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ABSTRACT

4D content enhances the user’s multimedia experience using various sensory

effects such as motion, vibration, heat, and wind with audiovisual content. One

of the most frequently used 4D effects is the object-based motion effect. The

object-based motion effect refers to the movement of a chair emphasizing the

object movements of interest in a scene. In the scene, several objects often simul-

taneously appear, and each object moves with high degrees of freedom (DoF) by

its parts. In contrast, commercial motion platforms used in 4D theaters support

only limited DoF and workspace. Therefore, it is difficult to author object-based

motion effects.

To facilitate the production of such effects, many techniques for automati-

cally generating motion effects by analyzing audiovisual streams have been pro-

posed. However, these methods generated motion effects by focusing only on the

translation of a single rigid body object. This dissertation presents an algorithm

I



for automatically generating motion effects that delicately express the complex

movements of various objects. To this end, we introduce a new concept of motion

proxy, which abstracts the multiple movements of high DoFs into a single 3-DoF

motion, and convert it with a motion effect.

First, we developed an algorithm generating motion effects for a rigid body.

We compressed a 6-DoF motion of a rigid body into a 3-DoF motion proxy by

combining translation and rotation according to the object size. Next, we devel-

oped an algorithm that expresses the high DoF movements of multiple articulated

bodies. To inclusively represent the movements of the articulated bodies, we cal-

culated the motion proxy by combining the movements of parts according to their

speed and size. Finally, we automatically generated motion effects from all mov-

ing components in a scene, such as rigid bodies, articulated bodies, and particle

movements. In this process, we used computer vision techniques such as scene

flow estimation to automatically extract the motion information of a scene and

calculated a motion proxy by combining the extracted motions according to their

importance.

In each step, we implemented the optimal algorithm by performing several

user studies to determine the algorithm details and optimal parameters. The ex-

perimental results confirmed that our algorithm creates convincing motion effects

that improve user multimedia experiences better than the previous methods.
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I. Introduction

Viewing multimedia content satisfies our eyes and ears. However, we want

more: as a new form of media, mulsemedia (multiple sensorial media) leverages

more than the two senses of vision and audition to expand our sensory experi-

ences [2, 3]. Mulsemedia has already permeated our daily lives. In arcades, a

racing game is equipped with a motion platform simulating the movement of a

vehicle [4]. Also gaining popularity are 4D theaters, where the audience’s viewing

experience is enhanced with various sensory effects, such as motion, vibration,

scent, and wind, in synchrony with audiovisual content [5]. Vive [6] and Meta [7],

the major companies for virtual reality (VR) headsets, are conducting intensive

research to provide improved haptic feedback through handheld controllers during

interaction in VR.

Mulsemedia content is delivered to us through three stages: production,

distribution, and rendering [8, 3]. At present, a critical bottleneck is in the

production of sensory effects because it still relies on manual authoring. This

costly process prevents faster and wider dissemination of mulsemedia content.

For facilitation, a few research groups have proposed algorithms to automate

sensory effect production based on audiovisual content [9, 10, 11, 12, 13]. Our

works described in this paper are in line with such endeavors, with an emphasis

on motion effects.

According to the taxonomy of 4D effects established by Lee et al. [9], motion

effects used in 4D films can be classified into four classes: camera-based, object-

based, vibration and impact, and context, based on the audiovisual grounds used

for the design. Here, an object-based motion effect refers to the movement of a

motion chair that applies physical movement to the viewer’s body to emphasize
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Figure 1.1: A person watching a scene with accompanying motion effects. A scene

is full of many moving components, but a motion platform used in 4D theaters

only supports roll, pitch, and heave motion. The motion platform is used in all

the experiments reported in this paper.

the movement of an object of interest, e.g., the fighting Captain America (Fig-

ure 1.1). Among the four classes of motion effects, object-based motion effects

are the most frequently used in 4D films. As shown in Figure 1.1, a scene has

numerous moving components, including rigid bodies, articulated bodies, and

particles. In contrast, the standard motion platforms used in 4D theaters only

support limited degrees of freedom (DoF) and workspace. Since the motion plat-

forms can’t reproduce all movements, the object-based motion effects should be

carefully designed, focusing on the important movements.

Motivated by this, this dissertation proposes automatic algorithms for gener-

ating motion effects for various objects. Our approach combines many movements

– 2 –



into a representative movement according to their importance and converts the

combined movement into a motion effect. To this end, we introduce the concept

of motion proxy.

1.1 Organization

The rest of this thesis is structured as follows. Chapter II introduces the

background and related works on the production of multisensory effects, focusing

on motion effects. In Chapter III, we present a method of creating motion effects

for a rigid body. To express the 6-DoF motion of a rigid body with a 3-DoF motion

effect, we first introduce the concept of a motion proxy. Here, the motion proxy

represents the movement of a rigid body by combining its translation and rotation

with a movement of a single point. Chapter IV describes a motion generation

method for multiple articulated bodies. To represent complex movements of

multiple articulated bodies as a motion effect, we extend the concept of a motion

proxy. We calculated an object motion proxy, representing the movements of

an articulated body, by combining the movements of object parts, and a scene

motion proxy, representing the movements of all articulated bodies, by combining

the object motion proxies. In Chapter V, we generate motion effects for all the

components consisting of a scene. We compute a scene motion proxy based on

the scene flow for every pixel on the image.

1.2 Contributions

The major contributions of our research are:

1. The first proposal of the concept of motion proxy, representing multiple

movements by a single movement by combining them.

2. The optimal combinations of movements according to various objects in

– 3 –



calculating a motion proxy.

3. The motion cueing algorithms designed considering visual perception for

moving objects and vestibular perception for motion effects.

4. The shared design guidelines earned through the research.

These outcomes are expected to expedite and benefit the production of 4D

multisensory effects.
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II. Related Work

2.1 Authoring Multisensory Effects

Multisensory system presents immersive experiences by providing various

sensory effects together with audiovisual content, such as motion [?, 14, 15, 16], vi-

bration [17, 18], heat [19], scent [20, 21], and wind [22, 23]. The first multisensory

system was invented in the 1960s. Sensorama platform [24], developed by Heilig,

created the experience of riding a motorcycle in New York using a stereoscopic

color display, a stereo sound system, fans, odor emitters, and a motion chair.

Since then, mulsemedia systems have been steadily developed and applied to var-

ious domains, such as broadcasting [25, 26], theaters [27, 28], museums [29, 30],

virtual reality [31, 32, 33, 34, 35, 36], and interactive environments [37].

Researchers have designed novel stimulation methods to deliver multisensory

experiences, with focused efforts on haptics. For example, Danieau et al. [38]

demonstrated that stimulating the user’s head and arms using low-cost force-

feedback devices can elicit convincing walking sensations, similarly to riding a

motion platform. Danieau and colleagues [39] also introduced the concept of hap-

tic cinematography and the associated taxonomy while showcasing a few haptic

emphasis techniques for such films. Sra et al. [40] presented a device provid-

ing proprioceptive feedback using galvanic vestibular stimulation to replace an

expensive motion platform.

In general, mulsemedia content is streamed to users through three stages: (1)

production, (2) distribution, and (3) rendering [8, 3]. First, sensory effects are

created in synchrony with audiovisual content (production). Second, the sensory

effects are formalized into the data to be synchronized, stored, and transmit-
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ted with the audiovisual media (distribution). Finally, the sensory effects are

rendered through various multisensory devices to users (rendering).

Among the three, the production stage is the biggest bottleneck preventing

the proliferation of mulsemedia. In industry, designers use in-house authoring

programs to create multisensory effects [41, 42, 43, 26]. These tools have similar

interfaces using multiple timelines, one for each sensory effect. While useful, the

designers must annotate all video segments that will accompany multisensory

effects. To reduce such efforts, there have been attempts to detect video segments

for which sensory effects will be provided and determine the corresponding effect

types using the neural networks trained on audiovisual information [44, 45, 11, 46,

47]. However, the designers still need to make specific sensory effects manually,

which leaves the design process extremely time-consuming. Another useful asset

is an effect library, which stores frequently-used sensory effects and enables the

designers to load and reuse them whenever necessary [48, 49, 50]. Such effect

libraries are useful and can speed up the authoring and production in some cases,

e.g., vibration effects conveying the sensations of walking, gunfire, and vibration.

2.2 Automatic Generation of 4D Effects

In the past decade, we have seen increasing research interests in the algo-

rithmic generation of 4D effects from existing audiovisual data, which is essential

to accelerate the spread of mulsemedia and related VR applications. This sec-

tion describes the previous research outcomes mainly pertinent to motion effects.

Motion effects have a central role among the various 4D sensory effects [9].

Shin et al. [51] were the first to propose a synthesis framework for motion

effects that emphasize camera motion for point-of-view (POV) shots, which are

named camera-based motion effects in [9]. The camera trajectory is estimated

from sequential images and then used to compute the command to a motion
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chair using a washout filter. Lee et al. [9] developed much more efficient video-

based generation algorithms of camera-based motion effects with quasi-real time

performance and compelling viewer experiences. These algorithms were adapted

by Seo et al. [52] to substitute camera-based motion effects with vibrotactile

effects as a much less expensive alternative. Lim et al. [53] proposed an algorithm

for styling camera-based motion effects using a texture image to provide more

realistic sensations of vehicle riding, e.g., on a bumpy road.

As for object-based motion effects, the first approach was presented by Lee

et al. [10], where 2-DoF motion effects (roll and pitch in Figure 1.1) are converted

from the 2D trajectory of the object motion projected to the screen. An object of

interest is tracked by a computer vision algorithm, and its 2D screen velocity is fed

to a washout filter. This strategy of viewer-centered rendering matches the chair’s

motion to the shift of the audience’s visual attention, which results in plausible

motion effects for many scenes. Goh et al. [54] used saliency estimation with

the optical flow to generate motion effects for visually salient objects. In Zhao et

al. [55], a force vector is extracted from the velocity of an object of interest tracked

in the image. It is rendered using a haptic glove that provides force feedback.

These algorithms all operate on the screen space, where the rotation of an object

may not be disclosed clearly. All the aforementioned generation algorithms for

object-based motion effects are applicable only to a single rigid body.

Additionally, Lee and Choi [56] proposed a sound-to-vibration translation

algorithm for selective audio-tactile feedback (e.g., not responding to background

music) by relating perceptual loudness and roughness between sound and touch.

Later, this algorithm was adapted to present motion effects that accentuate im-

pact and collision events [9]. Recently, Li et al. [13] designed a method to provide

localized vibrotactile effects by combining the multisensory information extracted

from audio signals and image sequences. For gameplay spectators, Yun et al. [12]
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proposed a motion synthesis algorithm that detects gunfire sounds using a deep

learning model and generates a motion effect that resembles gun recoil.

Motion effects can also elicit the sensations of walking by leveraging the cyclic

nature of human gaits. Amemiya and colleagues conducted a series of studies on

walking sensation rendering using a motion platform [57, 58, 59]. For example,

they demonstrated that motion effects in the heave direction can deliver more

compelling walking sensations than motion effects in the yaw direction for users

wearing head-mounted displays (HMDs) [59]. Recently, Lee et al. [60] proposed

a data-driven framework for automatically generating the motion effects that

provide users with walking sensations. Locomotion data in different gaits, e.g.,

walking, running, and stumping, was measured using motion sensors, and the

captured data was converted to motion effects through a few steps of signal

processing algorithms.

One last notable approach is synthesizing the motion effects with specific

perceptual properties, presented by Han et al. [61]. By conducting dissimilar-

ity estimation and adjective rating for various motion profiles, they identified

smooth-rough and irregular-regular as two primary perceptual dimensions of mo-

tion effects. They presented several methods to synthesize a new motion effect

with specific properties by interpolating multiple motion effects in the authoring

space consisting of the smooth-rough and irregular-regular axes. Their user study

showed that the synthesized motion effects express the target characteristics well.

2.3 Motion Cueing Algorithms

A motion platform, which is used for motion effects, can not reproduce the

object movements in a scene due to its hardware limits, such as the maximum

displacement and velocity. Motion cueing algorithms (MCA) is a technique to

reproduce the desired motion within the hardware limits. Motion platforms and
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Figure 2.1: Classical washout filter.

MCAs were originally developed for flight simulations in the early 1970s [62], and

they have recently been applied to the mulsemedia and 4D systems. The MCAs

can be categorized into two groups: filter-based and optimization-based.

Filter-based MCAs rely on scaling down and filtering the reference motion so

that the produced motion commands lie within the motion platform’s workspace.

The most widely used algorithm is a classical washout filter. An overall flow

of the classical washout filter is depicted in Figure 2.1. The washout filters

remove low-frequency motion to prevent the motion platform from exceeding its

workspace [63]. The classical washout filter has two channels for translation and

rotation. These channels scale the translational acceleration and angular velocity

and feed them to high-pass filters. Then, the filtered acceleration and angular

velocity are integrated twice and once, respectively, to be position (or angle)

commands. Since this process does not guarantee that the motion command

is within the maximum range of the motion platform, the motion commands

need to be limited. This algorithm also includes a channel for tilt-coordination.

For the simulation of a sustained acceleration to the body, this channel feeds the

acceleration to a low-pass filter and adds the filtered acceleration to the rotational

motion command. Here, the rotation rate can be limited to prevent a user from

perceiving the rotational motion due to tilt-coordination.

While the washout filters can compute the motion commands in real-time,

the parameters, such as gain and cutoff frequency, should be manually tuned
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Figure 2.2: Model predictive control.

through a trial-and-error process, and the low-frequency motion information is

lost. The variances of classical washout algorithms, such as adaptive washout [64]

and linear optimal control [65], have been proposed to compensate for these

shortcomings, but they do not completely overcome them.

Recently, several optimization-based MCAs have been developed. Unlike

filter-based MCAs, optimization-based MCAs optimize motion commands to fol-

low the reference trajectory, taking into account the constraints of the motion

platform. The representative approach is model predictive control (MPC). MPC

is a methodology that optimizes current control inputs based on a process model

and future trajectories while considering constraints [?]. The optimization is

governed by a cost function that quantifies the difference between the reference

output and the output generated by the process model. This algorithm has the

advantage of taking the platform limit into account explicitly. Particularly, the

computational models of vestibular perception can be used as process models to

reduce perceptual error [66, 67, 68].

Figure 2.2 depicts how the MPC algorithm embedding the perception models

generates commands from the reference motion. First, the perceived acceleration

and angular velocity are calculated by the perception models for a finite future

trajectory and fed to the MPC controller. The MPC controller calculates the

motion command that satisfies the constraint and minimizes the cost function.
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Here, the constraint may be a hardware constraint, such as the maximum dis-

placement, velocity, or acceleration of the motion platform. The cost function

can be simply defined as the difference between the input and output motion

percepts. Optionally, the cost function can include the weight of the platform

displacement and velocity to ensure the stability of the platform.

In the cost function, the weight for displacement allows the motion com-

mands to converge gradually to zero. Also, the perception models play the role

of the band-pass filter, like the high-pass filters of a classical washout filter. Addi-

tionally, tilt-coordination can be explicitly embedded in the MPC’s process model

to consider the acceleration due to gravity when the platform is tilted.

However, because of their high computational complexity, optimization-based

algorithms are difficult to apply in real-time applications of high sampling rates,

such as above 50 Hz. See [69, 67, 70] for more detailed reviews of MCAs.
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III. Generating Motion Effects for a Rigid

Body

In this chapter, we propose an automatic algorithm for synthesizing convinc-

ing object-based motion effects for the movement of a rigid body from a given

object motion trajectory. While previous approaches focused on only the 2D po-

sition of an object on the screen, our method represents both the 3D position and

orientation of an object in the camera space by introducing a new concept of amo-

tion proxy. The motion proxy is determined based on the results of a perceptual

experiment that presents an optimal additive rule of the translation and rotation

information scaled by the object’s visual size. We generated a motion effect for a

rigid body by feeding the motion proxy to a motion cueing algorithm (MCA). We

investigated which MCA is most suitable for object-based motion effects among

several candidates in terms of user experiences through a user experiment.

3.1 Problem Formulation

As shown in Figure 3.1, a rigid body object has six DoFs to move in the 3D

camera space. In the camera coordinate frame, we represent the object by its

center position pcam = (px, py, pz)
T and frontal direction dcam = (dx, dy, dz)

T ,

where dcam is a unit vector. The size l denotes the subtended visual angle of

the object. The object is projected onto a 2D image plane and displayed on the

screen.

The object can freely translate and rotate in the camera frame, leading to a

motion of 6 DoFs. In contrast, almost all commercial motion platforms used in

4D theaters have only 3 DoFs represented by m = (roll, pitch, heave)T . Then,
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Figure 3.1: A moving object and its proxy in the 3D camera space.

our research problem is formulated to find the motion command m to the motion

chair from the object motion pcam and dcam and the object size l. Note that the

DoF must be reduced during the transformation.

Lee et al. [10] approach this problem by projecting pcam to the image plane

(so to the screen) and then converting the two horizontal and vertical positions

to the roll and pitch motion commands. This simplicity may lead to insufficient

transmission of the original motion information, e.g. if the translation or rotation

of the object in the z-axis in Figure 3.1 is meaningful. While watching many

4D films, we indeed observed that both translation and rotation of objects are

expressed as motion effects. We also noticed that the amplitudes of motion effects

for translation and rotation depend on the object size. Therefore, we aimed to

design an algorithm creating the motion effects that simultaneously express the

translation and rotation of an object in the motion platform’s limited workspace

and DoFs while seamlessly modulating the motion effect amplitude based on the

object size.

