the trained interpolation

models. The test set must include sufficiently complex and general conditions that can

be interpolated from the range of the training data. We generate a complex force signal
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to indent the object by computing

fi(t) = −
ai
2
(cos(2πνit)− 1), (4.2)

for t ∈ [0 s, 15 s]. ai and νi are randomly chosen between 0.2 N and 1 N and between

0.2 Hz and 5 Hz, respectively, for i ∈ {1, 2, · · · , 5}. The values of fi(t) after the last

zero-crossing before 15 s are zero-padded to make any sum of multiple fi(t) terms end

with zero. Then, we compute

fsum(t) =

5∑
i=1

fi(t), (4.3)

f(t) =
10

max fsum(t)
fsum(t). (4.4)

The five element signals are added in (4.3). The result is normalized in (4.4) by the

maximum force amplitude (10 N) used for training data collection. We make ten test

input force signals using (4.2)–(4.4) and then collect interaction data for 15 s for each

input signal. We apply a zero-phase moving average filter (window size 25) to smooth

both the measured position and force data. See Figure 4.6 for examples.

4.3 Modeling

Using the collected interaction data, we learn a nonparametric mapping from the

input (position) to the output (force). In this paper, we propose new input features

using fractional derivatives, which is free from the rendering instability problem for

RF models aforementioned in Section II.

4.3.1 Input Features

The input features are derived from the fractional derivatives of deformation po-

sition. Here, we use the sampled sequence of position x[n] and force f [n] from the

continuous position x(t) and response force f(t), where n is the discrete time index.
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We make an input feature vector as follows:

X[n] = (Dr1x[n], Dr2x[n], · · · , Dr10x[n]) , (4.5)

where Drx[n] denotes the rth-order fractional derivative of x[n] and its order ri ∈

[0, 1] (i = 1, 2, · · · , 10). See Chapter III for how we compute Drx[n]. The measured

response force sequence is denoted by f [n].

The training dataset of each deformable object includes the 27 position-force

signal pairs measured for the 27 input force profiles of different amplitudes and fre-

quencies (Section 4.2.2). We represent them by xk[n] and fk[n], respectively (k =

1, 2, · · · , 27). Then, we compute Xk[n] using (4.5):

Xk[n] = (Dr1xk[n], D
r2xk[n], · · · , Dr10xk[n]) , (4.6)

for all n ∈ {1, 2, · · · , Nk} where Nk is the number of the recorded samples in xk[n].

For each n, Xk[n] (input feature) is paired with fk[n] (output force). For compact

notation, we stack Xk[n] and fk[n] for all n, such that

Xk = (Xk[1],Xk[2], · · · ,Xk[Nk]) , (4.7)

fk = (fk[1], fk[2], · · · , fk[Nk]) . (4.8)

Finally, Xk and fk are stacked over k, i.e., all the 27 training signal sets, such that

X∗ = (X1,X2, · · · ,X27) , (4.9)

f∗ = (f1, f2, · · · , f27) , (4.10)

where X∗ ∈ R(10×Nk×27) and f∗ ∈ R(1×Nk×27). Consequently, (X∗, f∗) constitutes

the full training dataset.

4.3.2 Model Training

For each object, we estimate an interpolation function Ψ,

f [n] = Ψ (X[n]) , (4.11)
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Figure 4.5: Structure of regression using a random forest.

which predicts the response force f [n] from the FD feature vector X[n]. To this end,

we learn a regression forest model on the training dataset prepared for the object. An

RF consists of many decision trees and can be used for regression [56]. As illustrated

in Figure 4.5, an input vector is fed to many decision trees in parallel, and their output

values are averaged to obtain the final output; refer to [56] for more on RFs.

For RF model training, we choose the following parameters: ten orders of FDs in

(4.5) = {0.05, 0.10, · · · , 0.50}, the number of decision trees = 100, and the stopping

criteria = minimum five samples at leaf nodes. We use FDs of many different orders

to fully utilize the strength of RFs for automatically searching for meaningful features

in a large feature space. Each of the ten orders explicitly represents the different time-

dependent behavior (see Figure 3.1 in Chapter III) so that RF training can choose

the best rate-related features. For implementation, we use the source codes available

in [50]. The resulting interpolation models are denoted by RF-FD models.

For comparison, we also train a radial basis function on input features consisting

of FDs:

X[n] = (Dr1x[n], Dr2x[n]) . (4.12)
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To choose the best two orders for each object, we train RBF models with all pairs of

orders chosen from the ten orders used for the RF-FD models. Then, we select the pair

that results in the lowest root mean squared error (RMSE) for the test datasets. The

chosen FD orders are shown in Table 4.2, and the resulting models are called RBF-FD

models. Note that including more FD terms in the input features significantly increase

the computation time for RBF model training. The computational results of such cases

are not compared in this paper.

Table 4.2: Fractional derivative orders chosen for RBF models.
Material r1 r2

Ecoflex 00-10 0.30 0.35

Ecoflex 00-30 0.15 0.20

Ecoflex 00-50 0.10 0.15

Dragon Skin FX 0.10 0.15

Dragon Skin 10 0.10 0.15

Lastly, we train another RBF model on the conventional input features of position

and velocity:

X[n] =
(
D0x[n], D1x[n]

)
= (x[n], v[n]) . (4.13)

The velocity v[n] is estimated using the first-order adaptive windowing method [57].

These models are named RBF-PV, as an implementation of the previous state-of-the-

art model [43] for comparison.

All the models are trained on a reduced dataset randomly sampled from the orig-

inal training dataset, as in [43]. We use only 20% of the training data after repeated

tests. The size of the training dataset critically affects the time required for model

training. The 20% ratio of the training data to use was determined by empirical tests.

Using larger ratio tended to make training of RBF models infeasible.

The two RBF models, RBF-FD and RBF-PV, use the following settings for train-

ing: the number of kernel points = 100 and the cubic spline interpolation method.
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These numbers, as well as the number of trees for RF models, were chosen consid-

ering the update rate of haptic rendering of the trained models. As the model size

increases, the computation time of rendering becomes longer, which degrades the sta-

bility of haptic rendering.

To train the RF-based model on the selected input/output features for each de-

formable object, we choose the following parameters: ten orders of fractional deriva-

tives= 0.05, 0.10, · · · , 0.50, the number of trees= 100, and stopping criteria= minimum

five samples at leaf nodes. As the random forests method has the advantages of search-

ing for meaningful features in a large feature vector space, we use different fractional

derivatives orders to utilize its strength fully. Each of the orders explicitly represents

the different time-dependent features so that the random forests can choose the best

time-wise feature.