As the object translates, its center position pcam moves, but it does not

respond to a rotation. So motion effects for the center position represent only the

object translation. As the object rotates, its frontal direction dcam changes, but it
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does not respond to a translation. So motion effects for the frontal direction reflect

only the rotation. Hence, both pcam and dcam must be included in determining

the 3-DoF motion command m to express the 6-DoF object motion.

Based on these observations, we formulate a simple equation:

m = wT (l)(p
cam − pcam

0 ) + wR(l)(d
cam − dcam

0 ), (3.1)

where wT and wR are the scale factors transforming the translation and rotation

of the object to the motion command, and pcam
0 and dcam

0 are the initial center

position and frontal direction of the object. The initial values are for the motion

command to begin at the neutral position of the motion chair. Here, the x, y,

and z components of the object center position in the camera frame are mapped

to the roll, heave, and pitch motion commands, respectively. Likewise, the x, y,

and z components of the object frontal direction in the camera frame are mapped

to the roll, heave, and pitch commands, respectively.

If we define

qcam = pcam + (wR(l)/wT (l))d
cam, (3.2)

qcam stands for the point that is shifted from the object center by wR(l)/wT (l) in

the frontal direction (Figure 3.1). qcam reflects both the object translation pcam

and rotation dcam. We refer to qcam as the motion proxy for the object. Then

(3.1) can be simplified to

m = wT (l)(q
cam − qcam

0 ). (3.3)

Our synthesis algorithm centers around the motion proxy qcam while considering

the object size l to decide the scale factors wR and wT .

In this chapter, we assume that the center position pcam, the frontal direction

dcam, and the object size l are given, and then focus on motion effect synthesis

using them. This information is readily available in computer-generated scenes,
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such as animation films and VR games. For regular 4D films, the information can

be extracted from the image sequence using recent computer vision techniques,

such as motion estimation [71], depth estimation [72], and object detection [73].

We leave an integration of such automatic feature extraction as future work and

focus on motion generation.

3.2 Optimal Motion Scale Rules

To compute the motion proxy qcam by (3.2) and the motion command m

by (3.3), we need to determine the values of wT (l) and wR(l), the two scaling

factors from the object translation and rotation to the 3-DoF chair motion. We

expected that their best values would depend on the object size l and performed

a user experiment. Details are described in this section.

3.2.1 Methods

Participants

Twelve volunteers (seven males and five females; 19-31 years old with an

average age of 24.7) with normal sensory abilities participated in the experiment.

The experiment took about 120 min. The participants were paid approximately

USD 20 after the experiment.

Devices

The motion chair (4DX, CJ 4DPLEX; Figure 1.1) used in the experiment

had three DoFs for roll (± 4◦), pitch (± 7◦), and heave (± 4 cm). The chair is

for four people, and the participant sat in the second seat from left during the

experiment (and in all the other experiments). 2D images were projected onto a

94-inch screen using an polarized projector (EB-W16SK, Epson Corp.).
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(a) Top-down camera view

(b) Other camera views

Figure 3.2: Three video clips used in user experiments.

Videos and Motion Effects

We made 30 video clips in which objects of varying sizes (the subtended

visual angles 1.91◦, 3.62◦, 5.52◦, 7.41◦, and 9.28◦) moved (translated or rotated)

in each of the three scenes (Jet, Bird, and Man; Figure 3.2a), using Unity3D.

All the objects were initially at the center of the video, and all the cameras

were stationary in a top-down view. To avoid the object size changing during

playback, we used an orthographic projection camera model that did not distort

the object size depending on the position and also constrained the object motion

in the depth direction. Each video clip was 10-s long.

In object-translating clips, the objects reciprocated from right to left and

then to right. The object center position pcam was given as:

pcam(t) = (sin(0.8πt), 0, 0)T , (3.4)

which has a fundamental period of 2.5 s. The orthographic projection was set to

make the objects’ displacement on the screen 32.9◦ in visual angle, which covered
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(a) Motion effects for object-translating clips

(b) Motion effects for object-rotating clips

Figure 3.3: Motion effects used in the motion scaling experiment.

most of the screen horizontally.

In object-rotating clips, the objects initially faced the top of the screen and

rotated only around the z-axis, following the angle:

θ(t) = π (cos(0.4πt)− 0.5) , (3.5)

which has a fundamental period of 5 s. The object alternately rotated clockwise

and counterclockwise in one period. The frontal direction vector dcam of the

objects is given by:

dcam(t) = (cos(θ(t)), sin(θ(t)), 0)T . (3.6)

Procedure

The experiment comprised two sessions. In Session 1, we estimated the

relationship between the physical amplitudes of motion effects and the perceived

magnitudes. The motion effects for the object-translating clips, mT (t), were
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generated by scaling the object center position, and those for the object-rotating

clips, mR(t), were by scaling the frontal direction (Figure 3.3):

mT (t) = Apcam(t) = (A sin(0.8πt), 0, 0)T ,

mR(t) = Adcam(t) = (A cos(θ(t)), A sin(θ(t)), 0)T ,

(3.7)

where A is one of 0.76◦, 1.52◦, 2.28◦, 3.04◦, and 3.80◦.

Only the motion stimuli were provided to participants without visual stimuli

in Session 1. The procedure was designed using the magnitude estimation method

with free modulus [74]. Session 1 had two blocks of 20 trials (5 amplitudes and

4 repetitions). Each block was for one of the two motion effect sets for object

translation and rotation. In each trial, participants first experienced the refer-

ence motion effect of the median amplitude (A = 2.28◦) and then the comparison

motion effect. Afterward, they gave a positive number that best represented the

perceived magnitude of the comparison effect with respect to the reference effect.

They could freely choose a number (modulus) representing the perceived magni-

tude of the reference effect and were asked to answer the perceived magnitude

of the comparison effect by scaling it to the modulus. The order of the motion

amplitudes was randomized per participant. After Session 1, participants were

expected to become familiar with the motion effects of various amplitudes.

Session 2 consisted of three blocks, one for each visual scene, for each of

object translation and rotation. Each block had 20 trials (5 object sizes and 4

repetitions). In each trial, participants watched an object-translating or -rotating

clip of size l played together with the corresponding reference motion effect of the

median amplitude. The reference motion effect did not depend on the object’s

visual size. Participants responded with the perceived magnitude of a motion

effect that would best match the visually-perceived object motion while using the

perceived magnitude of the reference motion effect as the modulus of rating. This

cross-modal matching equates the perceived magnitude in one sensory modality
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to that in another modality [75], and the relationships between two such variables

follow the power law [76]. Participants were informed that the reference motion

effects were the same as those of Session 1. The order of the blocks was balanced

across participants. The order of the object sizes was randomized per participant.

In both sessions, half of the participants first rated for object translation,

while the other participants first rated for rotation. We gave participants a 5-

min break after half of Session 1, a 10-min break after Session 1, and a 5-min

break after half of Session 2. A 1-min break was also given between the blocks

of Session 2. Participants were presented with white noise sound through noise-

canceling headphones to block auditory cues from the motion chair. The rating

data were independently standardized using the mean deviation standardization

[77] to reduce the individual deviations.

3.2.2 Results and Discussion

From the experimental data collected in Session 1, we obtained psychophysi-

cal magnitude functions that relate the physical amplitude to the perceived mag-

nitude of motion effects. The data were fit to Stevens’ power law [78], one of

the most established empirical laws in cognitive psychology, given by ψ = kϕα.

Here ψ is the perceived magnitude, ϕ is the stimulus intensity, α is the power

exponent that depends on the sensory modality and the stimulus condition, and

k is an arbitrary constant.

Figure 3.4a shows the two psychophysical magnitude functions for motion

effects for object translation and rotation. The equations are:

ψT = 3.8985A1.2039 (R2 = 0.9737),

ψR = 5.6332A1.0372 (R2 = 0.9978), (3.8)

where A is the motion amplitude in (3.7). All the coefficients of determination

(R2) were higher than 0.97, indicating a very good fit.
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(a)

(b)

(c)

Figure 3.4: User study results for motion scaling. (a) Psychophysical magnitude

functions of motion effects. (b) Perceived magnitudes of a motion effect expected

for a moving object with different visual sizes. (c) Physical amplitudes of motion

effects matching a moving object of different sizes.
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Figure 3.4b summarizes the data of Session 2, which shows the average de-

sired perceived magnitudes of motion effect for each visual object size in the

translating and rotating clips. Then we combine the information in Figure 3.4a

and 3.4b as follows: (1) select an object size (e.g., point A in Figure 3.4b), (2)

find the corresponding perceived magnitude of a motion effect that would best

match the object size using Figure 3.4b (point B), and (3) compute the physical

amplitude of a motion effect resulting in the desired perceived magnitude using

the inverse of the corresponding magnitude function in Figure 3.4a (point C).

Applying this procedure to all the data in the plots of Figure 3.4b shows the

relationship between the physical amplitude of motion effect and the object size.

The converted data indicated good fit by both linear regression and power law.

For simplicity, we applied linear regression (see dotted lines in Figure 3.4c), such

that

wT (l) = 0.0211 s+ 2.3730 (R2 = 0.8578),

wR(l) = 0.2133 s+ 0.7474 (R2 = 0.9973), (3.9)

where wT and wR are the scale factors in (3.1)—note that they have the same role

with A in (3.7). For translation, the slope in wT (l) is very small, and it makes

wT (l) nearly constant regardless of the object size l (but the slope was significantly

different from 0; p = 0.02). For rotation, the slope in wR(l) is approximately 10

times greater than the slope in wT (l), with a very high R2(> 0.99).

Using (3.1) with the motion scaling rules in (3.9) allows us to determine

the position-based motion command that results in the motion effect that would

have the perceived magnitude best agreeing to the visually-perceived object size.

The specific weight values in (3.9) may depend on the selection of motion and

visual stimuli, but their general behaviors are likely to extend to a wider class of

motion and visual stimuli for the purpose of object motion effect synthesis. This

can be better understood by examining the behavior of the motion proxy qcam
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in (3.2) in light of the motion scaling rules found. Since wT (l) for translation

is nearly constant, qcam is a linear function of wR(l) for rotation. Since wR(l)

increases as l increases, the motion proxy qcam is shifted from the center position

pcam in the frontal direction dcam as the object becomes larger to the viewers’

eyes. Therefore, motion effect generation using the motion proxy conforms to the

implication in (3.9) that the perceptual role of rotation becomes more important

as the object size increases.

3.3 Motion Cueing Algorithms

Actual motion commands are constrained by the limited performance of

the motion chair. The simple rule in (3.1) is insufficient, and we need refined

MCAs that satisfy the chair’s constraints while preserving the key idea in motion

proxy. To this end, we adopt the two most-widely used approaches of washout

filter and MPC. Because we express the 6-DoF object motion by the translation

of motion proxy, we take only the processing pipeline for translation from the

two approaches. We designed three algorithms using each approach while also

considering visual and vestibular perception. The input to the MCAs, the velocity

v and the acceleration a, is obtained by scaling the motion proxy qcam using (3.3)

and differentiating it once and twice, respectively. This v and a, expressed in the

chair coordinate frame, are transformed to motion commands m by the MCAs.

We then conducted a user study to compare the performance of the six MCAs.

Before applying MCAs, we scale the motion proxy qcam using (3.3) to trans-

form it to the motion commands m. We differentiate this scale-adjusted qcam

and then smooth the result using local regression [79] to obtain the velocity v

and the acceleration a. This v and a, expressed in the chair coordinate frame,

are used as input to MCAs.

– 22 –



(a) Velocity input WV.

(b) Acceleration input WA.

(c) Acceleration input with tilt coordination WAT.

Figure 3.5: Three washout filters.

3.3.1 Washout Filter

The washout filter is essentially a set of high-pass filters that remove the low-

frequency energy pushing the motion chair to its workspace limit. We designed

three washout filters given below.

Washout Filter with Velocity Input (WV)

WV (Figure 3.5a) uses the motion velocity v as input. This is the same one

used in Lee et al.[10], motivated by the fact that the object velocity is detected

from visual information (i.e., optical flow). v is fed to a first-order Butterworth

high-pass filter with a cutoff frequency of 1.0 Hz. The motion command is ob-

tained by integrating the filtered velocities. It is then limited not to exceed the

motion range.

Washout Filter with Acceleration Input (WA)

Here the input is the motion acceleration a, respecting that the vestibular

organs (otoliths) detect only acceleration. The input goes to a second-order

Butterworth high-pass filter with a cutoff frequency of 2.5 Hz and then to a
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double integrator (Figure 3.5b). WA and WV are similar, but different in that

WA regards the initial velocity as 0.

Washout Filter with Acceleration Input and Tilt Coordination (WAT)

WAT is the combination of WA and tilt coordination (Figure 3.5c). Tilt

coordination is a technique for simulating sustained acceleration, such as gravity

and centrifugal force, by tilting a motion chair for a relatively long time. For

example, the tilting angle of θ induces the acceleration of gθ, where g is the

gravitational constant. This technique is generally implemented as a low-pass

filter, and the filtered output is rate-limited to prevent the sensation of rotation.

In WAT, the acceleration divided by g is fed to a first-order Butterworth low-pass

filter with a cutoff frequency of 0.1 Hz, and the maximum rate was set to 1◦/s.

This filtered acceleration is added to the output of WA.

3.3.2 Model Predictive Control

MPC is a control methodology that optimizes the current control input based

on a process model and a future trajectory while considering constraints. The op-

timization is governed by an objective function quantifying the difference between

the reference output and the output produced by the process model. Constrain-

ing the optimization by the maximum displacements of the motion chair, we

designed three MPC algorithms as follows.

MPC with Velocity Input (MV)

The input is the motion velocity, similar to WV. The process model is the

unity transfer function to express the perceived velocity as it is. Then MV solves
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the following optimization problem: Find m such that

m = argmin
m

∥v − vm∥2

subject to m(t) =

∫ t

0
vm(t′)dt′, |m(t)| ≤ mmax,

(3.10)

where vm is the velocity of the motion command, and mmax is the maximum

displacement of the motion chair.

MPC with Perceived Acceleration Input (MA)

MA uses the motion acceleration as input. A vestibular perception model is

included to optimize the motion commands based on the perceived acceleration.

The otolith transfer function from the physical acceleration a to the perceived

acceleration â is given by [63]:

â

a
=

K(τns+ 1)

(τS s+ 1)(τL s+ 1)
, (3.11)

where K, τn, τS , and τL are the model coefficients of the otoliths (0.4, 13.2, 0.66,

and 5.33, respectively), and s is a Laplacian variable. This transfer function has

good responsiveness in 0.01–0.5 Hz and effectively works as a band-pass filter.

Then MA solves the following optimization problem:

m = argmin
m

∥â− âm∥2 (3.12)

subject to ẋ(t) = Ax(t) +Ba(t), â(t) = Cx(t),

ẋm(t) = Axm(t) +Bam(t), âm(t) = Cxm(t),

m(t) =

∫ t

0

∫ t′

0
am(t′′)dt′′dt′, |m(t)| ≤ mmax,

where am is the acceleration of the motion command, a and am represent one of

the three components of a and am, respectively, and x is the state vector. A,B,

and C are the state-space model realizing the transfer function (3.11) for each
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component, given by

A =

− 1
τL

− 1
τS

1

− 1
τLτS

0

 , B =

Kτn
τLτS

K
τLτS

 , C =

(
1 0

)
. (3.13)

Note that the lines 2–3 in (3.12) and the state space model in (3.13) are applied

to each of the 1D component in a and am.

MPC with Perceived Acceleration Input and Tilt Coordination (MAT)

MAT also considers the acceleration caused by tilting the simulator. Its

formulation is very similar to the optimization problem of MA in (3.12). The only

difference is that the term Bam(t) in the fourth line is replaced by B(am(t) +

m(t)g/R), where g is the gravitational constant, and R is the distance between

the chair’s center of rotation and the viewer’s vestibular organ.

3.4 Evaluation on Motion Cueing Algorithms

Washout filters and MPCs have been widely used for flight or vehicle sim-

ulators, where the vestibular stimulation accurate to the real cases is essential.

For 4D applications, what matters more is enhancing the audiences’ experiences,

and it was unclear which of the six MCAs would be best suited for object motion

effects. Hence, we performed a user study to compare the benefits of the six

MCAs.

3.4.1 Methods

Participants

Eighteen participants (11 males and 7 females; 19–29 years old with an aver-

age age of 25.2) with normal sensory abilities were recruited for this experiment.

The experiment took approximately 50 min, and the participants were paid USD

10 upon completion.

– 26 –



Videos and Motion Effects

We made three 20-s video clips of moving objects, one for each of the three

scenes (Jet, Bird, and Man in Figure 3.2a), using Unity3D. The camera orienta-

tions were fixed to the top-down view. The 2D horizontal positions of the objects

and the cameras were made using Perlin noise with different amplitudes and fre-

quencies. Only for the Man clip, we manually controlled the man’s position using

keyboard input to make straight motions with abrupt direction changes. All the

objects were constrained within the camera frame for 20 s.

Each video clip was played with the motion effects generated by each of the

six MCAs. The velocities and accelerations of the object in the world coordinate

frame are used as input to MCAs, as the washout filters and MPC were originally

devised to track the movement in the world frame. An evaluation of our algorithm

with motion proxy input will be described in Section 3.7.

Procedure

The experiment comprised three sessions, one for each video clip. In each

trial, we presented one of the five motion effect sets with a video clip to partic-

ipants twice. Participants could experience them more times when they wanted

to. After each trial, they answered a questionnaire that included the following

four questions:

Q1. Harmony: Did the motion effects match the object motion?

Q2. Synchronicity: Were the motion effects and the object motion synchro-

nized in time?

Q3. Fatigue: Did the motion effects make you tired?

Q4. Preference: Did you like the motion effects
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All the questions were answered with a number on a continuous scale of 1–7.

In the data analysis, we inverted the scale of Q3.

The order of the video clips was balanced across participants. In each session,

the order of the motion effect sets was randomized per participant. Participants

took a 5-min rest after each session to prevent motion sickness and fatigue. During

the experiment, we presented participants with white noise sound through noise-

canceling headphones to block any auditory cues.

3.4.2 Results

Experimental results are shown in Figure 3.6. The motion effect set was

statistically significant for all the subjective metrics and the video clips (one-way

repeated-measure ANOVA; p < 0.001). The results of the post-hoc SNK tests

are also indicated in Figure 3.6.

The results for two video clips, Jet and Bird, whose motions were generated

by Perlin noise, showed similar tendencies. Here MV showed the best scores in

all the metrics, except Q3 (Fatigue) for Bird. This is presumably because object

motion perception depends only on vision, unlike self-motion perception that

relies on both visual and vestibular sensations. This is supported by the poor

scores of MA and MAT, which use motion acceleration as input. Also, MV may

benefit from the fact that it preserves the most spectrum in the object motion

including the low-frequency components. For this reason, MV could have had

the worst scores in almost all the metrics for Man. The object in Man moved

to one side for about 6 s, but MV cannot filter out such motion unlike other

MCAs. Thus, the motion command easily reached the maximum range and did

not respond to the object motion further. In contrast, the three washout filters

explicitly filter out the sustained motion, and the perception model used in MA

and MAT had the role of a band-pass filter.
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The three washout filters had scores comparable to or higher than MA and

MAT in all the metrics except Q3 for all the video clips. They did not show

significant differences between them.

The inclusion of tilt-coordination did not lead to significant differences be-

tween the two washout filter methods (WA vs. WAT) or the two MPC methods

(MA vs. MAT). It seems that the tilt coordination technique was not effective

because of the small workspace of the motion chair used for 4D films.

In summary, MV should be the best candidate for automatic synthesis of

object motion effects for general video clips. Based on these results, we adopt

MV to synthesize motion effects. However, it sometimes does not respond well to

sustained motions. In this case, other methods, such as WV and WA, should be

considered.
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(a) Jet

(b) Bird

(c) Man

Figure 3.6: User study results for six motion cueing algorithms. Error bars rep-

resent standard errors. Motion effects sets marked with the same letter indicate

that they did not show statistically significant differences by the SNK tests.
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3.5 Estimating Visually Perceived Velocity

When watching 4D films, the audience perceives an object motion through

vision. As the visually-perceived motion does not perfectly match the actual

object motion, we note a possibility that creating motion effects based on the

actual motion leads to discrepancies between the visually-perceived motion and

the motion effects. A remedy can be computing the motion vector that viewers

visually perceive for motion proxy based on visual perception. Particularly, we

formulate the motion vector by referring to Duncker’s two modes of object motion

perception [80] and motion field equations [81].

Object motion can be perceived in two ways: subject-relative and object-

relative perception [80]. In subject-relative perception, the object motion is per-

ceived in the viewer’s local coordinate frame, whereas the relative displacement

between two objects is perceived in object-relative perception. Humans adopt the

perception mode depending on numerous factors, including visual characteristics

and their attention. Since the quantitative knowledge about the factor effects

significantly lacks [82], we designed our algorithm to support both modes so that

designers can select a mode that generates more plausible effects.

3.5.1 Subject-Relative Perception Mode

People can perceive the horizontal and vertical velocity of an object as optic

flow and the depth velocity by integrating monocular and binocular cues [83]. So

we compute the vertical and horizontal components using motion field equations

for the optical flow and the depth component by scaling the actual depth velocity.

Assume that the camera with a focal length f moves with the translational

velocity tcam = (tx, ty, tz)
T and the rotational velocity ωcam = (ωx, ωy, ωz)

T

(Figure 3.7a). The motion proxy qcam = (qcamx , qcamy , qcamz )T projects onto an

image point qimg = (qimg
x , qimg

y , f)T , and its 3D relative velocity to the camera
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vcam = (vcamx , vcamy , vcamz )T is observed in the image as the horizontal and vertical

velocity vimg = (vimg
x , vimg

y )T . Then the following relationships (3.14)-(3.16) hold

[81]:

vcam = −tcam − ωcam × qcam, qimg =
f

qcamz

qcam, and vimg =
d

dt
qimg, (3.14)

which gives:

vimg =
1

f
Gωcam +

1

qcamz

Htcam, (3.15)

where

G =

 qimg
x qimg

y −(qimg
x )2 − f2 fqimg

y

(qimg
y )2 + f2 −qimg

x qimg
y −fqimg

x

 and

H =

−f 0 qimg
x

0 −f qimg
y

 .

(3.16)

Denoting the subject-relative velocity vector of the object by vsub = (vsubx ,

vsuby , vsubz )T , we can obtain the depth component vz by scaling down vcamz based

on the distances from the camera to the image plane and to the object (Figure

3.7b) by

vsubz = f
vcamz

qcamz

(3.17)

Since vsubx = vimg
x and vsuby = vimg

y ,

vsub =
1

f
G′ωcam +

1

qcamz

H′tcam, (3.18)

where

G′ =

 G

−qimg
y qimg

x 0

 and H′ =

 H

0 0 −f

 . (3.19)

3.5.2 Object-Relative Perception Mode

In this mode, we calculate the motion vector vobj representing the relative

velocity between the object and its surroundings. Here, we refer to a statement
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(a) (b)

Figure 3.7: Motion vectors to determine the subject-relative velocity. (a) Hori-

zontal and vertical components. (b) Depth component.

by Duncker [80]: when the relative displacement between an object and its back-

ground is given, the motion will be assigned to the object and immobility to

the surroundings. Hence, we assign the object-relative velocity to the difference

between the subject-relative velocity of the background, vsub
bg , and the subject-

relative velocity of the object, vsub, such that

vobj = vsub − vsub
bg = H′

(
1

qcamz

tcam − 1

Zbg
tcambg

)
, (3.20)

where Zbg is the depth of the background point projecting to qimg, and tcambg is

the camera velocity relative to the background point.

This equation (3.20) has some implications. First, the motion vector of this

mode is not affected by camera rotation. Second, due to the camera motion, the

object motion can be canceled out or even captured as moving in the opposite

direction.

3.6 Synthesis of Object Motion Effects

We integrate the key ideas and derivations, as well as the major results of the

formative user studies, described so far into a camera space synthesis algorithm of
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Figure 3.8: Flow of our synthesis algorithm for object motion effects.

object motion effects, as depicted in Figure 3.8. Given a moving object of interest,

the input of our algorithm consists of its center position, frontal direction, and

size. The output is a motion command to a 3-DoF motion chair. In the first step,

our algorithm computes the motion proxy qcam from the center position pcam,

frontal direction dcam, and size l by (3.2). The two scale factors for translation

and rotation, wT (l) and wR(l), are determined by (3.9) based on the experimental

results of Section 3.2. In the second step, our algorithm estimates the visual

velocity v of the motion proxy qcam in the subject-relative mode using (3.18)

or in the object-relative mode using (3.20), rather than the actual velocity. 4D

designers can select a mode that leads to more plausible motion effects. Finally,

our algorithm transforms the visual velocity v to the motion command m by

scaling and feeding v (or its acceleration a) to an MCA.

3.7 Performance Evaluation

Finally, we conducted a summative user study to compare the user experi-

ences elicited by the object motion effects synthesized by our algorithms including

the two visual perception modes and the conventional algorithm [9, 10].
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3.7.1 Methods

Participants

Twenty-four people (13 males and 11 females; 20–30 years old with an av-

erage age of 22.7) with normal sensory abilities participated in this experiment.

The experiment took about 75 min, and the participants were paid USD 13 upon

completion.

Videos and Motion Effects

Using Unity3D, we made three 20-s video clips each showing the three moving

objects of Jet, Bird, and Man in Figure 3.2b. The 6-DoF camera motions and the

object positions were generated by Perlin noises with different amplitudes and

frequencies. In Man, we added natural curves in the terrain to make horizontal

object motions, and the man always stood upright moving on the terrain. All the

objects were translated in 3D and constrained within the camera frame for 20 s.

The parameters of Perlin noise used in this experiment were different from those

used in Section 3.4. To diversify the scenes, we varied the initial camera pose for

each scene (Jet : top-down view, Bird : 45◦ high angle view, and Man: side view).

We also added a random stopping condition to the object and camera motions

for participants to clearly evaluate the synchronicity between visual motion and

motion effect.

Five sets of motion effects were generated for this experiment.

• Object-relative mode (OR): Motion effects synthesized by our algorithm

(perception mode: object-relative, MCA: MV).

• Subject-relative mode (SR): Motion effects synthesized by our algorithm

(perception mode: subject-relative, MCA: MV).

• Object and camera classes (OC): Addition of the two motion effects for
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object and camera classes generated by [9, 10].

• Object class (O): Object class motion effects synthesized by [10].

• Random (R): Randomly generated motion effects by Perlin noise.

Procedure

For familiarization, we first conducted a training session in which partici-

pants experienced all the motion effect sets once with a video clip of each main

session. The main experiment comprised three sessions, one for each video clip.

In each trial, one of the five motion effect sets was presented twice with a video

clip. Participants could experience them more times when they wanted to. To

eliminate the influence of retinal eccentricity (motion sensitivity is better in the

peripheral retina than in the fovea [84]), we instructed participants to keep their

eyes on the object while watching the video clips.

At the end of each trial, participants answered a questionnaire that included

the following eight questions:

Q1. Harmony, hit: Did the motion effects follow the expected motion well?

Q2. Harmony, false alarm: Were the motion effects played even though you

did not expect any motion?

Q3. Synchronicity: Were the motion effects and the object motion well syn-

chronized in time?

Q4. Comfort: Did the motion effects feel comfortable?

Q5. Distraction: Were the motion effects distracting from focusing on the ob-

ject motion?

Q6. Enjoyment: Did you enjoy watching the video with the motion effects?
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Q7. Preference: Did you like the motion effects?

Q8. Free Comment: Please leave a comment regarding the motion effects.

Participants rated Q1–Q7 on a continuous scale of 1–7 by selecting a position on a

horizontal line. The two ends of the horizontal lines were labeled with symmetric

positive and negative answers, for example, “Strongly disagree” at the left end

and “Strongly agree” at the right end. Participants freely responded to Q8 using

a keyboard. In the data analysis, we inverted the scales of Q2 and Q5.

The order of the video clips was balanced across participants, and the order

of the motion effect sets was randomized per participant. Participants took a 30-s

rest after each trial and a 3-min rest after each session to prevent motion sickness

and fatigue. During the experiment, we presented participants with white noise

sound through noise-canceling headphones to block any auditory cues.

3.7.2 Results

The experimental results are shown in Figure 3.9. We performed a two-

way ANOVA on each question using the motion effects set and the video clip

as the independent variables. The motion effects set was statistically significant

(p < 0.0001) for all the subjective metrics and all the video clips. The video

clip was also significant for all the metrics except for Q3 (Synchronicity) and Q6

(Enjoyment). We observed significant interactions between the motion effects

set and video clip in all the metrics. We then used the SNK test for post-hoc

multiple comparisons (also shown in Figure 3.9).

– 37 –



(a) Average

(b) Jet

(c) Bird

(d) Man

Figure 3.9: User experiment results for five synthesis algorithms. Error bars rep-

resent standard errors. Motion effects sets marked with the same letter indicate

that they did not show statistically significant differences by the SNK tests.
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On average (Figure 3.9a), the OR (object-relative mode) motion effects

showed the best scores in all the metrics, followed by the SR (subject-relative

mode) motion effects. These two new object motion effect synthesis methods

led to significantly higher scores in all the metrics except for Q2 (Harmony, false

alarm) and Q3 (Synchronicity) than the two previous methods of O (object class)

and OC (object and camera class) and the random effects R.

The effect of visual perception mode depended on the video clip, suggesting

that the participants could have relied on different visual perception modes for the

three video clips. OR was rated clearly higher than SR for most of the metrics in

Man (Figure 3.9d). Also, OR was more favored than SR in Bird (Figure 3.9c). We

speculate that this is because object motion is predominantly perceived through

object-relative perception [85]. In contrast, SR was slightly more favored in Jet

(Figure 3.9b). Jet ’s background, a vast and textureless lake, may have provided

weak cues for estimating the object motion, forcing the participants to depend

more on subject-relative perception.

Also by analyzing the comments from the participants, we summarize the

main reasons for the improved performance of OR and SR. First, OR and SR

consider both the translation and rotation of object motion, while O and OC

from [9, 10] consider only the translation. Seven participants commented on this,

e.g., “It was good because dynamic and fine motions (flipping, direction changes,

etc.) were well expressed.” (Jet, OR) and “It was unsatisfactory because it didn’t

express the fine motions such as flipping.” (Jet, OC). Second, OR and SR map

the object depth motion to the heave motion of a motion platform. In O and

OC, only horizontal and vertical motions are considered. Although the OC effects

include some depth motions, they represent the camera motion rather than the

object motion. Four participants reported on this, e.g., “The depth motion was

felt clearly.” (Jet, SR).
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In conclusion, automatic synthesis of object motion effects in object-relative

mode and subject-relative mode showed better perceptual performance than the

others. 4D effect designers are likely to create more convincing effects by lever-

aging the two methods.

3.8 Conclusion

In this chapter, we have presented an automatic synthesis algorithm that

generates object motion effects by abstracting the 6 DoF motion of a rigid body

and utilizing human vestibular and visual perception models. This algorithm

is designed to take three input variables: the center position, frontal direction,

and size of an object. At each step, we performed a user experiment to find

the optimal design parameters for implementation, and the results of those steps

are integrated into a single algorithm. The final summative user experiment

indicated that our algorithm could produce perceptually better motion effects

than the current state of the art.

The contributions of this work can be summarized as follows: (1) We propose

a novel concept, motion proxy, which enables a simultaneous expression of the

translation and rotation of a 6-DoF moving object with a 3-DoF motion chair.

Also, the computation rule of motion proxy is perceptually optimized by a per-

ceptual experiment; (2) The algorithm produces compelling 4D experiences by

considering human perception while fully utilizing a motion platform’s workspace

and DoF; and (3) We formulate the visually perceived velocity for an object (or

the motion proxy) to create motion effects synchronized with what humans visu-

ally perceive.

This algorithm has the potential for extension to 2-DoF and 6-DoF motion

chairs. For a 2-DoF chair, we can simply use the 2D components of the motion

proxy. For a 6-DoF chair, we can directly map the 6-DoF object motion to the
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6-DoF motion command. Here the scale of the rotation commands may depend

on the object size.

Current limitations include: (1) Our algorithm does not automatically ex-

tract the input parameters from image sequences. Recent computer vision tech-

nologies [71, 72, 73] can be used for that purpose; and (2) Our algorithm cannot

produce motion effects representing the motion of multiple objects or the local

motion of part of an object. Future work will concentrate on addressing these

limitations.
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IV. Generating Motion Effects for Multiple

Articulated Bodies

The algorithm in Chapter III could effectively generate the motion effects

of a single rigid body moving in the 3D camera space. However, the algorithm

did not capture the local movement of object parts as well as the movements of

multiple objects. This chapter presents an automatic algorithm for synthesizing

the object-based motion effects that express the movements of multiple articu-

lated bodies1 inclusively. Articulated bodies require a very high degree of freedom

(DoF) for motion description. To express complex movements of multiple articu-

lated bodies with a motion effect, the concept of motion proxy is extended. The

motion proxy is determined by linearly combining the velocities based on the size

and speed of object parts. Among the several methods of calculating a motion

proxy, the best combination was investigated by user studies.

4.1 Problem Formulation

In this section, we formulate a problem for generating motion effects for

moving articulated bodies. We first briefly summarize the algorithm pipeline

described in Chapter III. Then, based on it, we extend the motion proxy concept

to a single articulated body and multiple articulated bodies.

In Chapter III, to compress the 6-DoF object motion to a single movement,

we defined the motion proxy for the object as

q = p+ cld, (4.1)

1Here, “articulated” means made of sections connected by joints. The human body is a good

example of an articulated body; see Figure 4.1.
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(a) Rigid body (b) Single articulated body (c) Multiple articulated bodies

Figure 4.1: Examples of a moving object (or objects) in the 3D camera space. A

red point or arrow indicates the position p or velocity v of an object (or a part).

A blue arrow represents the direction vector d or its derivative ḋ. l is the frontal

length of an object measured on the screen.

where q = (qx, qy, qz) is the motion proxy, p = (px, py, pz) and d = (dx, dy, dz)

are the position and direction vectors of a rigid body, respectively, in the 3D

camera space, l is the object’s frontal length projected onto the screen, and c is

a constant (Figure 4.1a). The latter term, cld, is to reflect more rotation as the

object size increases. (4.1) can also be expressed by its derivatives in the viewer’s

perspective as

q̇ = v + clḋ, (4.2)

where q̇ is the velocity of the motion proxy, and v and ḋ are the linear velocity

and the derivative of the direction vector of the object in the viewer’s perspective.

To reproduce the movement of the motion proxy within the limited workspace of

a motion platform, such as the maximum displacement and velocity, the velocity

(or its acceleration) of the motion proxy is fed to a motion cueing algorithm

(MCA) to generate a motion command as

m = MCA(q̇), (4.3)

where m = (roll, heave, pitch) is the 3-DoF motion command to a motion chair.