4.3.3 Modeling Performance

Examples of the force curves predicted by the RF-FD, RBF-FD, and RBF-PV

models for all the objects are presented in Figure 4.6 with the measured force curves.

They are chosen from the modeling results of the ten test input profiles (Section 4.2.3)

to represent the average performance. The lower panels in Figure 4.6 show the errors

between the measured and predicted force curves. Generally, the output force profiles

closely match the measured force responses for all of the three data-driven models. The

absolute prediction errors are less than 0.4 N for all the objects, except Ecoflex 00-10

(the softest material). For Ecoflex 00-10, the absolute errors sometimes increase to

around 1 N.

We consider the absolute percentage error (APE) as the difference between the

measured and predicted forces divided by the measured force. For perceptual similar-

ity, the APE should lie below the just noticeable difference (JND) of human force per-

ception. Figure 4.8 presents the APE vs. the measured force for each object’s trained

models. Each plot also shows the JND curve of force perception for comparison. The
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Figure 4.6: Exemplar modeling results on test signals.
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Figure 4.7: Exemplar modeling results on test signals.
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Figure 4.8: Absolute percentage errors on the test dataset.
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Figure 4.10: RMSEs of the three interpolation models.

JND curve is initially very large and then rapidly decreases as the reference force in-

creases, finally plateauing to the constant Weber fraction (10%) [58]. The APEs for all

the models lie below the JND curve for the reference force larger than 2 N for all the

objects, which is generally acceptable [59, 48]. Among the three models, the two FD

methods show lower APEs than RBF-PV.

For each object, we also compute the RMSEs averaged over the ten test datasets.

The results are shown in Figure 4.10. RF-FD and RBF-FD, trained on the fractional

derivatives, result in slightly lower RMSEs than RBF-PV trained on the standard po-

sition and velocity data. RF-FD and RBF-FD have very similar RMSEs for all the

objects.

Last, we report the modeling computation time for both feature computation and

model training. The measurement was performed on a regular PC (Windows 10, i7-

11700k CPU, 32 GB memory) using Matlab. Results are shown in Figure 4.11. The

computation times were similar regardless of the real object for all three models. Their

means were 11.9 s, 126.7 s, and 126.7 s for RF-FD, RBF-FD, and RBF-PV, respec-
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Figure 4.11: Average modeling times of the three interpolation models.

tively. Therefore, the RF-FD method requires less computation by more than ten times

than the two RBF methods. The actual modeling time will decrease in proportion

to the number of surface contact points when we extend our modeling approach to

inhomogeneous objects as in [46].

The above results indicate that RF-FD provides similar accuracy to the two RBF

methods at greatly superior modeling cost. Note that the prediction accuracy and com-

putation time can be further improved if the parameters are optimized per object. For

example, Figure 4.12 shows the variable importance of the ten FD features obtained

from the RF training for the five real objects. A variable importance is a relative indi-

cator of how much information the corresponding feature provides to a random forest.

The plots show that fractional derivatives of low orders are dominant for hard objects

(low viscosity), whereas those of medium orders (0.3-0.5) are more important for soft

objects (high viscosity). Including higher order terms close to 1.0 is not necessary

for the objects tested, although it may be for highly viscous objects. We may further

improve the prediction and/or computation performance by using only the features of
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high importance for each object.

4.4 Haptic Rendering

For haptic rendering, we recreate the deformation dynamics of a real object by

simulating its data-driven model and then generating the response force. To this end,

the end-effector of the haptic device is replaced by the handle shown in Figure 4.3.

Our haptic rendering program is implemented under Microsoft Windows using

C++ and CHAI3D, similar to the data collection program. Since we train RF and RBF

models using MATLAB, the resulting models are loaded into the haptic rendering

program. A loader file for RF models includes all information required to construct

and simulate a regression forest. Given an input feature vector, all decision trees in

the RF are traversed, and their results at the leaf nodes are averaged to determine the

final output force. A loader file for RBF models delivers information about the centers

of radial basis functions and their weights. Using these values, our program computes

the rendering force for an input feature vector of RBF models.
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and RBF-FD (a) and for RBF-PV (b). Virtual coupling to improve rendering stability

(c).

The overall procedure of haptic rendering is depicted in Figure 4.13. The position

of the haptic tool is denoted by x. As shown in Figure 4.4, the past position samples

for 171 ms are queued in a vector. It is convolved with a fractional derivative filter

of the same length to compute fractional derivative features for RF-FD and RBF-FD

models. The FD filter can be precomputed because our models use the fixed fractional

orders (0.05, 0.1, · · · , 0.5), fixed time difference (1 ms), and limited length (171); see

Chapter III. The FD features are input to a data-driven model (RF-FD or RBF-FD) to

compute the virtual model force fM . For RBF-PV computation, shown in Figure 4.4,

we use the tool velocity v provided by the haptic device’s driver. Its output is smoothed

using an exponential moving average (EMA) filter with the weighting factor α for the

current term of 0.7. These position and velocity are the input to an RBF-PV model,

which calculates the output force fM .

The data-driven model output fM is used as the input to a virtual coupling algo-
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Algorithm 1 Virtual Coupling Algorithm
function VIRTUAL COUPLING(x, v, fM )

if xproxy = NULL then
xproxy ← x

vproxy ← v

fV C ← 0

else
fV C ← −k(xproxy − x)− b(vproxy − v)

fproxy ← fM + fV C

aproxy ← fproxy/m

vproxy ← vproxy + aproxy∆t

xproxy ← xproxy + vproxy∆t

end if
return fV C

end function

rithm to improve rendering stability, as depicted in Figure 4.4. Its computational steps

are specified in Algorithm 11. In the pseudocode, xproxy, vproxy, and aproxy denote

the virtual proxy position, velocity, and acceleration, respectively. xproxy is initialized

with NULL before the initial contact. fproxy is the force applied to the virtual proxy

to update its movement, and fV C is the force output of the virtual coupling. ∆t is

the sampling time. The algorithm simulates the simple dynamics of a virtual spring-

damper system connecting the device position and the virtual proxy. The virtual proxy

is treated as a quasi-static point mass, and its movement is simulated accordingly. The

algorithm returns the coupling force between the two points. We use the following

parameters: spring constant k = 1.5 N/mm, damping coefficient b = 20 Ns/mm, and

mass m = 50 g, which are manually tuned. The output force fV C of virtual coupling

is smoothed further by an EMA filter with α = 0.7. This final output force f is sent

to the force-feedback device for haptic rendering. The effects of virtual coupling and
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Figure 4.14: Comparison between the force computed from data-driven models and its

smoothed force by virtual coupling and EMA filtering.

EMA filtering are illustrated in Figure 4.14 using an example.

The above procedure is executed repeatedly in a dedicated thread. Table 4.3

shows the three data-driven models’ update rates measured using a regular PC (Win-

dows 11, i7-11700k CPU, 32 GB memory). The update rates are similar regardless of

the real object used for modeling. RBF-PV shows the fastest update rate (mean 1982.6

Hz), followed by RBF-FD (mean 990.3 Hz). This difference is due to the use of FD

features. RF-FD shows the lowest update rate (mean 788.3 Hz), indicating that ren-

dering force computation using RF models using 10 FD features is slower than RBF

models using 2 FD features by approximately 20%. Nonetheless, all of these update

rates are sufficient for the haptic rendering of relatively soft deformable objects.

When computing FD features, we use the FD coefficients precomputed assuming

1-ms sampling time. The average update times for RF-FD and RBF-FD are 1.27 ms
1We thank Arsen Abdulali and Seokhee Jeon, the authors of [48], for providing the working codes of

virtual coupling for deformable objects.
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Table 4.3: Update rates (Hz) of the three data-driven models.
Material RF-FD RBF-FD RBF-PV

Ecoflex 00-10 787.5 993.4 1984.7

Ecoflex 00-30 794.7 988.6 1980.1

Ecoflex 00-50 792.7 990.3 1983.4

Dragon Skin FX 781.4 990.3 1982.1

Dragon Skin 10 785.0 988.9 1982.9

Mean 788.3 990.3 1982.6

and 1.01 ms (Table 4.3). Thus, we need to examine whether the force output errors

caused by the sampling time difference in RF-FD are significant. RF-FD has a sam-

pling time of 1.27 ms, and the derivative orders that have high variable importance

are lower than 0.4 (Figure 4.12). The errors in the value of the fractional derivative

are negligible, according to Figure 3.2 in Chapter III. Thus, the slightly lower sam-

pling time of RF-FD is expected not to cause practically noticeable problems. For

confirmation, we resample the actual rendering results of position and force to have

the exact 1-ms sampling time by linear interpolation and compare them with the ren-

dering results. An example is shown in Figure 4.15 for the RF-FD model of Ecoflex

00-50. The actual rendering results with approximately a 1.27 ms sampling time and

the resampled results with the exact 1-ms sampling time show very similar time-force

curves. This close similarity is also observed for the other objects. Therefore, the

RF-FD model is quite robust to the variability in the update rate of haptic rendering, at

least in the range of real materials tested in this work.

4.5 Perceptual Experiment

We performed a user study to validate the perceptual performance of our data-

driven haptic modeling and rendering framework for viscoelastic deformable objects.

Participants’ task was to compare the similarity between real and virtual objects and
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Figure 4.15: Time-force curves for the actual rendering results of the RF-FD model

for Ecoflex 00-50 and the resampled results at the sampling time of 1 ms.

then represent it using a number. This similarity rating paradigm has been frequently

used in related studies to data-driven haptics [46, 37, 60, 61, 39, 48].

4.5.1 Methods

Participants

We recruited 18 adults (5 females and 13 males, average age 24.2 years) for this

experiment. None of them had a history of neurophysiological disorders. They were

provided with written and verbal instructions about the experiment. They were paid

KRW 15,000 (≃ USD 12) for compensation.

Task

Participants sat comfortably in front of a computer monitor. They controlled the

force-feedback device (Omega.3) with their right hands and used their left hands to

enter responses using a keyboard; see Figure 4.16. A physical wall was placed between
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Figure 4.16: Setup of the perceptual experiment. A participant controls the force-

feedback device while watching the monitor screen. The force-feedback device and

deformable objects are visually blocked by the physical wall.

the haptic device and the monitor screen to block any visual cues regarding the device

movements and the real/virtual objects.

Figure 4.17 illustrates the experimental setup. When a real object was placed

on the left side, the corresponding virtual object was rendered on the right side, and

vice versa. Participants explored both objects while pressing and releasing them in

the vertical direction using the haptic device without a time limit. To guide the haptic

exploration, the monitor screen displayed the haptic interface point (HIP), a visual

guideline, and a contact line. The HIP represents the position of the device tool tip in

the virtual environment. The contact line was aligned with the top faces of the real and

virtual objects. The visual guideline indicated the maximum permissible penetration
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Figure 4.17: Configuration of real and virtual objects used in the perceptual experi-

ment. Note that on the monitor screen, real or visual objects are not displayed.

depth (7.5 to 11 mm) used for training the models. An invisible virtual wall was also

rendered to define the workspace limit while helping participants interact around the

centers of the real/virtual object’s top faces.

We provided two specific instructions to participants to ensure the rendering to

take place in the range covered by the data-driven models. First, they were asked not

to penetrate the objects exceeding the visual guideline. Otherwise, a warning message

was given. This precaution was to keep the rendering force stay within the force range

of the training data. Second, they were asked not to move too fast while touching the

objects. An error message was shown when their movement velocity was four times

larger than the maximum velocity used to generate the training data. Additionally,

participants wore noise-canceling headphones that played white noise to prevent any

possible effect of external sound on the experimental results.
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Conditions

We tested 21 experimental conditions: the 5 deformable objects (Ecoflex 00-10,

Ecoflex 00-30, Ecoflex 00-50, Dragon Skin FX, and Dragon Skin 10) × the 3 trained

models (RF-FD, RBF-FD, and RBF-PV) + 5 upper bound conditions (per material) + 1

lower bound condition. The upper bound conditions were to compare two identical real

objects included to obtain maximum similarity scores. In the lower bound condition,

participants compared the two most different real objects: Ecoflex 00-10 (the softest)

and Dragon Skin 10 (the hardest). This condition provided a perceptual anchor for the

most dissimilar case.

The haptic rendering functions for RF-FD and RBF-FD were executed as fast as

possible at the update rates shown in Table 4.3. For RBF-PV, the update rate was fixed

at 1000 Hz.

Procedure

The experiment consisted of three sessions of identical design. In one session,

each experimental condition was tested once, except the low bound condition. The

low-bound condition was repeated four times. Thus, one session included 24 trials.

The order of the experimental conditions was randomized per session and participant.

Each participant completed all of the three sessions in a within-subject design.

In each trial, participants compared two deformable (real or virtual) objects. The

experimenter manually switched the real objects under the tip of the haptic device.