Unlike a rigid body, an articulated body consists of many joints and links,

leading to a motion of a very high DoF. While watching many 4D films, we

discovered two key patterns in manually-crafted motion effects for articulated
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Figure 4.2: Overall flow of our motion effect generation algorithm for multiple

articulated bodies. The velocity of an object motion proxy, q̇obj , representing

the object’s movement, is calculated from the velocities and weights of the ob-

ject’s links. Then, the velocity of a scene motion proxy, q̇scn, representing the

movements of all the objects in the scene, is calculated from the weights and q̇obj

of the objects. The velocity of the scene motion proxy, q̇scn, is converted to a

motion command by a motion cueing algorithm (MCA).

bodies. First, the local movements of an object or its links, both translation and

rotation, are expressed in a motion effect. Second, when multiple objects appear

simultaneously in the scene, their movements are combined somehow into a mo-

tion effect. Therefore, we designed an algorithm for generating the motion effects

that simultaneously express the translations and rotations of multiple articulated

bodies while respecting the motion platform’s limited DoFs and performance.

To this end, we extend the original formulation of the motion proxy as fol-

lows. For an articulated object i in the scene (Figure 4.1b), we determine its

motion proxy by

q̇obj
i =

Mi∑
j=1

wlink
i,j vi,j + cliḋi, (4.4)

where q̇obj is the velocity of the motion proxy, Mi is the number of the links,

wlink
i,j is the normalized weight of link j, vi,j is the visual velocity of link j, c
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Figure 4.3: Configuration of the human model used in this study. The human

model consists of a head, a torso, two upper arms, two forearms, two upper legs,

and two lower legs.

is a constant, li is the line length screen-projected from the 3D line connect-

ing the object’s center and outermost point in the direction di, and ḋi is the

derivative of the direction vector. Here, the term for the linear link velocities is

a weighted generalization of the linear velocity term in (4.2). Similarly, one can

use a weighted sum of the direction derivatives of all links for the term related to

rotational velocity. Instead, we include only ḋi, the direction vector of the root

link. In our tests, this simpler form leads to more plausible motion effects for

object rotation.

Figure 4.2 illustrates the process of computing the object motion proxy. As

the link weight wlink increases, the object motion proxy qobj reflects the motion

of the corresponding link more. In this study, we use a human model as an

articulated body and divide it into ten parts, as shown in Figure 4.3. When the

weights excluding the torso are all zero, the object motion proxy qobj represents

only the motion of the torso.

Next, we consider the case where multiple articulated objects simultaneously
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appear in the scene (Figure 4.1c). We define a scene motion proxy q̇scn as the

weighted sum of the object motion proxies q̇obj of all objects:

q̇scn =
N∑
i=1

wobj
i q̇obj

i , (4.5)

where q̇scn is the velocity of the scene motion proxy representing the movements

of all the objects in the scene, N is the number of the objects, and wobj represents

the normalized weight for each object; also see Figure 4.2. For example, if there

are two objects with object weights of 1 and 0, only one object’s motion is reflected

in the scene motion proxy. When the object weights are both 0.5, the motions of

the two objects are combined equally.

To determine the link and object weights, wlink and wobj , we use size and

speed as the main features. This allows us to reflect in the motion proxy the

motion of a link or an object more if it is larger or faster. These two features

belong to the key variables for estimating salient regions in image sequences [86,

87]. To compute the size of a link/object, two options can be considered: the

visual area projected onto the screen and the volume in the 3D camera space.

Our tests did not find significant differences in the resulting motion effects. We

use the visual area as it has an additional merit of emphasizing the movement of

a closer link/object from the camera. Similarly, we choose the magnitude of the

visual velocity on the screen as the speed feature of a link/object. Based on these

two features, we designed and tested various methods to set the link and object

weights. A few best candidates are presented in Section 4.2 and 4.4, respectively.

In this chapter, we directly extract the values of all variables in (4.4) and

(4.5) every frame using Unity3D. The visual area of each link is calculated as

the area of the region on the screen to which its mesh is projected. The visual

velocity of each link, vi,j = (vvisi,j,x, v
vis
i,j,y, v

vis
i,j,z), is computed as in Chapter III. The

vertical and horizontal components of the visual velocity are determined from the
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derivative of its position projected onto the screen as

vvisi,j,x =
∂

∂t

(
f
pi,j,x
pi,j,z

)
and vvisi,j,y =

∂

∂t

(
f
pi,j,y
pi,j,z

)
(4.6)

where t is time, pi,j(t) = (pi,j,x(t), pi,j,y(t), pi,j,z(t)) is the position vector of each

link in the camera space, and f is the focal length of the camera (f = 781.2 in

this study). The depth component is computed by scaling the depth velocity as

vvisi,j,z = f
vi,j,z
pi,j,z

(4.7)

where vi,j,z = ∂pi,j,z/∂t. We used the magnitude of this velocity, ∥vi,j∥, as the

feature for speed.

4.2 Single Articulated Body

In this section, we design several methods that set the link weights, wlink,

for a single articulated body to obtain the object motion proxy’s velocity, q̇obj ,

by (4.4). As described earlier, each link weight is determined based on the two

features of area and speed. We first define requirements for a valid link weighting

method and then present a few weighting policies satisfying the requirements.

4.2.1 Requirements on Link Weights

Valid link weighting methods need to meet the following two conditions:

First, faster or larger links are weighted higher. Second, visually identical links

are equally weighted. The first condition can be easily satisfied if link weights

monotonically increase with the size or speed.

The second condition requires more care. Suppose a situation where an ob-

ject includes two links that have the same visual area s and are moving at the

same velocity v. Then, we would expect that the two links contribute equally to

motion effects, and their weights must be the same. This observation can be for-

malized as follows. Let link(s,v) be a link with the visual area s and the velocity
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Figure 4.4: A case in which two groups of consecutive links should be equally

weighted.

v. Assume that an object has two groups of consecutive links, {link(s1,v1), · · · ,

link(sn1 ,vn1)} and {link(s′1,v′
1), · · · , link(s′n2

,v′
n2
)}, as depicted in Figure 4.4.

When the areas of the two groups are equivalent, i.e.,
∑n1

i=1 si =
∑n2

i=1 s
′
i and

all the links have the same velocity v, the two link groups have identical visual

effects. This gives a constraint that the two groups must have the same sums of

the link weights, such that

n1∑
i=1

wlink (link(si,v)) =

n2∑
i=1

wlink
(
link(s′i,v)

)
. (4.8)

Many seemingly reasonable weighting methods violate this condition. For

example, one can set a link weight to be directly proportional to the link velocity,

i.e., wlink(link(si,v)) = v, but it violates the second condition in (4.8) when

n1 ̸= n2; the sum of weights is n1v for one link group and n2v for the other

group.

4.2.2 Weighting Policies

We present three methods to compute the link weights while satisfying the

two requirements described in Section 4.2.1.
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Size

This policy gives each link a weight proportional to its size (visual area) as

wlink
i,j =

si,j∑Mi
k=1 si,k

, (4.9)

where si,j is the visual area of the link j of object i. This method allows the

motion proxy to reflect the movement of a larger link more. For example, more

intense motion effects result from kicks than punches because legs are larger than

arms.

Momentum

In this policy, the link weight is proportional to both its area and speed, i.e.,

its momentum, as

wlink
i,j =

si,j∥vi,j∥∑Mi
k=1 si,k∥vi,k∥

. (4.10)

It emphasizes the movement of a faster or larger link, so producing a more dy-

namic motion effect for fast link movements.

Single

Occasionally, expressing the movement of only one link may have a merit in

delivering a more focused motion effect. This is achieved by setting the weight

of the selected link to 1, while all the other links have zero weights.

Comparisons

Figure 4.5 shows an example illustrating the effects of the three weighting

policies. The animation shows that a character lowers its arms, and its left arm

(right to readers) moves in a longer distance than its right arm. The torso remains

to be almost stationary. For this animation, Size creates a weak motion effect

because the arm sizes (so their visual areas) are relatively small. Momentum

makes the greatest motion effect by responding to the quick movements of the
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Figure 4.5: An animation segment (taken from Video #1 in Table 4.1) and motion

commands generated by the three link weighting policies for object motion proxy.

In this animation, the character lowers its arms, and the left arm moves in a larger

distance than the right arm. In all images, thicker colors indicate later events in

time.

arms (albeit small). Single, set to capture only the torso’s movement, makes the

least motion effect.

4.2.3 Motion Cueing Algorithms

Integrating the velocity of the object motion proxy, calculated by (4.4), and

mapping it to a motion command may exceed the motion chair’s workspace.

To prevent this, we scale the object motion proxy qobj by the scale factor α to

transform the motion proxy from the viewer’s perspective space into the motion

chair space. Then, we feed the scaled motion proxy, αqobj , to an MPC algorithm

to convert it to a motion command m.

In this study, we adopt an MPC with velocity input, which showed the best

performance in Section 3.3. The MPC algorithm solves the following optimization
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problem: Find m such that

m = argmin
m

∥αq̇− ṁ∥2 + ϵ∥m∥2

subject to |m| ≤ mmax,

(4.11)

where m and ṁ are the motion command and its derivative, respectively, and

mmax is the maximum displacement of the motion chair. The scale factor α

depends on the specific settings of the camera space and the workspace of the

motion chair. We use α = 1.16×10−4; see Section 4.3.1 for the motion chair used

in our work. The other parameter ϵ controls how quickly the motion command

m converges to zero (the neutral position), and we use ϵ = 0.3.

4.3 Evaluation on a Single Articulated Body

We performed a user experiment on many scenes showing a single articulated

body in order to compare the benefits of the three link weighting methods.

4.3.1 Methods

Participants

Twenty-seven volunteers (10 females and 17 males; 18–38 years old with

an average age of 23.1) with normal sensory ability participated in this experi-

ment. The experiment took no more than 1 hour, and the participants were paid

approximately USD 13 after the experiment.

Devices

The motion chair (4DX, CJ 4DPLEX; Figure 1.1) used in the experiment

had three DoFs for roll (±4°), pitch (±7°), and heave (±4 cm). The chair is for

four people, and the participant sat in the second seat from the left during the

experiment. 2D images were projected onto a 94-inch screen using a polarized

projector (EB-W16SK, Epson Corp.). We blocked auditory cues by presenting
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Table 4.1: Animations used in the user experiment on a single articulated body.

All the animations are from CMU mocap database [1].

# Category Animation ID Description Duration (s)

1

Dance

05 02 Expressive arms, pirouette 9.3

2 05 04
Sideways arabesque,

folding arms, bending back
10.0

3 120 07 Mickey Dance 9.3

4

Fight

135 01 Bassai 51.0

5 14 01 Boxing 46.6

6 15 13 Boxing 77.7

7

Sport

124 01 Baseball pitch 5.3

8 124 13 Underhand fast pitch 7.2

9 79 02 Swimming 6.5

10
Daily

actions

127 02 Range of motion 14.6

11 14 12 Washing windows 22.9

12 76 05 Swatting at pesky bug 6.5

a white noise sound using a noise-canceling headphone during the entire experi-

ment.

Experimental Conditions

From the CMU mocap database [1], we selected 12 animations showing an ar-

ticulated motion of a single person. Then, we prepared 12 videos using Unity3D,

three each for the four categories: dance (Video #1–#3), fight (Video #4–#6),

sport (Video #7–#9), and daily actions (Video #10–#12), as described in Ta-

ble 4.1. The camera orientation was fixed to the side view facing the center of

a person in all videos. Example animation sequences from selected videos are

shown in Figure 4.6. The full videos are available in the supplemental materials.

For each of the 12 videos, we generated three sets of motion effects using

the three weighting methods, SIZE, MOMENTUM, and SINGLE, as described in

Section 4.2.2. SINGLE was made by capturing the movement of only the charac-
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(a) Dance (Video #1) (b) Fight (Video #5)

(c) Sport (Video #8) (d) Daily actions (Video #11)

Figure 4.6: Examples of animated motions used in the user study for a single

articulated body.

ter’s torso. In this case, SINGLE is equivalent to the motion effect produced by

the algorithm of Chapter III, serving as the baseline. We also tested alternatives,

e.g., capturing the movement of only the link with the highest momentum adap-

tively. However, such selections produced excessively intensive motion effects, so

we used the torso for SINGLE.

Procedure

For familiarization, participants had a practice session in which they expe-

rienced all three motion effects for the three shortest videos (#7, #9, and #12).

The main session comprised 12 blocks of trials, one for each of the 12 videos.

Each block consisted of three trials in which three motion effects were presented

with the video. In each trial, participants could experience the pair of a video

and a motion effect as many times as they wanted. The order of the video was

randomized across participants, and the order of the motion effects was counter-

balanced across the videos. Participants took a 3-min break after the practice
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session and a 5-min break after the sixth block in the main session.

After experiencing each motion effect, participants answered a questionnaire

that included the following seven questions (¬ indicates a negative question):

Q1. Harmony: The motion effect matched the movements of the object.

Q2. ¬Causality: I experienced motion effects that I did not understand why

they had been provided.

Q3. Fatigue: I felt tired after experiencing the motion effect.

Q4. Distraction: I was distracted from watching the video by the motion effect.

Q5. Detail: The motion effect described detailed movements of the object.

Q6. Preference: I liked the motion effect.

Q7. Free Comment: Please leave a comment regarding the motion effect.

For each question from Q1 to Q62, participants expressed the extent of agree-

ment between 0 and 100 by selecting a position on a horizontal line. On the line,

descriptors were marked at every 25 points: 0–strongly disagree, 25–disagree,

50–neutral, 75–agree, and 100–strongly agree. For Q7, participants entered a

response using a keyboard. In the data analysis, we inverted the scores of three

questions (Q2, Q3, and Q4) so that a high score indicates a better experience in

every measure.

4.3.2 Results and Discussion

The experimental results are shown in Figure 4.7. We performed a two-

way repeated-measures ANOVA on every question from Q1 to Q6 using Motion

Effect and Video as the independent variables. We then applied the SNK test

for post-hoc multiple comparisons. Motion Effect was statistically significant for

2Three out of the six questions were designed to imply negative meanings for balancing.
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Figure 4.7: Overall results of the user experiment for a single articulated body.

Error bars represent standard errors. Motion effect sets marked with the same

letters indicate that they did not show statistically significant differences by the

SNK tests. A higher score indicates a better performance.

Q1 (Harmony; F (2, 52) = 29.52, p < .0001), Q2 (¬Causality; F (2, 52) = 10.25,

p = .0002), Q3 (Fatigue; F (2, 52) = 54.79, p < .0001), Q5 (Detail; F (2, 52) =

33.62, p < .0001), Q6 (Preference; F (2, 52) = 14.32, p < .0001), but not for

Q4 (Distraction; F (2, 52) = 1.06, p = .3538). Video was significant for every

measure (p < .0001). We also observed significant interactions between Motion

Effect and Video in every measure. More detailed results of the statistical tests

are available in the supplemental materials. Also see Figure 4.8 for the results of

the individual videos.
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(a) Video #1 (b) Video #2 (c) Video #3

(d) Video #4 (e) Video #5 (f) Video #6

(g) Video #7 (h) Video #8 (i) Video #9

(j) Video #10 (k) Video #11 (l) Video #12

Figure 4.8: User experiment results of single articulated body rendering per video.

Error bars represent standard errors. Motion effect sets grouped with the same

letters indicate that they did not show statistically significant differences by the

SNK tests. A higher score indicates a better result for every measure.
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On average, MOMENTUM showed the best scores in Q1 (Harmony), Q2

(Causality), Q4 (Detail), and Q6 (Preference) with statistical significance (Fig-

ure 4.7). This result indicates that for the source videos, the motion effects

generated by MOMENTUM were better in matching the visual events, convey-

ing the sense of result from the visual cause, and capturing detailed and fast

object movements. Therefore, the participants favored MOMENTUM more than

SIZE and SINGLE. However, MOMENTUM was inferior in Q3 (Fatigue), which

implies that its motion effects can be more drastic and tiring. In the results of

the individual videos, MOMENTUM also outperformed SIZE and SINGLE in most

measures except Q3 (Fatigue) (Figure 4.8).

These results were supported by the participant’s comments about MOMEN-

TUM. For example, one participant said, “It was good to move slowly in smooth

parts and to move vividly in abrupt parts.” (Video #7). However, for long

videos, some participants mentioned, “It was the most lively. But because the

video was long, I was tired, and my satisfaction decreased.” (Video #10) and “It

would be perfect if the intensity were weaker.” (Video #8).

In comparison, since SIZE does not emphasize fast movements, the weights

of SIZE were more evenly distributed than those of MOMENTUM. Thus, motion

effects made using SIZE could feel unfocused, resulting in relatively low scores.

Four participants reported that some object movements were missed or not ex-

pressed well with SIZE. SINGLE also received low scores similar to SIZE. It was

mainly because SINGLE represented only the torso’s movement without consid-

ering the arms’ or legs’ movements. It was pointed out by three participants.

Nevertheless, SIZE and SINGLE scored comparably to MOMENTUM in Video

#3, #4, #6, #7, #8, and #11, in which the movements of all the body parts

were highly correlated to each other. This implies that using only the torso’s

movement may be sufficient to create motion effects in some cases.
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Interestingly, we observed that a motion effect can affect the perception of

a character’s properties in the video. One participant commented, “I felt the

more intensive the motion effect is, the stronger the person moved.” (Video #9).

Meanwhile, some participants reported that the video context influenced their

expectations of motion effects, e.g., “I tended to rate strong motion effects for

martial arts more positively.” (Video #7). In summary, Momentum showed

the best performance. However, its abrupt movements sometimes disrupt users’

satisfaction. Keeping this shortcoming in mind, we adopt Momentum to compute

the object motion proxy for each of the multiple articulated bodies.