The haptic device generated no force while a real object was explored. The positions

(left or right) of the real and virtual objects were randomly selected per trial. Partic-

ipants compared the haptic responses of the two objects sufficiently without a time

limit. Then, they rated the perceptual similarity between the two objects by entering a

number between 0 and 100 using a keyboard.

Before performing the main sessions, participants had a training session. The

training session had the same procedure as that of the main session. Participants famil-
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iarized themselves with the haptic device and the experimental task. The experimenter

provided feedback on participants’ behavior of executing the task whenever necessary.

At the end of the experiment, participants had a debriefing session and answered

a questionnaire consisting of the following five questions:

Q1 Was there any unstable or abnormal behavior from the haptic device during the

experiment?

Q2 What criteria have you opted for rating similarity?

Q3 Could you distinguish between real and virtual objects?

Q4 If your answer to Q3 is yes, then what were your criteria?

Q5 Which factors/aspects can improve the rendering?

In addition, we recorded the trajectory of the HIP in all trials and sessions.

4.5.2 Results

Outlier removal

Some participants showed inconsistent responses in the experiment. For objec-

tive assessment, we computed the standard deviations (SDs) of the similarity scores

collected in the same experimental conditions for each participant. Two participants,

P4 and P13, showed very high inconsistency. Their SDs averaged across the 21 ex-

perimental conditions exceeded 30, while the mean SDs of the other participants were

between 3.87 and 24.33. We also checked possible inconsistency due to the stimu-

lus position by averaging the similarity scores collected when the trained model was

placed left or right. Two participants, P6 and P13, failed this test. Their left-right dif-

ference scores were over 30, while the average of the other participants was 5.47. As

a result, we removed the experimental data of the three participants, P4, P6, and P13,

and proceeded with the data of the other 15 participants.
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HIP Trajectories

Figure 4.18 shows the displacement-force hysteresis curves combining all the HIP

trajectories and the command forces, collected from the interaction data of one partic-

ipant, for each virtual object and data-driven model. A hysteresis curve for a typical

viscoelastic object exhibits different behaviors when the object is pushed (loading) or

released (unloading). In Figure 4.18, each curve’s upper and lower parts represent

the loading and unloading behaviors, forming an elliptical curve. Harder objects, e.g.,

Dragon Skin 10, shows a smaller hysteresis curve with higher stiffness, while softer

objects, e.g., Ecoflex 00-10, shows a larger hysteresis curve with low stiffness. These

behaviors are consistent with those reported in the literature for real and virtual vis-

coelastic objects [62, 59, 43]. Other participants resulted in similar displacement-force

curves.

Similarity Scores

Figure 4.19 presents the collected similarity scores SS in box plots for all the

21 experimental conditions. In the upper-bound conditions (comparison between the

same real objects), the mean SS ranged from 81.6 to 88.5, with a grand mean of 84.2.

In the lower-bound condition (comparing the softest and hardest real objects), the mean

SS was very low at 8.7. The mean SS values of the three data-driven models were

substantially greater than the lower bound, and they were comparable to the upper

bounds. For the five materials, the RF-FD models resulted in the mean SS values

between 73.8 and 85.5, RBF-FD between 72.0 and 81.7, and RBF-PV between 77.9

and 82.7.

For statistical analysis, we applied two-way repeated-measures ANOVA with

the independent variables of Method (RF-FD, RBF-FD, RBF-PV, or REAL) and

Material (Ecoflex 00-10, Ecoflex 00-30, Ecoflex 00-50, Dragon Skin FX, and Dragon

Skin 10) to SS. The data of the lower-bound condition were not included. Method

(F (3, 45) = 6.74, p < 0.001) and the interaction between Method and Material
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(F (12, 180) = 2.84, p = 0.001) had significant effects on SS, but Material did not

(F (4, 60) = 2.08, p = 0.094).

To further examine the significant interaction term, we conducted simple effect

tests on the SS of each Material. Method had a significant effect at Ecoflex 00-10

(F (3, 42) = 7.30, p < 0.001), Ecoflex 00-50 (F (3, 42) = 3.40, p = 0.026), and

Dragon Skin FX (F (3, 42) = 2.87, p = 0.047). We ran Tukey’s post-hoc tests for the

significant cases. For Ecoflex 00-10, a significant difference in SS existed between

the two FD models and the upper bound condition. For Ecoflex 00-50, RF-FD and

the upper bound condition showed a significant difference. For Dragon Skin FX, no

significant differences were found among the four conditions of Method.

Questionnaire

The participants’ responses to the five questions are summarized as follows.

Q1 Eleven out of the 15 participants sometimes felt (unstable) vibrations while ex-

ploring the virtual objects.

Q2 All of the participants regarded the response force as the main criteria for sim-

ilarity rating. Three participants also considered the change in response force

when they varied the haptic exploration velocity.

Q3 Eight participants could distinguish virtual objects from real objects.

Q4 The major sensory cue for detecting virtual objects was oscillations that the

participants sometimes experienced at deep penetration.

Q5 Ten participants provided suggestions to improve the haptic rendering. Six of

them were about removing unrealistic oscillations at deep penetration.

4.5.3 Discussion

The similarity scores were bounded below by 8.7 (between the most different

real objects) and above by 84.2 (between the same real objects). This resulted from
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the participants’ general tendency to avoid extreme responses. All of the data-driven

models led to high similarity scores comparable to or slightly smaller than the upper

bound. The mean similarity scores of RF-FD, RBF-FD, and RBF-PV across all the

objects were 78.1, 77.0, and 80.4, respectively. No significantly different cases were

found among the pairs of the three data-driven models for any of the five materials

(Figure 4.19). Therefore, all of the data-driven models and rendering methods are

highly and similarly effective in replicating the deformation dynamics of a real object.

In one of the related studies [63], similar perceptual similarity scores were ob-

tained for the same materials using the FEM-based modeling approach. The similarity

scores of our RF-FD model were 75.4 and 77.3 for Ecoflex 00-30 and Ecoflex 00-50,

respectively (Section 4.5.2). The FEM-based approach in [63] provided the similarity

scores of 82.7 and 84.9 for the same two material cases. The scores of both studies are

very high, although the absolute scores cannot be compared in a statistically meaning-

ful way due to the difference in the detailed methods and environment in the experi-

mental setups. Therefore, our work demonstrates that viscoelasticity can be modeled

on a smaller amount of data in a greatly shorter time than any other models from the

literature, while preserving the high accuracy.

The unrealistic oscillation problem mentioned by many participants generally oc-

curred when the user touched a virtual object with a very fast velocity or penetrated

very deep into the object. In our data-driven models, the dynamics information for

such high velocity or deformation is not defined, and the rendering is likely to exhibit

unexpected behaviors. In fact, this problem is common to all data-driven methods.