4.4 Multiple Articulated Bodies

This section presents a few methods to set the object weights, wobj , when

multiple articulated bodies appear in the scene. As in Section 4.2.1, we define

requirements for the object weights and design weighting policies satisfying the

requirements. The velocity of the scene motion proxy, q̇obj , is calculated by

substituting the weights into (4.4) and (4.5) and then converted to a motion

command m through an MCA.

4.4.1 Requirement on Object Weights

Valid object weighting methods need to meet the following two conditions:

First, faster or larger objects are weighted more. Second, visually identical objects

are equally weighted. The first condition can be easily satisfied if the object

weights monotonically increase with the size or speed.

For the second condition, suppose that there are two objects, obj1 and obj2,

consisting of {link(s1,v1), · · · , link(sM1 ,vM1)} and {link(s′1,v′
1), · · · , link(s′M2

,

v′
M2

)}, respectively, as depicted in Figure 4.9. If their sizes are the same, i.e,∑M1
i=1 si =

∑M2
i=1 s

′
i, and they all have the same velocity v, then the two objects
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Figure 4.9: A case where two objects are equally weighted.

have identical visual effects. This gives a constraint that the two objects must

have the same object weights, such that:

wobj(obj1) = wobj(obj2). (4.12)

This second condition can be violated by many weighting methods. For example,

one can set an object weight to be directly proportional to the sum of the velocities

of all the links constituting the object, i.e., wobj =
∑M

j=1 vj , but it violates the

second condition when M1 ̸= M2; the object weight is M1v for one object and

M2v for the other.

4.4.2 Weighting Policies

We design four methods that compute the object weights while satisfying

the two requirements described in Section 4.4.1.

Additive

This method sets the object weight wobj as the sum of the momentums, i.e.,

size × speed, of all links comprising the object:

wobj
i =

∑Mi
j=1 si,j∥vi,j∥∑N

k=1

∑Mi
j=1 sk,j∥vk,j∥

, (4.13)

whereMi is the number of links of object i and N is the number of all the objects

in the scene. In this method, the higher the link weights constituting the object
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(a) Object weights of Additive (b) Dividing time intervals

(c) Removing short intervals (d) Smoothing transitions

Figure 4.10: Overall process of Salient. These plots are for Video #4 in Table 4.2.

Red and blue lines (or areas) indicate the object weights for the attacker and the

victim, respectively.

are, the more weighted the object is. Therefore, this method can be advantageous

for capturing the movements of large and fast objects.

Uniform

This method gives the same weights to all objects, i.e., wobj
i = 1/N . For

example, if there are two objects, the scene motion proxy qscn reflects the two

object motion proxies, qobj
1 and qobj

2 , equally.

Salient

When multiple objects appear, one object may attain the viewer’s attention

almost exclusively, whereas the movements of other objects are neglected. For

example, imagine the Iron Man fighting against many (insignificant) enemies.
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This method, Salient, is designed for such cases and attempts to express the

movement of the most important object at that instant. We use the object weights

calculated by the Additive policy to judge the importance of each object. Salient

determines the object weights in three steps, as illustrated in Figure 4.10. Here,

we denote the object weight of Additive by wadd and the object weight of Salient

by wsal. First, we make time intervals based on which object has the greatest

wadd in each interval (Figure 4.10a). In each interval, we set wsal of the object

with the highest wadd to 1, and wsal of the other objects to 0 (Figure 4.10b). Very

short intervals (less than 1 s) are merged to their preceding intervals to achieve

stable motion (Figure 4.10c). Finally, for a continuous blending of the object

motion proxies, wsal is smoothed using the half period of the cosine profile with

a period of 1 s (Figure 4.10d).

Single

This method captures only the movement of one object among the many in

the scene. The target object gets the full weight of 1, while the weights of all the

other objects are zeros.

Comparisons

Figure 4.11 shows an example illustrating the effects of the four weighting

policies. The paired animation shows that the victim (left character) punches

first, but the attacker (right character) avoids it and raises its right leg to kick. For

this animation, when capturing the victim’s movement, Single makes a motion

effect expressing the victim’s pulling the right arm. In contrast, when capturing

the attacker’s movement, it makes a motion effect for the attacker’s raising the

right leg. Additive responds to both movements. Uniform makes a motion effect

expressing half the two movements. Lastly, Salient regards only the victim’s

movement as important and makes a motion effect for the victim.
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Figure 4.11: An animation segment (taken from Video #6 in Table 4.2) and mo-

tion commands generated by the four object weighting policies for scene motion

proxy. In this animation, the victim (left character) punches first, but the at-

tacker (right character) avoids it and raises its right leg to kick. In all images,

thicker colors indicate later events in time.

4.4.3 Post-Processing and Motion Cueing Algorithms

The velocity of the scene motion proxy, q̇scn, obtained by (4.4) and (4.5), is

converted into a motion command m. We use Momentum, which showed the best

performance in Section 4.3, to determine the link weights wlink. Additionally, to

prevent the abrupt chair movements pointed out in the previous user study (Sec-

tion 4.3.2), we apply the following attenuation rule, which reduces the variations

of a motion effect over time:

̂̇qscn
= β∥q̇scn∥γ q̇scn

∥q̇scn∥
, (4.14)

where ̂̇qscn
is the velocity of the attenuated motion proxy, β is a scale factor that

makes ̂̇qscn
and q̇scn have a similar level of signal energy, and γ is a gain for

attenuation (0 < γ ≤ 1).

Decreasing γ lowers the fluctuations of the scene motion proxy by following
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the power function that has γ as the exponent. As a result, when the object

movements are strong, using the attenuated scene motion proxy, instead of the

original proxy, decreases the motion effect intensity. When the object movements

are weak, it rather increases the motion effect intensity. This can be easily un-

derstood by comparing what happens to (4.14) if γ = 1 or 0.5. According to our

experience, the range of γ for perceptually-best motion effects is 0.5–0.7. We set

β = 6.0 and γ = 0.7 in the user study reported in Section 4.5.

Finally, the attenuated motion proxy, ̂̇qscn
, is converted into a motion com-

mand through scaling and MCA, as described in Section 4.2.3.

4.5 Evaluation on Multiple Articulated Bodies

We performed a user experiment to compare the benefits of the four weight-

ing policies that determine the scene motion proxy. The experiment used many

scenes where two articulated bodies interacted with each other.

4.5.1 Methods

Participants

Twenty volunteers (9 females and 11 males; 19–29 years old with an average

age of 23.4) with normal sensory ability participated in this experiment. The ex-

periment took approximately 90 min. The participants were paid approximately

USD 22 after the experiment.

Experimental Conditions

From the Unity Asset Store, we selected eight animation pairs, as described

in Table 4.2. Each animation pair showed the articulated motions of two people,

the attacker and the victim, fighting each other. Then, we prepared eight videos

for them using Unity3D. The camera orientation was fixed to the side view facing
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the center of two people in all videos. Some animation sequences from selected

videos are shown in Figure 4.12.

For each of the eight videos, we used four weighting methods described in

Section 4.4.2 to generate five motion effects: ADDITIVE, UNIFORM, SALIENT,

ATTACKER, and VICTIM. ATTACKER and VICTIM were made using Single by

capturing the movement of only the attacker and only the victim, respectively.

Procedure

For familiarization, participants had a practice session in which they experi-

enced all five motion effects for the three shortest videos (#2, #3, and #6). The

main session comprised eight blocks of trials, one for each video. Each block con-

sisted of five trials in which the five motion effects were presented with the video.

In each trial, participants could experience the pair of a video and a motion effect

as many times as they wanted. The order of the video was randomized, and the

order of the motion effects per video was balanced across participants using the

balanced Latin square. Participants had a 3-min break after the practice session

and a 5-min break after the fourth block in the main session.

After experiencing each motion effect, participants answered the same ques-

tionnaire described in Section 4.3. In this questionnaire, we slightly modified Q2

(Causality) to “It was easy to understand the relationship between the video and

the motion effect.” This was to test whether the participant could find out which

of the two characters the motion effect was focused on. Participants’ response

methods to the questions were also the same with the previous experiment. In

the data analysis, we inverted the scores of two questions (Q3 and Q4) so that a

high score indicates a better experience in every measure.
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Table 4.2: Animations used in the user experiment on multiple articulated bodies.

All the animations are from wemakethegame4.

# Animation Description Duration (s)

1
Judo,

Setmotion 1

The attacker lifts the victim and

throws it back.
10.8

2
Judo,

Setmotion 2

The attacker throws the victim while

rolling backward.
7.7

3
Judo,

Setmotion 6

The attacker trips the victim over

with its foot.
8.1

4
Judo,

Setmotion 7

The attacker holds the victim’s head

and trips the victim over with its

foot.

9.1

5

Rogue

Finisher,

Finisher 1

The attacker hits the victim four

times and stabs the victim.

Then, the attacker pushes the victim

back with its body.

10.4

6

Rogue

Finisher,

Finisher 4

The attacker avoids the victim’s

punch and kicks the victim.

Then the attacker hits the victim

twice, and the victim falls down.

8.1

7

Rogue

Finisher,

Reversal

Finisher 1

The attacker blocks the victim’s

punch and stabs the victim several

times. The victim then falls down.

9.0

8

Superhero,

Neck

Finisher

The attacker pulls the victim from a

distance with a superpower, and the

victim falls down.

9.8
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(a) Video #1 (b) Video #3

(c) Video #6 (d) Video #8

Figure 4.12: Examples of animated motions used in the user study for multiple

articulated bodies.

4.5.2 Results and Discussion

The experimental results averaged over the eight videos are shown in Fig-

ure 4.13. We performed a two-way repeated-measures ANOVA on every question

from Q1 to Q6 using Motion Effect and Video as the independent variables.

We then used the SNK test for post-hoc multiple comparisons. Motion Ef-

fect was statistically significant for every question: Q1 (Harmony; F (4, 76) =

34.1, p < .0001), Q2 (Causality; F (4, 76) = 17.56, p = .0002), Q3 (Fatigue;

F (4, 76) = 6.92, p < .0001), Q4 (Distraction; F (4, 76) = 3.34, p = .0141), Q5

(Detail; F (4, 76) = 40.87, p < .0001), and Q6 (Preference; F (4, 76) = 30.55,

p < .0001). Video was significant for only Q3 (Fatigue; F (7, 133) = 2.86,

p = .0081). We observed significant interactions betweenMotion Effect and Video

in five measures; Q1 (Harmony; F (28, 532) = 6.85, p < .0001), Q2 (Causality;

F (28, 532) = 4.74, p < .0001), Q3 (Fatigue; F (28, 532) = 2.89, p < .0001), Q5
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Figure 4.13: Average results of the user experiment for multiple articulated bod-

ies. Error bars represent standard errors. Motion effect sets marked with the

same letter indicate that they did not show statistically significant differences by

the SNK tests. A higher score indicates a better performance.

(Detail; F (28, 532) = 7.73, p < .0001), and Q6 (Preference; F (28, 532) = 6.43,

p < .0001), but not in Q4 (Distraction; F (28, 532) = 0.90, p = .6166). More

detailed results of the statistical tests are provided in the supplemental mate-

rials. In summary, ADDITIVE, SALIENT, and VICTIM showed the best scores

in all measures except Q3 (Fatigue), followed by the UNIFORM (Figure 4.13).

ATTACKER received the lowest scores in all metrics except Q3 (Fatigue).

VICTIM elicited significantly better viewer experiences than ATTACKER even

though both were made using the same weighting policy Single. It is presumably

because the movement of the victim was more dynamic than the attacker in

most videos. The attacker usually showed short and fast movements, such as

punching, kicking, and stabbing. On the contrary, the victim exhibited long-

lasting and large movements, such as staggering and falling. Eight participants

pointed out that ATTACKER missed important movements, while only four said

the same about VICTIM. For the same reason, ATTACKER made the participants

less tired, leading to high scores in Q3 (Fatigue). However, VICTIM was not

always better than ATTACKER. ATTACKER and VICTIM had similar scores in
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Video #2, #5, #6, and #7, where the attacker’s movements were as large and

dynamic as the victim’s. In Video #5, ATTACKER scored slightly higher than

VICTIM in Q1 (Harmony), Q2 (Causality), Q5 (Detail), and Q6 (Preference),

although the differences were insignificant.

Both ADDITIVE and SALIENT received the highest scores (similar to VIC-

TIM). It seems that the object weights changing dynamically and quickly by both

methods well captured the important movements of the attacker and the victim.

However, participants frequently complained that ADDITIVE and SALIENT pre-

sented excessively strong motion effects. Also, SALIENT sometimes missed im-

portant movements; one participant said, “No motion was given for pulling out

the hand after stabbing.” (Video #5). As illustrated in Figure 4.15, SALIENT

did not capture the attacker’s quick movement as it was removed by the merging

process. The same participant also commented on this: “I could not understand

what the motion effect focused on.” (Video #7). This problem can be improved

by dynamically adjusting the window size during motion merging or using a bet-

ter attention model.

UNIFORM resulted in lower scores than ADDITIVE, SALIENT, and VICTIM,

due to the weak strength of its motion effects as reported by five participants.

This is because the movements of the two objects can be canceled out when

they are evenly combined, without emphasizing the movement of a more impor-

tant object. The weak intensity of UNIFORM also led to the high scores of Q3

(Fatigue).

As in Section 4.3, we observed that motion effects could alter the perceived

properties of characters and actions. Two participants commented on this: “The

movement was excessive, and it felt like a heavy person was standing up.” (Video

#1) and “It felt like the attacker was hitting very weakly due to the weak motion

effect.” (Video #5).
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(a) Video #1 (b) Video #2

(c) Video #3 (d) Video #4

(e) Video #5 (f) Video #6

(g) Video #7 (h) Video #8

Figure 4.14: User experiment results for multiple articulated bodies per video.

Error bars represent standard errors. Motion effect sets marked with the same

letters indicate that they did not show statistically significant differences by the

SNK tests. A higher score indicates a better performance.
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In conclusion, ADDITIVE, SALIENT, and VICTIM showed better perceptual

performance than the others. In our videos, the attacker and the victim were

distinguishable. However, the attacker and the victim may not be clearly distin-

guished in some cases, e.g., when two people beat each other up. In this case,

ADDITIVE and SALIENT may have a merit because both vary the object weights

dynamically. Although we did not test animations for more than two objects, we

expect that ADDITIVE and SALIENT can produce more plausible motion effects

in such cases, where the viewer’s attention can be dispersed to multiple objects.

4.6 Limitations

Our algorithm synthesizes convincing motion effects based on the link move-

ments of articulated bodies. However, it requires information on the sizes and

velocities of many links. Such information is directly accessible in computer-

generated content, such as animation movies and VR games, as in our implemen-

tation. For regular 4D movies, the information can be extracted from the image

sequence using recent computer vision techniques, such as pose estimation [88],

depth estimation [72], and object detection [73]. We leave an integration of such

automatic feature extraction as future work.

Additionally, 4D effect designers need to tune parameters, such as α, β, γ,

and ϵ in (4.11) and (4.14). These parameters should be adjusted considering var-

ious factors, e.g., genre, situation, context, and mood of the audiovisual content.

Recently, Li et al. [13] showcased adjusting the intensity of vibrotactile effects

based on the contextual information extracted from the psychoacoustic measures

of sound. Such an approach can also be useful for our framework, where strong

motion effects are preferred in intense scenes and gentle motion effects in senti-

mental scenes.

Finally, we tested our algorithm in the limited cases for two articulated
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Figure 4.15: A case that SALIENT fails to capture the important movement in

Video #5. In this video, the attacker (the right person) quickly withdraws his

hand at 6 s. The right graph shows the roll commands of ATTACKER, VICTIM,

and SALIENT. In the blue areas, the object weight for the attacker is used for

SALIENT. SALIENT does not capture the attacker’s movement at 6 s (yellow

area), as it is removed by the merging process.

bodies in the scene. We have not tested for more than two objects, but we expect

Additive and Salient to have advantages over the other weighting methods. In

addition, while the camera moves freely in general movies, the camera was fixed

in all the videos used in the user studies. In camera-moving scenes, the camera

movement may be compensated by subtracting the background movement from

the link velocities. Camera motion estimation techniques [89] can be applied for

that purpose.

Our future work will focus on resolving the above limitations.

4.7 Conclusion

In this chapter, we have addressed a new research problem: enhancing the

user experiences elicited by the multisensory 4D content that includes motion

effects emphasizing the visual movements of multiple articulated bodies. Our
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approach is an algorithmic framework that generates object-based motion effects

automatically by compressing the complex external and internal movements of ar-

ticulated bodies into a single point: motion proxy. To this end, we have extended

the computational definition of motion proxy from one rigid body (Chapter III)

to an articulated body, and then to multiple articulated objects. For each case, a

few weighting methods to determine the motion proxy are designed, and their rel-

ative merits and drawbacks are evaluated by user studies. Finally, major findings

and our research experiences are summarized into design guidelines and current

limitations. To the best of our knowledge, this work is the first attempt to au-

tomatically generate object-based motion effects for complex articulated bodies

moving in the scene.
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V. Generating Motion Effects for Scene

Components

The algorithm discussed in Chapter IV successfully generates captivating

motion effects for objects with complex structures. However, in a typical scene,

there are multiple moving components, including objects, particles, and camera

motion, that the algorithm does not account for. This limitation prompts us to

propose an algorithm in this chapter that aims to generate motion effects that

comprehensively capture the movements of all scene components. In particular,

this chapter even covers a process for automatically extracting motion informa-

tion from audiovisual content using computer vision technologies, whereas the

previous chapters assumed that motion trajectories are given. By incorporating

these techniques, we are able to address the broader scope of scene components

and their corresponding motions. For a comprehensive representation of the

movements of scene components, we extend the concept of motion proxy to the

scene components. We designed several algorithms to create motion effects based

on the motion proxy, and we further investigated the optimal algorithm through

a user study.