One remedy can be extrapolation with a well-defined physics-based model if the input

variables exceed the data collection ranges.
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V. Perceptual sampling method

5.1 Sampling methods

Our next step is improving our modeling and rendering method in Section 4.3.

It includes reducing the number of input data, reducing the modeling error rate, or

improving the perceptual rendering quality. In this chapter, we define and apply a per-

ceptual sampling method to effectively select the meaningful points from the training

set. Then, we compare the modeling and rendering results with the previous results.

5.1.1 Review on random sampling method

In Section 4.3, we randomly sampled 20% from the collected data, which was se-

lected considering the stability in rendering. In the pre-training, we trained randomly-

sampled models from 1% to 30% and tested them on the test set. The detailed RMSE

results on the percentages of the training samples are in Figure 5.1. The RMSE values

are calculated upon the ten test set results. In this report, we trained ten repetitions of

models and averaged their results to minimize the random effect. The solid lines are

the results of Ecoflex 00-10, the dashed lines are Ecoflex 00-30, and the dotted lines

are Dragon Skin 10. The random forest models, shown in blue lines, show that RMSE

values were almost constant regardless of the percentage, while the radial basis func-

tion models, RBF-FD and RBF-PV, which are red and yellow lines, respectively, show

that the RMSE values were saturated at the 20%. Our empirical test also found that

20% of training samples ensure a stable rendering compared to the smaller number of

samples.
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training models and the three different line style

5.1.2 Perceptual sampling method

We observed room for improvement throughout choosing the random sampling

percentage. First, the sampled points are imbalanced among the length of the signal,

which is inversely proportional to the frequency. Assume that we choose 10% of the

data in the random sampling method. Then, the number of the selected points from

the 0.2 Hz cycle signal is 500, while the number from the 5 Hz cycle signal is 20. This

length-based selection includes fewer data from the fast movement case. Second, fur-

thermore, the meaningful point such as the highest amplitude point is sometimes omit-

ted. Lastly, there are many duplicated points and they can be affected on the modeling

time. To this end, we define a perceptual sampling method which is based on Weber’s

law. This idea is inspired by the sampling method for the haptic telecommunication

problem [51].

We employ the same non-uniform adaptive sampling approach/algorithm to re-
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duce the recorded dataset. The approach is applied on each sample of the force curve

fk. The algorithm starts with the first sample (i.e., fk[1])) and considers it as a refer-

ence force fr. Next, we progressively search for the sample index j for which

|fk[j]− fr|
0.1 + |fr|

> δ

is satisfied. The selected sample fk[j] is considered to have significant information

with respect to the reference sample fr. The sample index j is stored, and the reference

force fr equals fk[j] for the next search. We repeat this process on each force curve

of kth signal of the dataset separately and store all the indices of the selected force

samples. This approach may discard local maxima points in the force curves, which

are very much essential for training the modeling algorithm. To accommodate this, we

also consider the indices of the local maxima. Let the indices of selected sample points

of the force curves fk be stored in the training sets. And the local maxima indices are

stored in the set Bk. Then for the kth signal, the reduced data is given by the indices

stored in the set Sk = Ak ∪ Bk. We hypothesize that the adaptive sampling provides

the informative features for modeling the deformable objects, which will be validated

through the trained models.

In Fig. 5.2, we show the results of the approach on three typical force curves

for the Weber fraction δ = 0.05. The red circles in the figure are the selected sample

points. As illustrated in the figures, the approach is can handle the complexities (i.e,

non-linearity and rate-dependent behavior) of visco-elastic deformable objects. For

example, when the signal is changing rapidly (slowly), the approach is bound to select

more (fewer) samples. The Weber fraction δ determines the indices of the selected

samples and hence, the reduced data size.

In our data, we select the δ = 0.05 considering the threshold of the force per-

ception of the finger. This threshold selects about 4% of the training data throughout

the materials. This data selection method is proportion to the amplitude of the training

signal, as shown in Table 5.1.
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Figure 5.2: Examples of the collected data and the selected samples. The applied per-

ceptual sampling points are shown in three different frequencies where the threshold δ

is 0.05. The lowest frequency signal example, 0.2 Hz is on the leftmost figure, and the

highest frequency signal example, 5 Hz is on the rightmost figure. The middle figure

shows the example of 1 Hz frequency signal.

5.2 Modeling performance

We train the viscoelastic models to validate the effectiveness of the proposed

perceptual sampling method. The modeling method is the same as in Section 4.3: RF-

FD, RBF-FD, and RBF-PV. We add a suffix, PS, to the name of the trained model for

clarity. We also train the models of random sampling using 4% of the data. These

models are only used for fair comparison in modeling because of their instability in

rendering in the preliminary test.

We group the two materials, Ecoflex 00-50 and Dragon Skin FX, as Ecoflex 00-

30. It is because modeling results of Ecoflex 00-30, Ecoflex 00-50, and Dragon Skin

FX, showed similar properties considering Table 4.2.

Figure 5.3 compares the modeling results on the test set in the exemplar force

curves predicted by the perceptual sampling models. Compared to the random sam-

pling results, the perceptual sampling models show lower error rates in the stiffer ma-
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(a) Ecoflex 00-10

(b) Ecoflex 00-30

(c) Dragon Skin 10

Figure 5.3: Exemplar modeling results on test signals. We show the results from the

same test set with Figure 4.6.
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Figure 5.4: Exemplar modeling results on test signals.
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Table 5.1: Average number of the selected data point of each signal by maximum

amplitude
Material 2 N 5 N 8 N

Ecoflex 00-10 64.44 104.78 124.89

Ecoflex 00-30 65.67 101.44 120

Dragon Skin 10 68.44 104.89 123

Ecoflex
00-10

Ecoflex
00-30

Dragon
Skin 10

Ecoflex 
00-10

4%
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00-30
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Dragon 
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Figure 5.5: RMSEs of the three trained models with two sampling methods.

terials, Dragon Skin 10. The soft material, Ecoflex 00-10, shows very similar results

as the previous modeling results. These results show that our perceptual sampling

method is more effective on stiffer materials.