5.1 Problem Formulation

In this section, we formulate a problem for generating motion effects for mov-

ing scene components. First, we briefly summarize the formulation of a motion

proxy for multiple articulated bodies, described in Chapter IV. Building upon

this foundation, we extend the concept of the motion proxy to scene components.

In Chapter IV, the motion proxy for articulated bodies was defined to com-
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press the many movements of multiple parts and multiple objects into a single

movement as

q̇ =
N∑
i=1

wobj
i

cliḋi +

Mi∑
j=1

wlink
i,j vi,j

 , (5.1)

where q̇ is the 3D velocity of motion proxy, N is the number of objects, c is

constant. For object i, wobj
i is its weight, li is its length, ḋi is the derivative of

the 3D direction vector, Mi is the number of links, wlink
i,j is the weight of link j,

and vi,j is the visual velocity of link j in the 3D visual space. Here, the term

for direction vectors was to express the object rotations, and the term for linear

velocities was to express the link translations.

To reproduce the movement of the motion proxy within the limited workspace

of a motion platform, the movement of the motion proxy is fed to a motion cueing

algorithm (MCA) to generate a motion command as

m = MCA(q̇), (5.2)

where m = (roll, heave, pitch) is the 3-DoF motion command to a motion chair.

In a video, the movements of all scene components are inherently accompa-

nied by corresponding pixel movements. For example, an explosion accompanying

the movement of particles is visualized as diverging movements of the correspond-

ing pixels, and a camera motion is represented by the movement of entire pixels

in the video in the opposite direction to the camera.

This implies that the movements of scene components can be represented by

combining the individual pixel movements. Therefore, similar to motion prox-

ies for multi-joint bodies, we define a motion proxy for scene components by

aggregating the movements of all pixels within the image, as

q̇ =
H∑
i=1

W∑
j=1

w[i, j]v[i, j], (5.3)

where q̇ = (q̇x, q̇y, q̇z) is the velocity of the motion proxy, H and W are the

image height and width of the audiovisual content, and w[i, j] and v[i, j] =
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(a) Rotation (b) Translation

Figure 5.1: Examples of the optical flows for the rotation and translation of a

sphere.

(vx[i, j], vy[i, j], vz[i, j]) are the weight and velocity of the pixel of the i-th row

and j-th column. This equation does not incorporate the term for the direction

vector in (5.1). This omission is due to the fact that the pixel movements involve

both rotation and translation of an object, as illustrated in Figure 5.1.

To extract the values of the two parameters, w[i, j] and v[i, j], from a video,

our algorithm leverages two computer vision technologies: scene flow estimation

and saliency detection. The core of our algorithm revolves around the compu-

tation of the motion proxy, which serves as a crucial foundation for generating

convincing object-based motion effects. The details of our algorithm will be de-

scribed in Section 5.2.
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Figure 5.2: Overview of our algorithm to generate the object-based motion effects.

5.2 Motion Effects Synthesis Algorithm

This section describes a pipeline of our automatic algorithm to generate mo-

tion effects for scene components based on pixel movements (Figure 5.2). Our

algorithm only requires timing information about (1) mute intervals and (2) shot

transitions. Mute intervals encompass conversations or static scenes where mo-

tion effects are not desired. Shot transitions can be easily detected using computer

vision techniques [90, 91]. However, we manually annotated such information for

accuracy in this study. Our algorithm extracts pixel motions from each frame of

the video source and combines these motions to compute a motion proxy (Sec-

tion 5.2.1). Then, the motion proxy is modulated (Section 5.2.2) and converted

to motion commands through an MCA (Section 5.2.3).

5.2.1 Calculation of Motion Proxy

Our algorithm determines the velocity of motion proxy, q̇ in (5.3) by com-

bining pixel velocities, v[i, j] with corresponding weights, w[i, j]. To obtain such

information, we employ two computer vision technologies: scene flow estima-

tion [92] and saliency detection [93] (Figure 5.3). For each pixel i, j, the scene

flow estimation estimates a displacement vector, f [i, j] = (fx[i, j], fy[i, j], fz[i, j]),

between two consecutive frames in a 3D camera space. The saliency detection al-
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Figure 5.3: Examples of the results of two computer vision technologies on a

figure skating video (Skating in Table 5.1). The images in the 1st, 2nd, and 3rd

rows visualize the original images, the saliencies, and the scene flows, respectively.

The scene flows in the x, y, and z axes are mapped to the hue, saturation, and

value of color.

gorithm uses an image to estimate a saliency value, s[i, j] (0 ≤ s[i, j] ≤ 1), which

was directly mapped to the pixel weight, i.e., w[i, j] = s[i, j].

As in Section 3.5, we determined the pixel velocity by considering two modes

of visual object motion perception by Duncker [80]: subject-relative and object-

relative. In subject-relative perception, the object motion is perceived within the

viewer’s local coordinate frame, while in object-relative perception, the relative

displacement between two objects is perceived. The choice of perception mode

depends on various factors, including visual characteristics and attention. Since

the quantitative knowledge about the factor effects significantly lacks [82], our

algorithm supports both subject-relative and object-relative modes to accom-

modate both modes and provide designers with the flexibility to generate more

plausible effects. For subject-relative perception, we defined the subject-relative

velocity of a pixel as vsbj [i, j] = f [i, j]. In object-relative mode, we calculated the

velocity, vobj [i, j], by compensating the scene flow with the background move-
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Figure 5.4: Velocities in subject- and object-relative modes for four scenarios.

The images in the 1st, 2nd, and 3rd rows are (1) the scenes where the camera

captures the object, (2) the optical flows for the scenes, and (3) the visual veloc-

ities obtained by the optical flows.

ment, as vobj [i, j] = f [i, j]− b. Here, b is the background velocity, which can be

approximated by averaging scene flows of non-salient areas, as:

b =

∑H
i=1

∑W
j=1(1− s[i, j])f [i, j]∑H

i=1

∑W
j=1(1− s[i, j])

. (5.4)

Figure 5.4 visualizes the two visual velocities for the four scenarios. In the

first scenario, the camera is stationary, only the object is moving, resulting in

no difference between the two visual velocities. When the object is stationary,

and only the camera moves, both the background and the object move in the

video, but the object moves more since the object is closer. For the scenario,

where the camera moves along the object, the object is regarded as stationary in

the subject-relative mode. In contrast, the object seems to move to the right by

the background movement in the object-relative mode. In the last scenario, the

object and the camera move in opposite directions. At this time, the subject-

relative velocity is very large, but in the object-relative mode, the movement is

slightly offset by the background movement.

The velocity of the motion proxy, q̇, is calculated based on the the pixel
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Figure 5.5: Visualization of the motion proxies in two visual modes for the clip

in Figure 5.3.

velocities, vsbj [i, j] or vobj [i, j], and the saliency values, s[i, j] by (5.3). During

mute intervals, q̇ is forced to zero. In the case of shot transitions, it is set to

the average of those of two adjacent frames. Finally, q̇ was smoothed using local

regression [94] with a window size of 0.2 s.

Figure 5.5 illustrates the motion proxies computed from the two perception

modes for the clip in Figure 5.3. In the clip, the skater and the background

initially move to the right (indicated by the red color in the scene flow). Then

the skater spins to the left (indicated by the blue color in the scene flow), in

the opposite direction to the background movement. In subject-relative mode,

the motion proxy moves following the movement in camera space. However, in

object-relative mode, the motion proxy moves to the right and then to the left

because the skater’s movement is compensated by the background movement.
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5.2.2 Gain Control and Filtering

To create a motion effect whose intensity matches well with the video, we

applied four steps to the velocity of the motion proxy, q̇, through four steps:

(1) modulation based on the object size, (2) filtering, (3) normalization, and (4)

manipulation according to the genre.

The first step modulates the scale of q̇ based on the visual size of salient ob-

jects, which can be acquired by
∑H

i=1

∑W
j=1 s[i, j]. This modulation is intended

to create a stronger motion effect for larger objects. We tested motion effects

created with three scaling conditions. The first condition was scaling with a

constant value regardless of the object size. The second condition was to scale

proportionally to the salient area. The third condition scaled the motion effect

proportionally to the square root of the salient area. The motion effects obtained

with constant scaling did not effectively emphasize the movements of larger ob-

jects. The two scaling options, based on the salient area, resulted in motion

effects that were too weak for small objects, and excessively strong for large ob-

jects, especially in close-up scenes. In particular, the scaling proportional to the

salient size produced a drastic motion effect when an object approached the cam-

era in the depth direction. By combining the strengths of the three approaches,

we designed a unified scaling method. The unified scaling is proportional to the

square root of the salient area, but it limits the scale factor when the salient area

is too small or large, as:

q̇′ =
√
S q̇, S = min

max

 H∑
i=1

W∑
j=1

s[i, j], Smin

 , Smax

 (5.5)

where q̇′ is the velocity of the modulated motion proxy, Smin and Smax are the

lower and upper bounds of the salient area, respectively. In this study, we set

Smin = 0.1 and Smin = 0.2.

Next, we apply high-pass filters and low-pass filters to the modulated motion
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proxy, q̇′, resulting in the high-frequency velocity, q̇′
h, and the low-frequency

velocity, q̇′
l. This filtering process is essential to generate reference inputs for

our motion cueing algorithms, which operate on separate channels for high- and

low-frequency motion components. We used a 5th-order Butterworth high-pass

filter and a low-pass filter with a cutoff frequency of 1.0 Hz.

To ensure consistent and appropriate intensity levels of the generated motion

effects across different videos, we normalize the two filtered motions, q̇′
h and q̇′

l.

This is because we have observed significant variations in the intensity of scene

flows among different videos. Specifically, we divided q̇′
h and q̇′

l by the variance of

q̇′
h for each axis, because our motion cueing algorithms mainly focus on rendering

the high-frequency motions of the motion proxy. Although normalization by the

variance of the vector magnitude is a possible alternative, we opt for normalizing

each axis individually to fully utilize the motion in all three degrees of freedom.

This normalization allows the average velocity of each axis to be approximately

1.

Finally, we apply the signal manipulation to the normalized motions, q̇′
h

and q̇′
l, based on the genre of the video. To this end, we employ the following

manipulation rule, as in Section 4.4.3:

̂̇qh = β∥q̇′
h∥α

q̇′
h

∥q̇′
h∥
, (5.6)

̂̇ql = β∥q̇′
l∥α

q̇′
l

∥q̇′
l∥
, (5.7)

where ̂̇qh and ̂̇ql is the attenuated or amplified high- and low-frequency velocity

of the motion proxy, β is a scale factor to fine-tune the motion intensity, and

α is a gain for attenuation and attenuation (0 < α). When α is less than 1,

weak motions are amplified more strongly than themselves while strong motions

are attenuated weakly (see the green line in Figure 5.6). Conversely, when α is

greater than 1, small movements become smaller and large movements become
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Figure 5.6: Plot of the manipulated speed of motion proxy depending on the

exponent, α.

larger. In this study, we set α = 0.8 for sport and dance videos to emphasize even

the subtle movements. In contrast, for game videos, which typically involve fast

and numerous movements, we set α = 1.2 to attenuate small movements (see the

red line in Figure 5.6). We set the value of β between 1.2 and 2.0, depending on

the video.

5.2.3 Motion Cueing Algorithms

Integrating the velocity of the motion proxy and mapping it to a motion

command may exceed the motion chair’s workspace. To prevent this, we feed

the low- and high-frequency motions of the motion proxy, q̇′
h and q̇′

l to an MCA

to convert it to a motion command m. Model predictive control (MPC) is an

optimization-based control approach that considers process models and future

trajectories while taking constraints into account. The optimization is governed

by an objective function that minimizes the difference between the desired mo-

tion (reference) and the output produced by the process model. In this study,

– 82 –



(a) MPC with High-Pass Filters

(b) MPC with High-Pass Filters and Tilt-Coordination

Figure 5.7: Diagram for two MPCs.

we designed two MCAs by adopting the MPC. These MCAs generate a motion

command, m, that best aligns with the desired motion while considering the

constraints imposed by the motion chair’s workspace.

MPC with High-Pass Filters

This method only renders the high-frequency velocity of the motion proxy,

q̇′
h, using high-pass filters, which remove the low-frequency energy that could

potentially push the motion chair beyond its workspace limits (Figure 5.7a). That

is, the motion command, m, is optimized so that its high-frequency velocity is
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matched to q̇′
h. It solves the following optimization problem: Find m such that

m = argmin
m

ϵh∥̂̇qh − ṁh∥2 + ϵ0∥m∥2 (5.8)

subject to ẋh(t) = Ahxh(t) +Bhṁ(t),

ṁh(t) = Chxh(t) +Dhṁ(t),

ṁ(t) =
∂

∂t
m(t), (5.9)

|m(t)| ≤ mmax, |ṁ(t)| ≤ ṁmax,

where ṁ and ṁh is the velocity of the motion command and its high-frequency

component, mmax and ṁmax are the maximum displacement and velocity of the

motion chair, and ϵh and ϵ0 are the weights of the cost function, respectively.

Increasing the value of ϵh enhances the matching of high-frequency velocities be-

tween the motion proxy and the motion command. Conversely, a higher value

of ϵ0 promotes faster convergence of the motion command towards zero. In our

study, we set ϵh = 1.0 and ϵ0 = 0.1. xh is the 15-by-1 state vector. Ah, Bh,

Ch, and Dh are the state-space model realizing the three 5th-order Butterworth

high-pass filters with a cutoff frequency of 1 Hz, connected in parallel, and the

dimensions of these matrices are (15× 15), (15× 3), (3× 15), and (3× 3), respec-

tively.

Also, we considered incorporating computational models for the vestibular

system [63], as an alternative to the high-pass filters. However, after testing, we

found that using these models resulted in the loss of most high-frequency compo-

nents that represent object motions in the generated motion effects. Therefore,

we decided not to employ them in our approach.

MPC with High-Pass Filters and Tilt-Coordination

We recognized that there are certain scenarios in which both the high-

frequency and low-frequency motions of an object need to be represented in
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the motion effects. In particular, in scenes where an object exhibits continu-

ous motion in one direction while the camera follows it, the MPC with high-pass

filters produces somewhat flat and static motion effects. However, the motion

command may exceed the workspace limit of the motion chair when continuously

rendering the low-frequency velocity. To overcome this, we adopted and modified

tilt-coordination. Tilt-coordination is a technique for simulating sustained accel-

eration, such as gravity and centrifugal force, by tilting a motion chair in roll and

pitch for a relatively long time. In our case, we made adjustments to this tech-

nique to simulate sustained velocity by aligning the low-frequency component of

the motion command with the low-frequency velocity of the motion proxy (Fig-

ure 5.7a). For example, this modification shifts a motion chair to the right when

an object continuously moves to the right. We also applied tilt-coordination to

the heave, in addition to roll and pitch, to convey the sensation of rising and

falling. The method solves the following optimization problem: Find m such

that

m = argmin
m

ϵh∥̂̇qh − ṁh∥2 + ϵl∥̂̇ql −ml∥2 + ϵ0∥m∥2 (5.10)

subject to ẋh(t) = Ahxh(t) +Bhṁ(t),

ṁh(t) = Chx(t) +Dhṁ(t),

ṁ(t) =
∂

∂t
m(t), (5.11)

ẋl(t) = Alxl(t) +Blm(t),

ml(t) = Clxl(t) +Dlm(t),

|m(t)| ≤ mmax, |ṁ(t)| ≤ ṁmax,

where ϵl is the weight, which makes the low-frequency component of the motion

command and the low-frequency velocity of the motion proxy matched in tilt-

coordination (ϵl = 0.25 in this study), ml is the low-frequency component of the

motion command. xl is the 15-by-1 state vector, and Al, Bl, Cl, and Dl are
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the state-space model realizing the three 5th-order Butterworth low-pass filters

with a cutoff frequency of 1 Hz, connected in parallel, and their dimensions are

(15× 15), (15× 3), (3× 15), and (3× 3), respectively.

5.3 Performance Evaluation

We conducted a user study to compare the user experiences elicited by the

motion effects synthesized by our algorithm and the conventional algorithm [10].

In this experiment, we classified audiovisual content into three categories and

compared the benefits of the four options of our algorithms according to the

category.

5.3.1 Methods

Devices

The motion chair (4DX, CJ 4DPLEX; Figure 1.1) used in the experiment

had three DoFs for roll (±4°), pitch (±7°), and heave (±4 cm). The chair is

for four people, and the participant sat in the second seat from the left during

the experiment. 2D images were projected onto a 94-inch screen using a polar-

ized projector (EB-W16SK, Epson Corp.). Sound was played through NS-150

5-channel home theater speakers (Yamaha Corp.).

Experimental Conditions

We classified audiovisual content, which has the potential to improve user ex-

perience with motion effects, into three categories: (1) Film and Game cinematic

cut-scene, (2) Sport and Dance, and (3) Game. Three separate experiments, re-

ferred to as Exp. 1, Exp. 2, and Exp. 3, were conducted, each focusing on one

of the three content categories.

For each of the three categories, we carefully selected and downloaded three
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videos from YouTube (Figure 5.8). To ensure dynamic and engaging content, we

extracted approximately 90-s clips from each video, specifically choosing scenes

that were not static. In Exp. 1, the two videos were from commercial films, The

Avengers (Avengers) and How to Train Your Dragon (Dragon), and the other

one was from a cinematic cut-scene of a game, Genshin Impact (Genshin). Exp.