Figure 5.4 shows the absolute percentage error (APE) by the reference force. As

described in Section 4.3.3, most models’ APEs lie below the JND curves except for the

two FD models on 9 N force. This point is also depicted in the modeling results, such

as 4.3 seconds in Figure 5.3 (a). The training samples from the perceptual sampling

are insufficient to train the fractional derivative models on the largest force point. This

point can be improved, by using a smaller threshold to collect dense points near local

maximum points or using a different training set rather than the sinusoidal signals.
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Figure 5.5 shows the average RMSE results of the test set. Here, we also use the

4%, as mentioned earlier, random-sampled model to compare in error rate and model-

ing time. The RMSE results of all trained models show a big difference between the

sampling method. The large differences are shown in the RBF-FD models. Regarding

the modeling time in Figure 5.6, we can see the significant difference between the two

sampling methods. The modeling times of perceptual sampling show almost consis-

tent regardless of the models, while the RBF models take about 16 times longer. The

well-organized samples increase the efficiency of modeling.

The modeling results of perceptual sampling models indicate that all models are

improved in both RMSE and modeling time. Regarding the modeling time, the RBF

models have a big advantage over the perceptual sampling method. The huge modeling

time gaps in the sampling method come from the well-organized sampling because it

helps to minimize the calculation to find the best 100 kernels. This feature equalizes

the modeling time of the RBF models with the RF model. The RMSE values of the

RBF-FD model between the two sampling methods are also noticeable. The RBF-FD

models mark the lowest error rate among the trained models in all materials, which

shows that the RBF-FD benefits from the sampling method.

5.3 Perceptual experiment of perceptual sampling

We designed the perceptual experiment to compare the two different sampling

methods. Considering the first experiment’s results, we focus on comparing the two

sampling methods with the modeling methods. The overall process is similar to the

first experiment in Section 4.5.

5.3.1 Improved haptic rendering

In this experiment, we adapt precise haptic rendering for the random forests us-

ing the first-order estimation of past positions. The previous haptic rendering method

queue the device position to calculate the fractional derivatives. This method is accu-
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Figure 5.6: Modeling time of the three trained models with two sampling methods.

rate if the positions’ intervals are equal to 1 ms. However, the interval’s variety affects

the fractional derivatives’ estimation. It gets even worse when the update rate becomes

lower.

Here, we use first-order position estimation of the recorded trajectories using the

device position and the timestamp. We queue the position and the timestamp until the

difference between the first and the last is n ms. Then, we estimate the positions of

the past n seconds. The estimated positions are directly used as input to the fractional

derivatives. This method is well-optimized in that it does not highly affect the update

rate.

5.3.2 Methods

Participants

We recruited 20 adults (6 females and 14 males, average age of 23.0 years) for

this experiment. None of them had a history of neurophysiology disorders. They were

provided with written and verbal instructions about the experiment. They were paid

KRW 25,000 (≃ USD 19) for compensation.
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Figure 5.7: Experiment procedures of the perceptual sampling method.

Task and conditions

The overall task is similar to the previous experiment (see Section 4.5 for the

figures). The comparison task is the same as before while the experiment conditions

are changed.

We tested 18 experiment conditions: the three deformable objects (Ecoflex 00-10,

Ecoflex 00-30, and Dragon Skin 10)× the three modeling methods (RF-FD, RBF-FD,

and RBF-PV) × the two sampling methods (RS and PS). Then, we added the percep-

tual sampling conditions so that a participant evaluates six different trained models per

material.

Then, we also prepared the upper-bound and the lower-bound conditions. The

upper-bound conditions include real object pairs of three materials. The two most

apparently different objects represented the lower-bound conditions. For the balanc-

ing, we repeated lower-bound conditions twice as a soft-hard condition and a hard-soft

condition from left to right.

Procedures

The experiment consisted of three steps in sequence: Test session I , the Main

session, and Test session II , as depicted in Figure 5.7. In test sessions I and II ,

we placed the comparisons between the real objects, while the main session only in-

cluded the real-virtual comparison. In each comparison, participants compared two
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deformable objects, as explained in Section 4.5.

In a single repetition of the test sessions, the three upper-bound conditions and

the two lower-bound conditions were given. The order of the five conditions was

randomized and repeated four times. Thus, the total number of each test session was

20. Test session I worked as a guideline for similarity scores for participants. The

test session II , which was given at the last of the experiment, was for verifying their

similarity scores.

In the main session, all 18 experiment conditions were tested. These conditions

were shuffled and repeated four times. The main session includes 72 trials. Each

participant completed all four sessions in a within-subject design.

After the experiment, we also asked the same five questions as in the question-

naire in Section 4.5.

5.3.3 Results

HIP Trajectories

Figure 5.8 shows the recorded trajectories of HIP and the resultant force of the

model during the experiment when the interaction happens. We removed about 20%

percent of the data, which penetrates the visual guideline because it corrupts the shape

of hysteresis curves. As shown in Figure 4.18, these hysteresis curves of the trained

models represent the model behaviors.

For all models, the perceptual sampling shows the concrete rendering shapes than

the random sampling. The rendering trajectories of PS are more likely to follow certain

lines. Unlike the modeling RBF-PV method, the behaviors of two fractional derivative

models, RF-FD and RBF-FD, are slightly changed following the sampling method.

The RBF-FD-PS model shows a better shape of hysteresis curves than the RBF-FD-

RS. However, the RF-FD-PS model shows small wave patterns over the curves.
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Similarity Scores

Figure 5.9 presents the collected similarity scores SS in box plots. For the anal-

ysis, we averaged the answered similarity scores for all 18 experimental conditions in

the main session. We also averaged the upper-bound condition and the lower-bound

conditions in the test session II . As we split the upper-bound condition from the main

experiment, the average similarity score of each material is shown over the dotted line.

The box plots are grouped in three by materials. Then, the modeling methods are

placed one by one. Two sampling methods of one modeling method are placed side by

side. The median value of each model is shown in a red horizontal line, and the mean

value is represented as a blue mark. For the three materials, the RF-FD-PS models

resulted in the mean SS values between 72.64 and 78.73, the RBF-FD-PS between

71.58 and 77.93, and the RBF-PV-PS 76.59 and 79.85.

For statistical analysis, we applied three-way repeated measures ANOVA with the

independent variables of Samplingmethod (RS, PS), Modelingmethod (RF-FD,

RBF-FD, and RBF-PV), and Material (Ecoflex 00-10, Ecoflex 00-30, and Dragon

Skin 10) to SS. The lower-bound and upper-bound conditions were not included. Two

main conditions, Modelingmethod (F (2, 38) = 4.485, p = 0.018) and Samplingmethod

(F (1, 19) = 4.973, p = 0.038) have a significant effect. But, their interaction (F (2, 38) =

0.419, p = 0.661) has not a significant effect. In other hands, Materials (F (2, 38) =

1.539, p = 0.228) condition is not significant and its interactions with the two other

conditions, the modeling method F (2, 38) = 2.576, p = 0.089 and the sampling

method F (2, 38) = 2.576, p = 0.089, are also not significant. The three-way interac-

tion of the main factors F (4, 76) = 2.687, p = 0.037 shows the significant effect.

5.3.4 Discussions

The random sampling method is statistically better in similarity than the percep-

tual sampling considering the ANOVA and the post-hoc analysis results. The rendering

quality decreases due to using five times smaller training samples. To show more de-
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tailed results of this comparison, we suggest a small human experiment to gather a

detailed description of each model.

The ANOVA results also show that the results mostly depend on the interaction

of all three factors. Two effects, the modeling and the sampling methods, are statisti-

cally significant, but their interaction is only significant when used with the materials.

This phenomenon means that all the proposed methods are strong in some specific sit-

uations. For example, the RBF-PV-RS model shows the best performance in Ecoflex

00-10, while the RF-FD-RS model is the best in Ecoflex 00-30.

There is some outlier, mostly in the Dragon Skin 10 material. Most participants

also reported that they felt some vibrations in some conditions. We also noticed some

irregular unintended vibration-like effects during the experiment for some specific

participants. It mostly happens under the lower update rates. As depicted in Figure

5.8, the perceptual sampling method of the RF-FD model shows more vibration-like

movement than the random sampling one. This vibration affects the stiffer object like

Dragon Skin 10 more than the soft material like Ecoflex 00-10. This happens because

the sampled points were similar in every signal. Sampling on more complex signals

would help to train a better RF-FD model.

We can also design an experiment on how the percentages of the perceptual sam-

pling affect the actual perceptual feeling. The relationship between the perceptual

threshold and the actual feeling can guide the optimization methods.

Among the two models we proposed, RF-FD showed the best appearance in mod-

eling due to the advantages in both error and modeling time. However, in the case of

generating force directly to a person in rendering, tremors peculiar to the random for-

est model sometimes occur, or the time required to search the tree is too tight to be

done within 1 ms, so the update rate sometimes suffers a loss, which causes similarity

scores to be lowered. To sum up, our FD methods gain in the modeling, but the ren-

dering results could be better due to the problems inherent in the model even though

rendering shows acceptable quality overall.

Training the RBF-FD model in perceptual sampling is meaningful because it
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shows sufficient accuracy and resolution in rendering using only two fractional orders.

The rendering sometimes looks better for the same object compared to RF.
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VI. Conclusions

6.1 Conclusion

We propose modeling and rendering methods on viscoelastic materials using frac-

tional derivatives as an input function for the first time. We use the methods of two

non-linear mapping functions, the random forests and the radial basis functions. For

the random forests, we use ten different orders of fractional derivatives and apply a

perceptual sampling method. For the RBFs method, we select two fractional orders of

0.1 and 0.2 to train the model. We evaluate our models using objective measurement

and subjective assessment with four different materials. We compare the measured

data with our two fractional derivative models and one reference RBFs model from

the previous studies. It shows that two fractional derivatives models outperform the

reference model, which uses position and velocity as a feature vector. Most partici-

pants who compared the similarities between the real objects and the virtual models

reported that it was indistinguishable.

We also improve the modeling methods using the perceptual sampling method.

This perceptual sampling method is motivated by the well-known adaptive sampling.

We train and evaluate the modeling methods with the same parameters as the random

sampling method. The result shows that all models are improved in error rates. The

two RBF methods have more benefits from the sampling method. The human exper-

iment also shows that the perceptual sampling methods show similar results to the

previous random sampling methods.
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6.2 Future works

As we discussed in the modeling and rendering part, there is room to find better

fractional orders for expressing each material, even though the random forest methods

can find the best fit inside the model. For example, a narrower range of the fractional

derivative order, such as r = 0.01 to 0.20 for the Dragon Skin materials, can represent

a more detailed material property. This optimization is left for future work.

We also can optimize the RBF-FD model features. In this dissertation, we lim-

ited the number of features to two for a fair comparison with the RBF-PV model.

This feature number can be expanded for precise modeling. As a guideline for future

work, we tested the modeling and rendering of the RBF-FD method of ten fractional

order feature vectors like the RF-FD model, which was unstable in rendering at some

conditions.

We may apply this concept to other time-dependent components, such as accel-

eration, considering that we use a fractional derivative as an alternative to the velocity

feature. Our first idea is driven by the fact that the number of the feature.

Our data-driven modeling method of fractional derivatives has been used on the

viscoelastic behavior highly correlated to both position and velocity. Our research per-

forms a primitive work that uses fractional derivative features in the limited environ-

ment of rendering rates of 1 kHz. Using better estimators with fractional derivatives

or more exact fractional orders are open research questions. For example, an adap-

tive order selection is applied to model image-based texture samples in a recent study

[19]. Detailed-ordered features like a fractional order of 0.01 or a better estimator can

improve the non-linear estimator.
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요약문

우리는 일상의 다양한 물체와 시각적인 인지 외에도 직접 손으로 닿는 등 상호

작용을 하면서 살아간다. 이와 같이 가상의 공간에서도 실재감을 높이고 현실과

유사한 촉감을 제공하기 위해, 실체 촉감과 유사한 상호작용 모델을 만들고 렌더

링하는연구가진행되었다. 그중에서도인간의피부의성질과도밀접한연관성이

있는점탄성은물질자체의복잡성때문에데이터기반모델링방법을사용했지만,

모델링에많은데이터를써야하고모델링시간이오래걸리는등현실적인장벽이

있었다.

본논문에서는이를해결하기위해데이터기반점탄성모델링에분수계미분을

도입하였고,이에대한결과를다룬다. 기존의모델에서는점탄성의물리적의미를

고려하여탄성의위치,점성의속도,그리고속도의저주파통과필터값을사용하여

모델링을 진행하였다. 우리는 여기서 위치를 1차 미분한 값인 속도와 0차 미분한

위치사이의값을분수계미분방법을통해더욱세분화하여모델에활용하였다. 여

기서사용한분수계미분방법은그룬월드-레트니코브분수계미분을촉각모델링

및 렌더링에 최적화한 것으로, 디지털 신호로 전환할 때 양자화되는 시간과 컴퓨

터공학에서의계산적한계를고려하여단순화하였다. 여기에본연구에서설계한

점탄성모델을고려하여필요한수치를미리선정한후필터의형태로계산하도록

하여모델링및렌더링에활용하였다.