2 used the videos of figure skating (Skating), parkour (Parkour), and cover dance

performance (Dance). The videos for Exp. 3 contained the segments from fight-

games, For Honor (Honor), Hellish Quart (Quart), and Spider-Man Remastered

(Spiderman). The detailed description for the selected videos is summarized in

Table 5.1.

For each of the nine videos, we used generated five sets of motion effects

using our algorithm and conventional algorithm:

• SH: Motion effects synthesized by our algorithm (perception mode: subject-

relative, MCA: MPC with high-pass filters).

• ST: Motion effects synthesized by our algorithm (perception mode: subject-

relative, MCA: MPC with high-pass filters and tilt-coordination).

• OH: Motion effects synthesized by our algorithm (perception mode: object-

relative, MCA: MPC with high-pass filters).

• OT: Motion effects synthesized by our algorithm (perception mode: object-

relative, MCA: MPC with high-pass filters and tilt-coordination).

• Lee: Semi-automatically generated motion effects synthesized by [10].

In our four algorithms, we varied the gain factor, α in (5.7), according to the

category of the video: α = 1.0 for films and cinematic cut-scenes (Exp. 1), α = 0.8

for sports and dances (Exp. 2), and α = 1.2 for games (Exp. 3). The algorithms

in Chapter III and IV can be considered as the baseline condition. However, they
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are not readily applicable to general content, because they require all motion

trajectories of objects in a scene. Therefore, we selected Lee’s algorithm [10] as

the baseline condition and used CSRT (Channel and Spatial Reliability Tracking)

tracker [95] to estimate 2D position of an object. For this condition, we manually

annotated the initial bounding box of the main object, which served as the basis

for generating the motion effect. Whenever the tracking failed, we re-annotated

the bounding box. Then, the motion effects of Lee were generated by applying

a washout filter to the 2D velocity of the object and mapping them to roll and

pitch commands. Note that motion effects in all conditions are scaled to have

intensities.

(a) The Avengers (b) How to Train Your Dragon 2 (c) Genshin

(d) Figure Skating (e) Parkour (f) Cover Dance

(g) For Honor (h) Hellish Quart (i) Spider-man Remastered

Figure 5.8: Video clips used in the user study. The videos of (a)-(c), (d)-(f), and

(g)-(i) were used in Exp. 1, 2, and 3, respectively.
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Table 5.1: Descriptions for the videos used in the user study.

Video tag Description Source Duration

Avengers
Six superheroes fight and defeat

numerous aliens.
1’42”–3’14” in [96] 92 s

Dragon
A character rides a dragon and

flies freely through the sky.
0’16”–1’44” in [97] 88 s

Genshin

Two characters fight the witch

in the air, but one of them

disappears by the witch’s spell.

0’21”–1’40” in [98] 79 s

Skating
A figure skater performs

to the song ‘Send in the Clown’.
0’42”–2’12” in [99] 89 s

Parkour

A man evades inspectors and

goes through airport security

performing parkour.

1’08”–2’31” in [100] 83 s

Dance
A woman dances to a song

‘Solo’ by Jennie.
0’39”–2’02” in [101] 83 s

Honor

Two soldiers, one with a sword

and the other with two axes,

fight in third-person view for

two rounds.

2’25”–3’45” in [102] 79 s

Quart
Two soldiers with a long sword

fight for four rounds in side view.
0’09”–1’19” in [103] 70 s

Spiderman

Spider-Man beat a boss while

firing a web and flying in

third-person view.

18’28”–19’57” in [104] 89 s

Procedure

For familiarization, participants had a practice session in which they ex-

perienced all five motion effects for one of the three videos. The main session

comprised three blocks of trials, one for each of the three videos. Each block

consisted of five trials in which five motion effects were presented with the video.

In each trial, participants experienced the pair of a video and a motion effect

twice. The order of the video was randomized across participants, and the order

of the motion effects per video was balanced across participants using the bal-
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anced Latin square. Participants took a 3-min break after the practice session

and each block in the main session.

After experiencing each motion effect, participants answered a questionnaire

that included the following seven questions (¬ indicates a negative question):

Q1. Harmony: The motion effect matched the movements in the video.

Q2. ¬ Fatigue: I felt tired after experiencing the motion effect.

Q3. Enjoyment: I enjoyed watching the video with the motion effect.

Q4. ¬Causality: I experienced motion effects that I did not understand why

they had been provided.

Q5. ¬ Distraction: I was distracted from watching the video by the motion

effect.

Q6. Preference: I liked the motion effect.

Q7. Free Comment: Please leave a comment regarding the motion effect.

For each question from Q1 to Q61, participants expressed the extent of the

agreement by entering positive numbers between 0 and 100 using a keyboard. To

assist participants in understanding the scale, descriptors were provided at the top

of the questionnaire for every 25-point interval: 0–strongly disagree, 25–disagree,

50–neutral, 75–agree, and 100–strongly agree. For Q7, participants entered a

response using a keyboard. In the data analysis, we inverted the scores of three

questions (Q2, Q4, and Q5) so that a high score indicates a better experience in

every measure.

1Three out of the six questions were designed to imply negative meanings for balancing.
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Table 5.2: Participant information for three experiments.

Experiment Category Participants Mean Age (SD)

Exp. 1
Film and Game

cinematic cut-scene
20 (6F, 14M) 24.1± 2.9

Exp. 2 Sport and Dance 20 (6F, 14M) 21.8± 2.7

Exp. 3 Game 20 (7F, 13M) 19.9± 1.8

Participants

Each of the three experiments involved the participation of 20 people, as

detailed in Table 5.2. None of them reported known sensorimotor disorders. The

experiment took approximately 90 min per participant. The participants were

paid approximately USD 23 after the experiment.

5.3.2 Results and Discussion

The experimental results for Exp. 1, 2, and 3 are shown in Figure 5.9, 5.10,

and 5.11, respectively. For each experimental result, We performed a two-way

repeated-measures ANOVA on every question from Q1 to Q6 using Motion Effect

and Video as the independent variables. We then used the SNK test for post-hoc

multiple comparisons.

In Exp. 1, Motion Effect was statistically significant in five measures; Q1

(Harmony; F (4, 76) = 4.12, p = .0045), Q3 (Enjoyment; F (4, 76) = 3.28, p =

.0155), Q4 (Causality; F (4, 76) = 4.85, p = .0016), Q5 (Distraction; F (4, 76) =

6.03, p = .0003), and Q6 (Preference; F (4, 76) = 4.10, p = .0046); but not in

Q2 (Fatigue; F (4, 76) = 2.32, p = .0640). Video was not significant for every

measure. We observed significant interactions between Motion Effect and Video

in five measures; Q1 (Harmony; F (8, 152) = 3.98, p = .0003), Q3 (Enjoyment;

F (8, 152) = 2.01, p = .0489), Q4 (Causality; F (8, 152) = 3.53, p = .0009), Q5

(Distraction; F (8, 152) = 3.96, p = .0003), and Q6 (Preference; F (8, 152) = 3.26,
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(a) Average (b) Avengers

(c) Dragon (d) Genshin

Figure 5.9: Experimental results for Exp. 1. Error bars represent standard

errors. Motion effect sets marked with the same letters indicate that they did not

show statistically significant differences by the SNK tests. The scales of negative

questions are inverted so that a higher score indicates a better performance.

p = .0019). Our four methods, SH, ST, OH, and OT, received higher scores than

Lee in Q1 (Harmony), Q2 (Causality), and Q6 (Preference). This may be be-

cause our algorithms inclusively respond to various components, including object

motions, camera motions, and visual effects. This trend was particularly evident

in Genshin, which featured numerous explosions and particle effects. Regarding

this, six participants expressed their satisfaction with our algorithms, mentioning

that our algorithms produced the motion effects that they expected. For example,

one participant stated “The vibrating motion effect when the portal opened was

appropriate.” (OT). Conversely, six participants criticized Lee for the absence of

motion effects for special effects, e.g., “There was no motion effect for the spe-

cial effects, so it was less immersive.” (Lee). However, in the case of Avengers,

there were no significant differences because the movement of one superhero was

noticeable in most shots. In Dragon, the algorithms with tilt-coordination, ST
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(a) Average (b) Skating

(c) Parkour (d) Dance

Figure 5.10: Experimental results for Exp. 2. Error bars represent standard

errors. Motion effect sets marked with the same letters indicate that they did not

show statistically significant differences by the SNK tests. The scales of negative

questions are inverted so that a higher score indicates a better performance.

and OT, were preferred over Lee, likely due to the longer duration of shots and

the continuous movement of the main object, the dragon, in the sky. In all three

videos, there was no significant difference in Q2 (Fatigue), because all the motion

effects were scaled to have similar intensities.

In Exp. 2, Video was significant for most measures; Q1 (Harmony; F (2, 38) =

5.03, p = .0115), Q3 (Enjoyment; F (2, 38) = 3.35, p = .0456), Q4 (Causality;

F (2, 38) = 8.52, p = .0009), Q5 (Distraction; F (2, 38) = 12.24, p < .0001), and

Q6 (Preference; F (2, 38) = 3.38, p = .0446). However, Motion Effect was only

statistically significant in Q4 (Causality; F (4, 76) = 3.49, p = .0114) and there

were no significant interactions in any measures. That is, all the algorithms re-

ceived similar scores. This result can be attributed to the fact that all three

videos focused on the movement of a single person. In such cases, our algorithms

and Lee’s algorithm inherently produce almost identical motion effects. In par-
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(a) Average (b) Honor

(c) Quart (d) Spiderman

Figure 5.11: Experimental results for Exp. 3. Error bars represent standard

errors. Motion effect sets marked with the same letters indicate that they did not

show statistically significant differences by the SNK tests. The scales of negative

questions are inverted so that a higher score indicates a better performance.

ticular, in Dance, there were few differences between the motion profiles by the

two visual perception modes (SH vs. OH and ST vs. OT), since the camera was

static. Moreover, it seems that Lee scored higher than our algorithms because of

the manual process to ensure accurate object tracking. For Skating, 17 people

pointed out that the motion effects of our four algorithms were too intense when

spinning, e.g., “Even if the spinning wasn’t that strong, the motion effect was

too strong.” (ST), while no one did not point out for Lee. The spinning was

mainly expressed as roll motion in Lee and as pitch motion in our algorithms,

respectively, but our algorithm produced more intense motion effects, as depicted

in Figure 5.12. We speculate that this interval contributed the most to the lower

scores of our algorithms. We believe that this issue could be improved by atten-

uating such high-frequency motions, as supported by one participant’s comment:

“I felt that almost all motion effects matched well with the video except for the
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Figure 5.12: A scene of a skater spinning in Skating and its motion effects.

spinning.” (ST).

In Exp. 3, Motion Effect was significant for every measure; Q1 (Harmony;

F (4, 76) = 3.35, p = .0139), Q2 (Fatigue; F (4, 76) = 23.98, p < .0001), Q3

(Enjoyment; F (4, 76) = 3.19, p = .0177), Q4 (Causality; F (4, 76) = 5.48,

p = .0006), Q5 (Distraction; F (4, 76) = 5.34, p = .0008), and Q6 (Prefer-

ence; F (4, 76) = 3.60, p = .0096). Video was significant only for Q4 (Causality;

F (2, 38) = 3.83, p = .0306). We found significant interactions between Motion

Effect and Video in four measures; Q1 (Harmony; F (8, 152) = 2.70, p = .0084),

Q3 (Enjoyment; F (8, 152) = 3.99, p = .0003), Q4 (Causality; F (8, 152) = 2.23,

p = .0284), and Q6 (Preference; F (8, 152) = 3.58, p = .0008). Our algorithms,

SH, ST, and OH, showed better performance in Q2 (Fatigue), Q4 (Causality), Q5

(Distraction), and Q6 (Preference). This suggests that our algorithms performed

well in situations where multiple characters were moving rapidly. In contrast,

Lee’s algorithm struggled in such scenarios, as parts or all of the objects were
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frequently out of the frame. Notably, Lee recorded a low score of Q2 (Fatigue)

in Spiderman, likely because the jitters of the tracked bounding box were rep-

resented as a rough motion effect. Meanwhile, OT performed worse than Lee in

terms of Q1 (Harmony) and Q3 (Enjoyment). This may be because viewers tend

to focus on short and rapid movements of characters in games, so the motion

effects representing camera motion and tilting were not matched to participants’

expectations. Furthermore, 16 participants pointed out the need to emphasize

the motion effects during hitting in all three videos, e.g., “I liked the motion ef-

fects for characters interacting with the background, but I was disappointed with

the motion effects for hitting between characters.” (Spiderman).

It is interesting to note that some participants expressed a preference for

the amplification of motion effects in our algorithms, e.g., “The dynamics of this

motion effect were the best. (OT, Spiderman)”, while there were no comments

on the attenuation. In addition, one participant reported, “I could distinguish

the difference in motion effects depending on the visual size of the objects.”

In conclusion, our algorithms generally performed better than the conven-

tional algorithm, particularly in videos with multiple objects or diverse com-

ponents. Our algorithms also offer the advantage of overcoming the limitations

associated with object-tracking-based methods, such as objects leaving the frame.

Although our four algorithms were hardly distinguishable, there were situations

where each algorithm had advantages. Therefore, 4D designers can leverage our

algorithmic options depending on the specific requirements of a given scenario,

thereby creating more convincing and tailored motion effects.

5.4 Comparison of Our Algorithms

In the previous section, we confirmed that our algorithm demonstrates su-

perior performance compared to the conventional algorithm. However, we rarely
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observed significant differences among the four options of our algorithm. There-

fore, we conducted an additional experiment comparing these options using clips

displaying distinct profiles of the four motion effects.

5.4.1 Methods

Participants

Sixteen people (6 females and 10 males, 23–30 years old with an average age

of 26.69) participated in this experiment. None of them reported known sensori-

motor disorders. The experiment took approximately 60 min per participant.

Devices

We used the same devices as in Section 5.3.1.

Experimental Conditions

We selected four clips from the nine videos used in Section 5.3.1: Avengers,

Dragon, Skating, and Spiderman. We cropped the video to about 10 to 20 s

where the motion profiles of the four options are distinguished. Their durations

are as follows. Avengers: 2’27”–3’37” (10 s), Dragon: 0’16”–0’31” (15 s), Skating :

1’13”–1’32” (19 s), and Spiderman: 18’40”–19’00” (20 s).

For each of the four clips, we generated four sets of motion effects using the

four options of our algorithm:

• SH: Motion effects synthesized by our algorithm (perception mode: subject-

relative, MCA: MPC with high-pass filters).

• ST: Motion effects synthesized by our algorithm (perception mode: subject-

relative, MCA: MPC with high-pass filters and tilt-coordination).

• OH: Motion effects synthesized by our algorithm (perception mode: object-

relative, MCA: MPC with high-pass filters).
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• OT: Motion effects synthesized by our algorithm (perception mode: object-

relative, MCA: MPC with high-pass filters and tilt-coordination).

In this experiment, we increased the weight for tilt-coordination, ϵl in (5.10),

from 0.25 to 0.75 to enhance its effect. All other parameters were set to the same

values as in the previous experiment.

Procedure

The experiment was conducted following a similar procedure to the previous

experiment. For familiarization, participants had a practice session in which

they experienced all four motion effects for one of the four videos. The main

session comprised four blocks of trials, one for each of the four videos. Each

block consisted of four trials in which four motion effects were presented with the

video. In each trial, participants experienced the pair of a video and a motion

effect three times. The order of the video was randomized across participants, and

the order of the motion effects per video was balanced across participants using

the balanced Latin square. Participants took a 3-min break after the practice

session and each block in the main session.

After experiencing each motion effect, participants answered the same ques-

tionnaire described in Section 5.4.1. In this questionnaire, we modified Q6 (Pref-

erence) to “Rank the four motion effects in the order of preference.” (Preference

in rank). This was done to differentiate clearly the ratings among the four op-

tions. For Q1–Q5, participants’ response methods to the questions were also the

same with the previous experiment. For Q6, participants ranked the four motion

effects in descending order of preference without ties. In the data analysis, we

inverted the scores of three questions (Q2, Q4, and Q5) so that a high score in-

dicates a better experience in every measure. Also, the rank data obtained from

Q6 (Preference) was inverted to a preference score by (6-rank).
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(a) Average scores (b) Average rank

Figure 5.13: Experimental results for comparing the four options of our algorithm

Exp. 1. Error bars represent standard errors. Motion effect sets marked with the

same letters indicate that they did not show statistically significant differences

by the SNK tests. The scales of negative questions are inverted so that a higher

score indicates a better performance.

5.4.2 Results and Discussion

The experimental results are shown in Figure 5.13 and 5.14. We performed

a two-way repeated-measures ANOVA on every question from Q1 to Q5 using

Motion Effect and Video as the independent variables. We then used the SNK

test for post-hoc multiple comparisons. Motion Effect was statistically significant

for only Q3 (Fatigue; F (3, 45) = 3.33, p = .0278). Video was significant for

Q1 (Harmony; F (3, 45) = 10.09, p < .0001), Q3 (Fatigue; F (3, 45) = 6.96, p =

.0006), and Q5 (Distraction; F (3, 45) = 8.50, p = .0071). We observed significant

interactions between Motion Effect and Video in two measures; Q4 (Causality;

F (9, 135) = 2.20, p = .0259) and Q5 (Distraction; F (9, 135) = 2.66, p = .0071).

The scores of Q6 (Preference) are ordinal data. We only tested the main factor

of Motion Effect and Video over all videos and for each video using a Friedman

test. However, none of the significant effects of Motion Effect and Video were

observed for all videos, and each video.

Overall, SH received slightly higher scores than the others, but statistically

significant differences among the four options were hardly identified. However, we

could observe some significant differences among the four methods for in result on
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(a) Avengers (b) Dragon

(c) Skating (d) Spiderman

Figure 5.14: Experimental results for each video. Error bars represent standard

errors. Motion effect sets marked with the same letters indicate that they did not

show statistically significant differences by the SNK tests. The scales of negative

questions are inverted so that a higher score indicates a better performance.

each video, particularly in clips of Avengers and Skating, where the camera follows

a main character with sustained movements. In Skating, OT generally showed

better performance than the other methods in terms of Harmony (F (3, 45) =

3.14, p = .0345), Enjoyment (F (3, 45) = 2.95, p = .0426), Causality (F (3, 45) =

4.05, p = .0125), and Distraction (F (3, 45) = 5.12, p = .0039). We presume that

OT received high scores because it effectively captured the camera’s low-frequency

movement as well as the skater’s movements. Six participants commented on

this, e.g., “The motion effect matched well both the movements of the camera

and the skater.” However, in Avengers, despite the camera continuously following

a moving subject, OT was rated more distracting than SH (F (3, 45) = 3.07, p =

.0374). This is because high-frequency motion is relatively less expressed by the

term for tilt-coordination in (5.10). Four people pointed out the weak intensity

of OT, e.g., “The motion effects were too weak when the character was moving.”

– 100 –



In conclusion, we recommend adopting SH in general scenes. But, we expect

that OT may have a merit in scenes where the camera continuously follows a

moving object if the algorithm is tuned to enhance tilt-coordination and maintain

the expression of high-frequency motions. Designers will be able to choose the

appropriate method according to the scene.

5.5 General Discussion

In this study, we focused on generating object-based motion effects by con-

sidering two visual modes. This allowed us to create motion effects that capture

both object and camera motions. Consequently, there is no need to generate

object- and camera-based motion effects independently. Further research can

explore the comparison between our algorithm and an approach that combines

these two types of motion effects.

Our approach based on combining the movements of pixels overcomes the

limitations of the previous approach based on object tracking. Object tracking

requires manual annotation, and it has limitations when dealing with occlusion or

when objects partially or completely leave the frame. In contrast, our approach is

free from these limitations and produces more reliable results. Also, our method

is robust to errors in scene flow, since the motion proxy aggregates the scene flow,

thereby it is not significantly affected by the errors. Moreover, as computer vision

techniques advance, our algorithm can further benefit from these advancements.

Our approach can create motion effects matching the overall visual flow of a

scene. However, depending on the situation, a motion effect focusing on a single

object could be preferred, which can be achieved by utilizing object segmentation

technology. For example, in scenarios where audiences are expected to relate to a

specific character, especially in games, motion effects can be selectively provided

to emphasize the character’s movement for viewers to immerse in the character.
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5.6 Conclusion

In this chapter, we have presented a fully automatic algorithm for extracting

motion information from scene segments and generating motion effects for vari-

ous scene components, including objects, particles, and camera motion. Unlike

the algorithms discussed in previous chapters (Chapter III and IV), which relied

on given object motion trajectories, this algorithm utilizes scene flow estimation

and saliency detection techniques to extract motion information from the scene.

This approach overcomes the limitations of the conventional algorithms based on

object-tracking, such as occlusion and objects leaving the frame. Additionally,

it allows for detecting key components and extracting their movements with-

out requiring human assistance, thereby facilitating the efficient production of

object-based motion effects. For the comprehensive representation of scene com-

ponent movements, we compressed the extracted movements into a single point,

extending the computational definition of motion proxy from multiple articulated

bodies. To the best of our knowledge, this work is the first attempt to generate

convincing motion effects for immersive 4D experiences through a fully automatic

process.
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VI. Guidelines for Motion Effects

In this chapter, we present guidelines for 4D effect designers in authoring

object-based motion effects on the basis of our observations and qualitative feed-

back from participants in user studies, throughout our research.

Express various components. Scenes consist of numerous components, in-

cluding objects, particles, visual effects, and a camera, and their move-

ments can all be portrayed through motion effects. Motion effects should

encompass and appropriately respond to the movements of these compo-

nents. One effective approach is to combine the overall movements instead

of solely focusing on the movement of an individual component, as in our

approach.

Focus on users’ attention. Various factors can serve as cues for motion ef-

fects, but people expect motion effects to be presented for the cues that

catch their attention. This is supported by the finding that methods em-

phasizing salient movements were preferred by participants. However, when

unexpected motion cues were provided, even if they were consistent with

the content, participants perceived them as distracting. In contrast, when

expected motion cues were not provided, participants evaluated it as mis-

matched with the content, resulting in decreased satisfaction. Therefore, it

is crucial to identify what users are likely to attend in the scene and align

it with the motion effects.

Make it dynamic but not tiring. As mentioned in Section 4.3, participants

preferred dynamic motion effects, but they became tired when the effects

lasted for a long time, which decreased user satisfaction. Thus, intense mo-
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tion effects emphasizing fast movements should be carefully used, especially

for movies and games with a long duration. To prevent abrupt movements,

the motion intensity can be adjusted by scaling and applying the attenua-

tion rule in Eq. (4.14). We set the exponent γ to 0.7 in the experiments, but

using a lower value can create smoother motion effects with less deviations

in motion speed. Of course, a higher value can be advantageous for more

dynamic situations.

Modulate it according to context. As mentioned earlier, the motion inten-

sity should be carefully tuned according to the context of audiovisual con-

tent. Dynamic motion effects can be preferred in fighting scenes, while

gentle ones are in dance scenes. Moods and circumstances are also impor-

tant. For example, to emphasize a tense situation, the motion effect can

amplify even the fine movements in the scene. Besides, motion effects can

be leveraged to augment a character’s properties, such as strengths and

weights. A motion effect weaker than a visual movement can emphasize

such properties as the weakness and lightness of an object. In contrast, a

stronger motion effect can accentuate the strength or the heaviness.

Utilize both visual and auditory information. The inclusion of sound in-

formation could enhance the generation of motion effects that emphasize

specific events. As mentioned earlier in Section 5.3.2, motion effects need

to be amplified for the events related to hits and collisions. While it is

challenging to detect hits and collisions using visual information alone, in-

corporating sound information could facilitate easier detection.

Tilt it based on shot length. Motion effects should be tailored according to

the length of shots. For example, the option of tilt-coordination was favored

for longer shots featuring sustained movements in Section 5.4. However, this
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approach may not be ideal, especially for shorter shots (less than 3 s). The

tilt cause discomfort and be perceived as irrelevant to the content. Hence,

using different motion cueing options based on the shot length would be

beneficial.

Utilize various animation data. The algorithm in Chapter IV can generate

object-based motion effects by taking various animation data as the input.

The animation data can be collected using a motion capture system or ex-

tracted from animation databases, e.g., the CMU mocap database [1]. The

algorithm can use such animation data to yield motion effects for specific

movements, such as walking and gestures. Putting them together can lead

to a motion effect library that provides a huge amount of motion effect seg-

ments. These motion effect segments can be transformed and stitched into

a motion effect for an articulated body to fit the content. Also, a motion

effect for the movement of multiple objects can be created by blending and

merging the motion effects of the individual objects. This approach can be

particularly effective in generating motion effects for the movements that

are not shown visually in the content but can be inferred, e.g., the loco-

motion in a first-person view. Lee et al. [60] approached this problem by

collecting gait motion data using a motion sensor and generating motion

effects for the character’s gait that is not visually revealed in first-person

shooting games. As an alternative, our algorithm can be applied using

the animations of human locomotion. In our test, the synthesized motion

effects for running animations showed similar motion profiles (Fig. 6.1).
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Figure 6.1: Motion effect generated by our algorithm for a running animation.

The input animation is 09 11 from the CMU mocap database [1].

– 106 –



VII. Conclusion

In this thesis, we have presented innovative methods for automatically gen-

erating object-based motion effects to enhance 4D experiences. Finally, in this

chapter, we summarize our contributions and propose future works that should

be pursued.

7.1 Contributions

The contribution of my thesis can be summarized as follows:

• We proposed automatic algorithms for generating motion effects for various

objects, aiming to enhance the immersive media viewing experience. Unlike

previous approaches that focused on rendering the 2D velocity of a single

object, our method is the first to offer object-based motion effects for diverse

forms of objects.

• We introduce the concept of motion proxy to represent the complex move-

ments of objects with high DoFs using a 3-DoF motion chair. We first

defined the concept of a motion proxy as a combination of the direction

and position of a rigid body object. Then we extended this concept to

encompass multiple articulated bodies and scene components. The motion

proxy captures the essential movements of objects and scene elements, pro-

viding a condensed representation of their motions within a scene, enabling

the generation of motion effects for a wide range of objects.

• Our approach extends beyond motion effects and can be applied to various

sensory stimuli. By utilizing vibrator arrays or force feedback devices, we

can provide users with a sense of movement corresponding to the motion
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proxy’s movements. We expect such applicability to be a cost-effective

alternative to expensive motion platforms.

• We design robust algorithms for automatic motion effect generation, con-

sidering both users’ visual perception and vestibular sensory cues, as well

as hardware limitations. By incorporating insights from human perception

mechanisms and accounting for hardware constraints, our algorithms create

plausible object-based motion effects.

• Our algorithms can deliver a superior user experience compared to the ex-

isting method. By going beyond the limitations of the existing algorithm

based on object tracking, our approach enables a comprehensive representa-

tion of complex 3D movements within scenes, resulting in a more immersive

and captivating experience.

Our research contributes to enhancing the overall media viewing experience and

paves the way for future developments in this area.

7.2 Future Works

While this thesis has made significant contributions to generating object-

based motion effects, there are several avenues for future research and develop-

ment. While we utilized saliency detection to identify major objects in the scene,

we did not differentiate between individual objects during processing. By in-

corporating techniques such as object segmentation, we could selectively provide

motion effects more focused on specific objects. For example, for TPS games,

we could tailor the motion effects to react only to the movements of the player-

controlled character. Furthermore, our algorithm primarily relied on visual infor-

mation to generate motion effects. However, incorporating auditory information

could create even more convincing object-based motion effects. Sound can pro-
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vide valuable cues for objects’ movements. For instance, hitting and collisions

could be emphasized by amplifying the motion effects in synchronization with

prominent sound events. By combining visual and auditory information, we can

enhance the overall realism and impact of the motion effects.
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요 약 문

4D 컨텐츠는 시청각 컨텐츠와 함께 모션, 진동, 열, 바람과 같은 다양한 감각 효

과를 활용하여 사용자의 멀티미디어 경험을 향상시킨다. 가장 빈번히 사용되는 4D

효과 중의 하나는 ‘물체 기반의 모션 효과’이다. 물체 기반의 모션 효과란 장면에서

주요한 물체의 움직임을 강조하기 위하여 사용자가 앉아있는 의자(모션 플랫폼)를

움직이는것을말한다. 4D컨텐츠에서는한장면에여러물체가동시에등장하기도

하며, 각 물체는 여러 부위에 의해 높은 자유도로 움직이기도 한다. 반면, 극장에서

사용되는 모션 의자는 대부분 제한된 동작 범위와 3자유도만을 가지고 있기 때문에

그러한 물체의 움직임을 표현하는데 한계가 있다. 따라서, 물체 기반의 모션 효과를

만들어내는 것은 매우 어렵다.

이러한 모션 효과의 생산을 가속하기 위해 영상을 분석하여 모션 효과를 자동

으로 생성하는 기술들이 제안된 바 있지만, 이 방법들은 하나의 강체의 병렬이동

(translation)에 대해서만 집중하여 모션 효과를 생성하고자 하였다. 본 논문에서는

다자유도의 복잡한 움직임들을 정교하게 표현하는 모션 효과를 자동으로 생성하는

알고리즘을 제시한다. 이를 위해, 모션 프록시(Motion proxy)라는 새로운 개념을

제시하여 다자유도의 움직임을 하나의 3자유도 움직임으로 축약하고 그것을 모션

효과로 변환한다.

먼저, 우리는 강체에 대한 모션 효과 생성 알고리즘을 개발하였다. 우리는 강체

의 크기에 따라 병렬이동과 회전을 조합하여, 강체의 6자유도 움직임을 3자유도의

모션 프록시로 표현하고자 하였다. 다음으로, 우리는 다중 다관절체(Articulated

body)의 여러 부위의 복합적인 움직임을 모두 표현하는 모션 효과 생성 알고리즘

을 개발하였다. 우리는 다관절체의 움직임을 포괄적으로 표현할 수 있도록 수많은

부위의 움직임은 각 부위의 속도와 크기에 따라 조합하여 모션 프록시를 계산하였
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다. 마지막으로, 우리는 움직이는 강체, 다관절체, 입자의 움직임 등의 장면의 모든

움직이는 요소로부터 모션 효과를 완전 자동으로 생성하였다. 특히, 이 과정에서

장면의 움직임을 자동으로 추출하기 위하여 장면 흐름 추정(Scene flow estimation)

과주목도탐지(Saliency detection)과같은컴퓨터비전기술을활용하였고, 추출된

움직임을 중요도에 따라 조합하여 모션 프록시를 계산하였다.

각 단계에서 우리는 세부적인 알고리즘과 최적의 파라미터를 결정하기 위해 여러

번의 사용자 평가 실험을 수행하여 최적의 알고리즘을 구현하였다. 사용자 평가

결과, 우리가 제안하는 알고리즘이 기존의 기술보다 뛰어난 수준의 물체 기반 모션

효과를 자동으로 생성해내고 있음을 확인할 수 있었다.
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Vasconcelos-Raposo, and Maximino Bessa. Do multisensory stimuli benefit

the virtual reality experience? a systematic review. IEEE Transactions on

Visualization and Computer Graphics, 28(2):1428–1442, 2020.

[33] Yuki Kon, Takuto Nakamura, and Hiroyuki Kajimoto. Hangerover: Hmd-

embedded haptics display with hanger reflex. In ACM SIGGRAPH 2017

Emerging Technologies. ACM, 2017.

[34] Jan Gugenheimer, Dennis Wolf, Eythor R. Eiriksson, Pattie Maes, and

Enrico Rukzio. Gyrovr: Simulating inertia in virtual reality using head

worn flywheels. In Proceedings of the 29th Annual Symposium on User

Interface Software and Technology, page 227–232. ACM, 2016.

[35] Chi Wang, Da-Yuan Huang, Shuo-wen Hsu, Chu-En Hou, Yeu-Luen Chiu,

Ruei-Che Chang, Jo-Yu Lo, and Bing-Yu Chen. Masque: Exploring lateral

– 116 –



skin stretch feedback on the face with head-mounted displays. In Proceed-

ings of the 32nd Annual ACM Symposium on User Interface Software and

Technology, page 439–451. ACM, 2019.

[36] Takayuki Kameoka, Yuki Kon, Takuto Nakamura, and Hiroyuki Kajimoto.

Haptopus: Haptic vr experience using suction mechanism embedded in

head-mounted display. In The 31st Annual ACM Symposium on User In-

terface Software and Technology Adjunct Proceedings, page 154–156. ACM,

2018.

[37] Celso A. Saibel Santos, Almerindo N. Rehem Neto, and Estevao B. Saleme.

An event-driven approach for integrating multi-sensory effects to interactive

environments. In 2015 IEEE International Conference on Systems, Man,

and Cybernetics, pages 981–986. IEEE, 2015.

[38] Fabien Danieau, Julien Fleureau, Philippe Guillotel, Nicolas Mollet, Ana-

tole Lécuyer, and Marc Christie. Hapseat: Producing motion sensation

with multiple force-feedback devices embedded in a seat. In Proceedings

of the 18th ACM Symposium on Virtual Reality Software and Technology,

pages 69–76. ACM, 2012.

[39] Fabien Danieau, Jérémie Bernon, Julien Fleureau, Philippe Guillotel, Nico-

las Mollet, Marc Christie, and Anatole Lécuyer. H-studio: An authoring

tool for adding haptic and motion effects to audiovisual content. In Pro-

ceedings of the Adjunct Publication of the 26th Annual ACM Symposium

on User Interface Software and Technology, pages 83–84. ACM, 2013.

[40] Misha Sra, Abhinandan Jain, and Pattie Maes. Adding proprioceptive feed-

back to virtual reality experiences using galvanic vestibular stimulation. In

Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems. ACM, 2019. 675.

– 117 –



[41] Yeongmi Kim, Jongeun Cha, Jeha Ryu, and Ian Oakley. A tactile glove

design and authoring system for immersive multimedia. IEEE MultiMedia,

17(3):34–45, 2010.

[42] Sang-Kyun Kim. Authoring multisensorial content. Signal Processing: Im-

age Communication, 28(2):162–167, 2013.

[43] Markus Waltl, Benjamin Rainer, Christian Timmerer, and Hermann Hell-

wagner. An end-to-end tool chain for sensory experience based on mpeg-v.

Signal Processing: Image Communication, 28(2):136–150, 2013.

[44] Yuhao Zhoul, Makarand Tapaswi, and Sanja Fidler. Now you shake me: To-

wards automatic 4d cinema. In 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 7425–7434. IEEE, 2018.

[45] Thomhert S. Siadari, Mikyong Han, and Hyunjin Yoon. 4d effect video

classification with shot-aware frame selection and deep neural networks.

In 2017 IEEE International Conference on Computer Vision Workshops,

pages 1148–1155. IEEE, 2017.

[46] Raphael Abreu, Douglas Mattos, Joel A. F. dos Santos, and Débora C.
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