우리는 이렇게 만들어둔 분수계 미분 값을 토대로 점탄성 상호작용 중 균일한

물질에 대한 1차원의 힘에 대해서 랜덤 포레스트와 방사 기저 함수 방법을 통해
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모델링 및 렌더링을 먼저 진행하였다. 랜덤 포레스트 회귀 분석에 10개의 분수계

미분값을사용하여점탄성모델을생성하였다. 또한,방사기저함수보간방법에는

랜덤 포레스트 회귀 분석에 사용한 미분 값 중 가장 유효한 2개의 분수계 미분값

을 각각 물체마다 적용하여 점탄성 모델링을 수행하였다. 모델링 결과로는 실제

측정한결과값과모델들의예측값사이의에러가인간이인지가능한최소식별차

이내로나왔다. 이후렌더링결과를확인하기위해동일한조건하에서실제물체및

가상의 물체와 상호작용을 진행하고 인지적 유사도를 측정하였다. 분수계 미분을

사용한모델링방법이기존의방법에비해실제물체에더유사하면서,실제물체와

구분이없을정도의안정적인모델구현을보여주었다.

이후본연구에서는이 1차원의힘에대한모델링방법을더욱최적화하기위해서

샘플링방법을랜덤한데이터대신촉감의인지적한계점을바탕으로추출한데이터

를사용하여모델링및렌더링을수행하였다. 새로운샘플링방법은기존모델에서

중복으로 활용되는 부분이 줄어들면서 훨씬 더 적은 시간과 낮은 수준의 에러 비

율을 확보하는 성과를 거두었다. 다만 이를 사용자 실험을 통해 평가하였을 때는

사람들은인지적으로랜덤데이터추출과이번에제안한인지기반모델링방법을

구분할 수 있었다. 이는 주로 일부 모델에서의 불안정한 렌더링을 보였고, 렌더링

결과상랜덤포레스트에최적화되지않은점을보였기때문으로보인다. 추후에학

습시에 더 복잡한 신호를 사용하거나 안정적인 렌더링을 제공할 경우 인지적으로

차이가없을정도로유사한모델을제공할수있을것으로예상한다.
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[44] Raphael Höver and Matthias Harders. Measuring and incorporating slip in data-

driven haptic rendering. In IEEE Haptics Symposium (HAPTICS), pages 175–

182, 2010.

– 71 –



[45] Anatolii Sianov and Matthias Harders. Data-driven haptics: Addressing inho-

mogeneities and computational formulation. In IEEE World Haptics Conference

(WHC), pages 301–306, 2013.

[46] Sunghoon Yim, Seokhee Jeon, and Seungmoon Choi. Data-driven haptic model-

ing and rendering of viscoelastic and frictional responses of deformable objects.

IEEE Transactions on Haptics, 9(4):548–559, 2016.

[47] Anatolii Sianov and Matthias Harders. Exploring feature-based learning for data-

driven haptic rendering. IEEE Transactions on Haptics, 11(3):388–399, 2018.

ISSN 1939-1412. doi: 10.1109/toh.2018.2817483.

[48] Arsen Abdulali, Ibragim R. Atadjanov, Seungkyu Lee, and Seokhee Jeon. Realis-

tic haptic rendering of hyper-elastic material via measurement-based FEM model

identification and real-time simulation. Computers & Graphics, 89:38–49, June

2020. ISSN 0097-8493. doi: 10.1016/j.cag.2020.04.004.

[49] Arsen Abdulali and Seokhee Jeon. Data-driven haptic modeling of plastic

flow via inverse reinforcement learning. In 2021 IEEE World Haptics Confer-

ence (WHC), pages 115–120. IEEE, July 2021. doi: 10.1109/whc49131.2021.

9517181.

[50] Abhishek Jaiantilal. randomforest-matlab, 2010. URL https://code.google.

com/archive/p/randomforest-matlab/. Accessed: 2018-12-04.

[51] Peter Hinterseer, Sandra Hirche, Subhasis Chaudhuri, Eckehard Steinbach, and

Martin Buss. Perception-based data reduction and transmission of haptic data in

telepresence and teleaction systems. IEEE Transactions on Signal Processing,

56(2):588–597, 2008.

[52] Amit Bhardwaj, Subhasis Chaudhuri, and Onkar Dabeer. Design and analysis of

predictive sampling of haptic signals. ACM Transactions on Applied Perception

(TAP), 11(4):1–20, 2014.

– 72 –

https://code.google.com/archive/p/randomforest-matlab/
https://code.google.com/archive/p/randomforest-matlab/


[53] Eckehard Steinbach, Matti Strese, Mohamad Eid, Xun Liu, Amit Bhardwaj, Qian

Liu, Mohammad Al-Ja’afreh, Toktam Mahmoodi, Rania Hassen, Abdulmotaleb

El Saddik, et al. Haptic codecs for the tactile internet. Proceedings of the IEEE,

107(2):447–470, 2018.

[54] Subhasis Chaudhuri and Amit Bhardwaj. Kinesthetic perception. A Machine

Learning Approach, 2018.
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졸업의 문턱을 넘어설 수 있게 되었습니다. 먼저 연구실을 떠나간 한슬이, 인석이,

종호형, 선웅이, 혜진이, 효승이, 범수, 민재, 진수 등 연구실 전 동료들에게도 같이

지내던 의미있는 시간들 덕분에 제가 여기까지의 여정을 이룰 수 있었다고 전하고

싶습니다. 현재연구실을이어가고있는상윤이,겨레,채용이,지완이등함께오랜

시간보냈던후배들과, 정은이, 다진이, 동근이, 정우, 재준이, 준우, 호석이, 그리고

들어온지 얼마 안 된 재혁이, 희연이까지 짧은 시간이라도 함께 할 수 있어서 든든

했고앞으로도연구실에서좋은성과와함께많이배워나갈수있기를기원합니다.

마지막으로 본가에서 멀리 떨어져 나와서 낯선 땅에 자리를 잡고 공부를 시작할

때부터 돌아가는 순간까지도 항상 뒤에서 저를 위해 물심양면 지원해주시고 기도

해주시고 응원해주신 부모님께 정말 감사드립니다. 어린 시절부터 많은 성공과 큰

성취만겪어오다가자연스럽게겪게되는실패와좌절가운데서도항상믿어주시고

의지할 수 있어서 여기까지 올 수 있게 되었습니다. 또한, 말상대도 되어주고 같이

게임도하면서스트레스를풀기도했던동생혜준이에게도감사하다는인사를전하

고싶습니다. 포항땅에서자주보진않아도같은땅덩어리안에있다는것만으로도

편안함을느낄수있었던첫째,셋째큰아버지와우리사촌들에게도항상고맙다고

전하고싶습니다.
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